JPH0522733B2 - - Google Patents

Info

Publication number
JPH0522733B2
JPH0522733B2 JP10718384A JP10718384A JPH0522733B2 JP H0522733 B2 JPH0522733 B2 JP H0522733B2 JP 10718384 A JP10718384 A JP 10718384A JP 10718384 A JP10718384 A JP 10718384A JP H0522733 B2 JPH0522733 B2 JP H0522733B2
Authority
JP
Japan
Prior art keywords
volume
nickel
parts
tetrafluoroethylene resin
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10718384A
Other languages
Japanese (ja)
Other versions
JPS60250054A (en
Inventor
Masaki Egami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP10718384A priority Critical patent/JPS60250054A/en
Publication of JPS60250054A publication Critical patent/JPS60250054A/en
Publication of JPH0522733B2 publication Critical patent/JPH0522733B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(1) 産業上の利用分野 この発明は摩擦係数が小さく、耐摩耗性が優
れ、同時に体積抵抗率が小さいことを目的とする
導電性摺動材組成物に関するものである。 (2) 従来の技術 各種エンジニアリングプラスチツクとして、摩
擦係数が小さく、耐熱性、耐薬品性等が要求され
る用途に、ふつ素樹脂(中でも特に四ふつ化エチ
レン樹脂)が広く用いられることはよく知られて
いるが、この樹脂は耐摩耗性、耐圧縮クリープ性
が劣ることから種々の充填材が併用されなければ
ならないとか、樹脂自身の電気絶縁性が優れてい
て、1014Ω・cm以上の体積抵抗率を示すといつた
特徴を有するものである。 近時、事務機械化の急速な進展に伴つて、摺動
特性と優れた導電性とを兼ね備えた摺動材料が強
く要望されるようになり、四ふつ化エチレン樹脂
を基材とし、これに耐摩耗性の向上と導電性の付
与とを目的として、黒鉛、導電性カーボン、金属
粉、金属繊維などの充填材を添加した材料が開発
されてきた。しかし、黒鉛、導電性カーボンを添
加した材料は、摺動特性においては良好であつて
も、体積抵抗率においては101〜102Ω・cm程度で
しかなく決して好ましい材料とは言えない。ま
た、金属粉としては、金、銀、銅、アルミニウ
ム、ニツケル等の粉末が用いられ、金および銀は
化学的に安定であり高導電性のものであるがきわ
めて高価であるために、しばしば銅、アルミニウ
ム、ニツケル等が用いられる。しかし、銅、アル
ミニウムは四ふつ化エチレン樹脂の成形温度で酸
化されやすく、これらを添加した製品の導電性は
不安定となるので、四ふつ化エチレンに対する導
電性付与材には不適合である。一方、ニツケル粉
は比較的安定で、四ふつ化エチレン樹脂に添加し
て得られる製品の導電性およびその安定性は良好
であるものの、耐摩耗性は著しく悪い。さらに金
属繊維は、黄銅フアイバー、アルミニウムフアイ
バーなどが市販されていても、前記粉末状のもの
と同様に酸化されやすくて材質的に好ましくない
ばかりでなく、通常市販されているものの多くは
径が60μm、長さが3mmと寸法が大きく、摺動材
料用の充填材にこれを使用すれば、材料面より突
出して相手材表面を傷つけたりするので、決して
望ましい材料とは言えない。このため、この発明
者は潤滑性のある材料を金属で被覆し、これを四
ふつ化エチレン樹脂に可能な限り多量に充填して
その特性確認の実験を行なつたが、よい導電性は
得られなかつた。 (3) 発明が解決しようとする問題点 以上述べたことから明らかなように、耐摩耗性
の向上と優れた導電性の付与のために四ふつ化エ
チレン樹脂に添加される黒鉛・導電性カーボン、
金属粉、金属繊維などの充填は、それぞれに重大
な欠点をもつていて、従来技術では世間の強い要
望を満足させることができない。 (4) 問題を解決するための手段 上記の問題点を解決するために、この発明は四
ふつ化エチレン樹脂100容量部に対して、ニツケ
ルで表面を被覆した固体潤滑剤と炭素繊維との容
量比が15:80から80:20の範囲にある混合物を、
30〜150容量部添加したことを特徴とする導電性
摺動材組成物を提供するものであり、以下にその
詳細を述べる。 この発明における四ふつ化エチレン樹脂はテト
ラフルオロエチレンの重合体であり、アルゴフロ
ン、テフロン、フルオン、ポリフロン等の登録商
標名で市販されているふつ素樹脂の一種である。
吸水性はなく、不燃性で強酸、強アルカリ、有機
溶剤に対してきわめて安定で、通常400℃以上で
始めて分解が起こるほど耐熱性も良好な樹脂であ
るため、通常の場合、粉末冶金と同様の方法で、
粉末状の樹脂を金型に入れ、徐々に加圧(100〜
600Kg/cm2)して成形した後350〜380℃付近で焼
成する方法が採用されている。ここで、室温下で
加圧し、予め成形したものを常圧下で焼結させる
と、得られる成形体は充填密度が小さくて、体積
抵抗率の大きいものになることから、この発明に
おいては加圧および加熱を同時に行なうことが望
ましい。 つぎに、この発明におけるニツケルで表面を被
覆した固体潤滑剤(以下これをニツケル被覆材と
呼ぶ)は、導電性があれはその種類を特に限定す
るものではないが、無電解メツキにより表面をニ
ツケルで被覆した雲母(たとえば三菱金属社製
品)、黒鉛や芳香族ポリアミド繊維など例示する
ことができる。 さらに、この発明における炭素繊維は耐摩耗
性、耐クリープ性を向上させるという役割を果す
が、分散する前記ニツケル被覆材相互に接触し
て、全体の導電性を高めようとする目的に使用さ
れるものであるから、炭素繊維自身に良好な導電
性が必要であることは勿論であるが、さらに高度
の導電性が要求されるようなときには、金属(た
とえばニツケル)被覆の炭素繊維(たとえば東邦
ベスロン社製品)などを使用することもできる。
この発明においては、混合、成形等の容易さおよ
び成形面からの突出防止の点から、炭素繊維は径
20μm以上好ましくは15〜6μm、長さ1mm以下好
ましくは0.3〜0.02mmのものが望ましく、一般的
には東レ社製:トレカMLD−30または呉羽化学
工業社製:クレハカーボンフアイバーM202Sな
どの市販品を例示することができる。 この発明において、前記四ふつ化エチレン樹
脂、ニツケル被覆材および炭素繊維の三者の配合
割合を容量比で示したが、その理由は重量比では
通常の炭素繊維と金属被覆した炭素繊維とでは比
重が著しく異なり、同体積ても重量が異なるた
め、配合比を重量比で表わしたのではこの発明の
構成を明確な範囲で示すことは不可能であつて好
ましくないからであり、容量は重量と真比重とを
測定し、その重量を真比重で除した値で示す方法
を採用した。ここで、ニツケル被覆材と炭素繊維
との混合割合は、ニツケル被覆材を15:80よりも
少なくしても、また80:20よりも多くしても導電
性と摺動特性とを兼備させることができなくな
り、好ましくは40:60から70:30の範囲内にする
とよい。このようにニツケル被覆材と炭素繊維と
の混合物を、四ふつ化エチレン樹脂100容量部に
対して30〜150容量部、好ましくは50〜100容量
部、混合する理由は混合物が30容量部よりも少な
いときは、充分な導電性が得られず、150容量部
より多いときは摺動特性が悪化するか、もしくは
成形体が非常に脆くなくつて好ましくないからで
ある。 以上のようにして四ふつ化エチレン樹脂に混合
したニツケル被覆材および炭素繊維の分散を均一
にするためには、四ふつ化エチレン樹脂の粒度も
小さいほど望ましく、通常の場合、平均粒径40μ
m以下であれば支障はない。これら三者の混合物
を成形用金型に入れて400〜1000Kg/cm2(四ふつ
化エチレン樹脂のみのときよりも高い圧力で予備
成形し、一度常圧に戻して350〜380℃に加熱した
後再び加圧するか、または、加圧しながら加熱す
るかして、粒子間の焼結を充分に行なつた後冷却
し、要求される寸法安定性や形状に対応できるよ
う必要に応じて形状の調整を加えれば、所望の成
形体が得られる。 (5) 作用 以上述べた配合割合で、四ふつ化エチレン樹脂
とニツケル被覆材と炭素繊維とが均一分散した状
態にあるこの発明の導電性摺動材組成物の研摩さ
れた表面(摺動面)には、ニツケル被覆材に内蔵
されている固体潤滑剤も表われて、四ふつ化エチ
レン樹脂、炭素繊維、ニツケル被覆、固体潤滑剤
の四つの構成成分が露呈する。その結果、固体潤
滑剤は潤滑生の向上に役立つと同時に、ニツケル
被覆層は互にまたは炭素繊維と密着して電路を形
成し、導電性の増大に寄与するのである。 (6) 実施例 以下に実施例および比較例を示す。 実施例 1 四ふつ化エチレン樹脂(旭硝子社製:フルオン
G163)100容量部に、平均粒径12μmの金雲母に、
ニツケルの無電解メツキを施したニツケル被覆雲
母(三菱金属社製)48容量部および表面にニツケ
ルメツキを施した炭素繊維(東邦ベスロン社製:
HTCF/Ni、繊維径7.5μm、繊維長300μm、平
均ニツケル膜厚0.25μm)37容量部をヘンシエル
ミキサーで充分に混合した後、内径30mmの円筒状
の金型に充填し、800Kg/cm2の圧力をかけて予備
成形した。予備成形体の入つた金型を常圧下で加
熱し、360℃のもとに1時間保持した。保持後再
び800Kg/cm2の圧力を加え、そのまま冷却し、得
られた成形体について摩擦摩耗試験および体積抵
抗率の測定を試みた。ここで、摩擦係数は、滑り
速度100m/min、荷重1Kg/cm2の条件でスラス
ト型摩擦試験機を用いて測定し、摩耗係数は滑り
速度128m/min、荷重1.6Kg/cm2の条件でスラス
ト型摩耗試験機を用い、いずれも相手材には軸受
鋼SUJ−2(焼入れ、研削仕上げ)を使用した。
得られた結果は第1表にまとめた。
(1) Industrial Application Field The present invention relates to a conductive sliding material composition that has a low coefficient of friction, excellent wear resistance, and at the same time low volume resistivity. (2) Conventional technology It is well known that fluorine resins (particularly tetrafluoroethylene resins) are widely used as various engineering plastics in applications that require low friction coefficients, heat resistance, chemical resistance, etc. However, this resin has poor abrasion resistance and compression creep resistance, so various fillers must be used together, and the resin itself has excellent electrical insulation properties, so It has characteristics such as exhibiting volume resistivity. Recently, with the rapid progress of office mechanization, there has been a strong demand for sliding materials that have both sliding properties and excellent conductivity. Materials containing fillers such as graphite, conductive carbon, metal powder, and metal fibers have been developed for the purpose of improving wear resistance and imparting electrical conductivity. However, although materials to which graphite and conductive carbon are added have good sliding properties, their volume resistivity is only about 10 1 to 10 2 Ω·cm, which is not a desirable material. In addition, powders of gold, silver, copper, aluminum, nickel, etc. are used as metal powders, and although gold and silver are chemically stable and highly conductive, they are extremely expensive, so copper powder is often used. , aluminum, nickel, etc. are used. However, copper and aluminum are easily oxidized at the molding temperature of tetrafluoroethylene resin, and the conductivity of products to which they are added becomes unstable, so they are not suitable as conductivity imparting materials for tetrafluoroethylene. On the other hand, nickel powder is relatively stable, and although the product obtained by adding it to tetrafluoroethylene resin has good conductivity and stability, its wear resistance is extremely poor. Furthermore, even if metal fibers such as brass fibers and aluminum fibers are commercially available, they are not only easily oxidized and undesirable as a material like the powdered ones, but most of the commercially available ones have a diameter of 60 μm. It has a large length of 3 mm, and if used as a filler for a sliding material, it would protrude from the surface of the material and damage the surface of the other material, so it cannot be said to be a desirable material. For this reason, the inventor coated a lubricating material with metal and filled it into tetrafluoroethylene resin in as large a quantity as possible to conduct an experiment to confirm its properties, but good conductivity was not obtained. I couldn't help it. (3) Problems to be solved by the invention As is clear from the above, graphite and conductive carbon are added to tetrafluoroethylene resin to improve wear resistance and provide excellent conductivity. ,
Filling with metal powder, metal fiber, etc. each has serious drawbacks, and the conventional techniques cannot satisfy the strong demands of the public. (4) Means for Solving the Problems In order to solve the above problems, the present invention proposes to reduce the volume of the solid lubricant whose surface is coated with nickel and the carbon fibers to 100 parts by volume of tetrafluoroethylene resin. Mixtures with ratios ranging from 15:80 to 80:20,
The present invention provides a conductive sliding material composition characterized in that 30 to 150 parts by volume is added thereto, the details of which will be described below. The tetrafluoroethylene resin in this invention is a polymer of tetrafluoroethylene, and is a type of fluororesin commercially available under registered trademarks such as Algoflon, Teflon, Fluon, and Polyflon.
It is a resin that does not absorb water, is non-flammable, extremely stable against strong acids, strong alkalis, and organic solvents, and has good heat resistance such that decomposition usually occurs at temperatures above 400°C, so it is normally used in the same way as powder metallurgy. In the method of
Powdered resin is placed in a mold and pressure is gradually applied (100~
600Kg/cm 2 ), molded, and then fired at around 350 to 380°C. Here, if a pre-formed product is pressurized at room temperature and sintered under normal pressure, the resulting compact will have a low packing density and a high volume resistivity. It is desirable to perform both heating and heating at the same time. Next, the solid lubricant of this invention whose surface is coated with nickel (hereinafter referred to as nickel coating material) is not particularly limited in type as long as it is conductive, but the surface is coated with nickel by electroless plating. Examples include mica coated with (for example, a Mitsubishi Metals product), graphite, and aromatic polyamide fibers. Furthermore, the carbon fibers in this invention play the role of improving wear resistance and creep resistance, but are also used for the purpose of increasing the overall electrical conductivity by contacting the dispersed nickel coating material. It goes without saying that the carbon fiber itself must have good conductivity, but when a higher degree of conductivity is required, carbon fiber coated with metal (for example, nickel) (for example, Toho Beslon) is required. You can also use products such as
In this invention, from the viewpoint of ease of mixing, molding, etc. and prevention of protrusion from the molding surface, the
A length of 20 μm or more, preferably 15 to 6 μm, and a length of 1 mm or less, preferably 0.3 to 0.02 mm, is generally a commercially available product such as Torayca MLD-30 manufactured by Toray Industries or Kureha Carbon Fiber M202S manufactured by Kureha Chemical Industry Co., Ltd. can be exemplified. In this invention, the compounding ratio of the tetrafluoroethylene resin, the nickel coating material, and the carbon fiber is shown in terms of volume ratio. This is because it is impossible and undesirable to express the composition of the present invention in a clear range if the compounding ratio is expressed as a weight ratio, since the weight is different even if the volume is the same. A method was adopted in which the true specific gravity was measured and the weight was divided by the true specific gravity. Here, the mixing ratio of the nickel coating material and carbon fiber is such that both conductivity and sliding properties can be achieved even if the nickel coating material is less than 15:80 or greater than 80:20. The ratio should preferably be within the range of 40:60 to 70:30. The reason why the mixture of nickel coating material and carbon fiber is mixed in an amount of 30 to 150 parts by volume, preferably 50 to 100 parts by volume, per 100 parts by volume of tetrafluoroethylene resin is that the mixture is more than 30 parts by volume. If the amount is less than 150 parts by volume, sufficient conductivity cannot be obtained, and if the amount is more than 150 parts by volume, the sliding properties may deteriorate or the molded product may become very brittle, which is undesirable. In order to make the dispersion of the nickel coating material and carbon fibers mixed with the tetrafluoroethylene resin as described above more uniform, it is desirable that the particle size of the tetrafluoroethylene resin is smaller, and the average particle size is usually 40μ.
There is no problem if it is less than m. A mixture of these three materials was placed in a mold and preformed at a pressure of 400 to 1000 kg/cm 2 (higher than when using only tetrafluoroethylene resin, then returned to normal pressure and heated to 350 to 380°C. After that, pressurize again or heat while pressurizing to sufficiently sinter the particles, then cool and adjust the shape as necessary to meet the required dimensional stability and shape. By making adjustments, the desired molded product can be obtained. (5) Effect The conductive slide of the present invention in which the tetrafluoroethylene resin, the nickel coating material, and the carbon fibers are uniformly dispersed in the above-mentioned compounding ratio. The solid lubricant built into the nickel coating material also appears on the polished surface (sliding surface) of the animal composition. As a result, the solid lubricant helps improve lubricity, and at the same time the nickel coating layers form electrical paths in close contact with each other and the carbon fibers, contributing to increased electrical conductivity. (6) Examples Examples and comparative examples are shown below. Example 1 Tetrafluoroethylene resin (manufactured by Asahi Glass Co., Ltd.: Fluon
G163) phlogopite with an average particle size of 12 μm in 100 parts by volume,
Nickel coated mica with nickel electroless plating (manufactured by Mitsubishi Metals) 48 volume parts and carbon fiber with nickel plating on the surface (manufactured by Toho Veslon)
HTCF/Ni, fiber diameter 7.5 μm, fiber length 300 μm, average nickel film thickness 0.25 μm) was thoroughly mixed in a Henschel mixer, then filled into a cylindrical mold with an inner diameter of 30 mm, and the mixture was packed at 800 kg/cm 2 It was preformed under pressure. The mold containing the preform was heated under normal pressure and held at 360° C. for 1 hour. After holding, a pressure of 800 Kg/cm 2 was applied again, and the molded product was cooled as it was. Friction and wear tests and measurements of volume resistivity were attempted on the molded product obtained. Here, the friction coefficient is measured using a thrust type friction tester under the conditions of a sliding speed of 100 m/min and a load of 1 kg/ cm2 , and the wear coefficient is measured under the conditions of a sliding speed of 128 m/min and a load of 1.6 kg/ cm2 . A thrust type wear tester was used, and bearing steel SUJ-2 (quenched and ground) was used as the mating material in both cases.
The results obtained are summarized in Table 1.

【表】 実施例 2 炭素繊維として東レ社製の繊維径7μm、繊維
長30μmのもの37容量部を用いた以外は実施例1
と全く同じ方法によつて圧縮加熱成形体を得た。
この成形体についても実施例1と同様に摩擦摩耗
試験および体積抵抗率の測定を行ない、その結果
を第1表に併記した。 実施例 3 四ふつ化エチレン樹脂100容量部に対して、ニ
ツケル被覆雲母および炭素繊維の配合割合をそれ
ぞれ73容量部70容量部とした以外は実施例1と全
く同じ原料ならびに方法を用いて圧縮加熱成形体
を得た。この成形体について実施例1と同様摩擦
摩耗試験および体積抵抗率の測定を行ない、その
結果を第1表に併記した。 比較例 1〜3 実施例1と同じ四ふつ化エチレン樹脂、ニツケ
ル被覆雲母またはニツケル粉末(米国インコ社
製:ニツケルパウダー255)および実施例2と同
じ炭素繊維を第2表に示す配合割合で混合した以
[Table] Example 2 Example 1 except that 37 parts by volume of carbon fiber manufactured by Toray Industries, Ltd. with a fiber diameter of 7 μm and a fiber length of 30 μm was used.
A compression and heating molded body was obtained in exactly the same manner as described above.
This molded body was also subjected to friction and wear tests and volume resistivity measurements in the same manner as in Example 1, and the results are also listed in Table 1. Example 3 Compression heating was performed using the same raw materials and method as in Example 1, except that the mixing ratio of nickel-coated mica and carbon fiber was 73 parts by volume and 70 parts by volume, respectively, with respect to 100 parts by volume of tetrafluoroethylene resin. A molded body was obtained. Friction and wear tests and volume resistivity measurements were carried out on this molded body in the same manner as in Example 1, and the results are also listed in Table 1. Comparative Examples 1 to 3 The same tetrafluoroethylene resin as in Example 1, nickel-coated mica or nickel powder (manufactured by Inco, USA: Nickel Powder 255), and the same carbon fiber as in Example 2 were mixed at the blending ratio shown in Table 2. Since I did it

【表】 外は実施例1と全く同じ方法で圧縮加熱成形体を
得た。これら成形体についても実施例1と同様に
摩擦摩耗試験および体積抵抗率の測定を行ない、
その結果を一括して第3表にまとめた。
[Table] A compression and heating molded body was obtained in exactly the same manner as in Example 1 except for the following. These molded bodies were also subjected to friction and wear tests and volume resistivity measurements in the same manner as in Example 1.
The results are summarized in Table 3.

【表】 第1表および第3表に示した実施例1〜3およ
び比較例1〜5の各成形体の性質、特に体積抵抗
率と摩耗係数との関係、をより明確にするため
に、体積抵抗率を横軸とし、摩耗係数を縦軸(両
軸とも対数目盛)とした図面に各測定値を記入す
ると図のようになる。ここで、□印に付けた1〜
3はそれぞれ実施例1〜3を、また、×印に付け
た1〜5はそれぞれ比較例1〜5を示し、比較例
においては、体積抵抗率が低くても摩耗係数が著
しく大きい比較例1、2および5か、または、摩
耗係数が小さくても体積抵抗率が著しく高く比較
例3および4て、いずれも期待される性質は得ら
れていないが、実施例1〜3の結果はいずれも体
積抵抗率は低く、しかも摩耗係数も非常に小さい
という好ましい性能を示していることが明瞭に理
解できる。 (7) 効果 この発明の組成物から得られる成形体は、四ふ
つ化エチレン樹脂特有の低摩擦係数を有し、その
上ニツケル被覆材および炭素繊維の添加により優
れた耐摩耗性を保ちつつ導電性をも付与されてい
るので、耐摩耗性と導電性の二つの機能が同時に
要求される軸受材には最適のものであり、この発
明の意義はきわめて大きいと言える。
[Table] In order to clarify the properties of each of the molded bodies of Examples 1 to 3 and Comparative Examples 1 to 5 shown in Tables 1 and 3, especially the relationship between volume resistivity and wear coefficient, When each measured value is entered in a diagram with volume resistivity on the horizontal axis and wear coefficient on the vertical axis (both axes are on a logarithmic scale), the result is as shown in the figure. Here, 1 to 1 marked with □
3 indicates Examples 1 to 3, and 1 to 5 marked with an x indicate Comparative Examples 1 to 5, respectively. In the comparative examples, Comparative Example 1 has a significantly large wear coefficient even though the volume resistivity is low. , 2 and 5, or Comparative Examples 3 and 4, in which the volume resistivity was extremely high even though the wear coefficient was small, the expected properties were not obtained, but the results of Examples 1 to 3 were all It can be clearly seen that the material exhibits favorable performance in that the volume resistivity is low and the wear coefficient is also very small. (7) Effects The molded product obtained from the composition of the present invention has a low coefficient of friction unique to tetrafluoroethylene resin, and also has excellent wear resistance and conductivity due to the addition of a nickel coating material and carbon fiber. Since it is also endowed with properties, it is ideal for bearing materials that require both wear resistance and conductivity at the same time, and the significance of this invention can be said to be extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の実施例および比較例において得
た成形体の体積抵抗率と摩耗係数との関係を示す
図面である。 □……実施例、×……比較例。
The figure is a drawing showing the relationship between volume resistivity and wear coefficient of molded bodies obtained in Examples and Comparative Examples of the present invention. □...Example, ×...Comparative example.

Claims (1)

【特許請求の範囲】[Claims] 1 四ふつ化エチレン樹脂100容量部に対して、
ニツケルで表面を被覆した固体潤滑剤と炭素繊維
との容量比が15:80から80:20の範囲にある混合
物を、30〜150容量部添加したことを特徴とする
導電性摺動材組成物。
1 For 100 parts by volume of tetrafluoroethylene resin,
A conductive sliding material composition characterized by adding 30 to 150 parts by volume of a mixture of a solid lubricant whose surface is coated with nickel and carbon fiber in a volume ratio in the range of 15:80 to 80:20. .
JP10718384A 1984-05-25 1984-05-25 Electrically conductive sliding material composition Granted JPS60250054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10718384A JPS60250054A (en) 1984-05-25 1984-05-25 Electrically conductive sliding material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10718384A JPS60250054A (en) 1984-05-25 1984-05-25 Electrically conductive sliding material composition

Publications (2)

Publication Number Publication Date
JPS60250054A JPS60250054A (en) 1985-12-10
JPH0522733B2 true JPH0522733B2 (en) 1993-03-30

Family

ID=14452568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10718384A Granted JPS60250054A (en) 1984-05-25 1984-05-25 Electrically conductive sliding material composition

Country Status (1)

Country Link
JP (1) JPS60250054A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0736369A1 (en) * 1992-04-16 1996-10-09 Sumitomo Chemical Company Limited Metallized fiber-reinforced resin roll and production thereof
JP4679156B2 (en) * 2005-01-07 2011-04-27 財団法人鉄道総合技術研究所 Friction relieving material, friction relieving device, and friction relieving method
US8322958B2 (en) * 2009-04-03 2012-12-04 Alcoa Inc. Fasteners with conforming sleeves

Also Published As

Publication number Publication date
JPS60250054A (en) 1985-12-10

Similar Documents

Publication Publication Date Title
US3342667A (en) Dry fluorocarbon bearing material
US4798771A (en) Bearings and other support members made of intercalated graphite
WO2010038718A1 (en) Electrically conductive polyethylene resin composition, electrically conductive polyethylene resin molding, sliding bearing and sliding sheet
JPH09316323A (en) Sliding member for thrust bearing
US4425247A (en) Composite self-lubricating material
US20050032939A1 (en) Synthetic resin composition with lubricative underwater properties containing RBC or CRBC fine powder
JPH058219B2 (en)
US3573976A (en) Method of making coaxial cable
JPS6158093B2 (en)
JPS58160353A (en) Resin composition
US2964476A (en) Process for producing a metal-lubricant
JPH0522733B2 (en)
JPH0229697B2 (en) DODENSEISHUDOZAISOSEIBUTSU
JPH03292366A (en) Wear-resistant resin composition
US3409584A (en) Tetrafluoroethylene products and methods
JPS61168649A (en) Electrically conductive sliding material composition
JP2698375B2 (en) Polytetrafluoroethylene resin composition
US3717576A (en) Graphite fluoride-synthetic resin composite material
JPH0561305B2 (en)
JPS58160347A (en) Resin composition
JPH0561306B2 (en)
JP2587457B2 (en) Cage for rolling bearing
JPS63286458A (en) Tetrafluoroethylene resin composition
JP2589714B2 (en) Sliding material composition
JPH04345667A (en) Sliding material