JPH05226785A - Distributed feedback type semiconductor laser - Google Patents

Distributed feedback type semiconductor laser

Info

Publication number
JPH05226785A
JPH05226785A JP6153492A JP6153492A JPH05226785A JP H05226785 A JPH05226785 A JP H05226785A JP 6153492 A JP6153492 A JP 6153492A JP 6153492 A JP6153492 A JP 6153492A JP H05226785 A JPH05226785 A JP H05226785A
Authority
JP
Japan
Prior art keywords
total reflection
stripe
stripes
reflection mirror
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6153492A
Other languages
Japanese (ja)
Inventor
Toshisada Sekiguchi
利貞 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP6153492A priority Critical patent/JPH05226785A/en
Publication of JPH05226785A publication Critical patent/JPH05226785A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the phase matching by forming the stripes of a plurality of DFB lasers in parallel with each other on one substrate and optically and electrically connecting them in series through the wave-guiding channel of a total reflection mirror part to increase an optical output and besides control a voltage applied to a phase adjusting region. CONSTITUTION:The stripes 2a to 2f of a plurality of DFB lasers are formed in parallel with each other on a semiconductor substrate 1. And light generated from the stripe 2a is wave-guided to the next stripe 2b with a total reflection mirror part 3a (optical connection part) including a wave-guiding channel making use of total reflection, and the total reflection mirrors 3a to 3e are staggered with every two stripes so that the light generated from the stripe 2b is wave- guided to the stripe 2c by the total reflection mirror part 3b. The phase adjusting regions 4a to 4j for matching the phase of diffraction grating of generated light are formed between the respective stripes 2a to 2f and the total reflection mirror parts 3a to 3e.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信、光計測、光フ
ァイバセンサ等に用いられる分布帰還型半導体レーザ
(Distributed Feed Back Semiconductor Lasers‐DF
Bレーザという)に関する。
BACKGROUND OF THE INVENTION The present invention relates to a distributed feedback semiconductor laser (DF) used for optical communication, optical measurement, optical fiber sensor and the like.
B laser).

【0002】[0002]

【従来の技術】現在、光通信等の分野においては、最低
損失波長帯の1.55μm帯を中心とする半導体レーザ
としてファブリ・ペロー共振器型半導体レーザ、面発光
型レーザ、DFBレーザ、分布反射型半導体レーザ(Di
stributed Bragg Reflector Semiconductor Lasers‐D
BRレーザという)等が使用されている。
2. Description of the Related Art At present, in the field of optical communication and the like, Fabry-Perot cavity type semiconductor lasers, surface-emitting type lasers, DFB lasers, distributed reflections are used as semiconductor lasers centering on the minimum loss wavelength band of 1.55 μm. Type laser diode (Di
stributed Bragg Reflector Semiconductor Lasers-D
BR laser) and the like are used.

【0003】[0003]

【発明が解決しようとする課題】ところで、1.55μ
mの波長帯では波長分散を有するため、高速直接変調時
にマルチモード発振をする上記のファブリ・ペロー共振
器型半導体レーザを光源として用いると、光出力は強い
が、スペクトルが波長的にも時間的にも拡がり、発振波
長帯が広く、著るしく伝送帯域が制限される。
By the way, 1.55μ
Since it has chromatic dispersion in the wavelength band of m, when the above Fabry-Perot cavity type semiconductor laser that oscillates in multimode during high-speed direct modulation is used as a light source, the light output is strong, but the spectrum is temporal and temporal. The oscillation wavelength band is wide, and the transmission band is significantly limited.

【0004】一方、共振器の反射器として波長選択性を
有する回析格子を用いたDFBレーザ、DBRレーザ及
び面発光型レーザ等は、発振波長帯は狭いが、光出力が
弱いという点があることから、高速直接変調時において
も発振スペクトルに広がりのない半導体レーザが望まれ
ている。
On the other hand, DFB lasers, DBR lasers, surface-emitting lasers and the like which use a diffraction grating having wavelength selectivity as a resonator reflector have a narrow oscillation wavelength band, but have a weak optical output. Therefore, there is a demand for a semiconductor laser whose oscillation spectrum does not spread even during high-speed direct modulation.

【0005】本発明は、上記の事情に鑑みなされたもの
で、光出力の強いDFBレーザを提供することを目的と
する。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a DFB laser having a high optical output.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、半導体基板上に、複数本並列に形成した
DFBレーザのストライプと、この各ストライプを光学
的に接続すると共に電気的に直列に接続するように形成
した導波路よりなる全反射ミラー部と、上記各ストライ
プの端部と全反射ミラー部との間に形成し、各ストライ
プの位相を整合する位相調整領域とを備えたことを特徴
とする。
In order to achieve the above-mentioned object, the present invention has a plurality of DFB laser stripes formed in parallel on a semiconductor substrate, and each stripe is optically connected and electrically connected. A total reflection mirror portion formed of a waveguide formed so as to be connected in series with each other, and a phase adjustment region formed between the end portion of each stripe and the total reflection mirror portion to match the phase of each stripe. It is characterized by

【0007】[0007]

【作用】複数本が並列に形成されたDFBレーザのスト
ライプは、全反射ミラー部を介して光学的に接続され、
かつ電気的に直列になるように接続されるので、実質的
にストライプの長さが長くなり、光出力を増大させるこ
ととなる。
The stripes of the DFB laser in which a plurality of them are formed in parallel are optically connected via the total reflection mirror section,
In addition, since they are connected so as to be electrically connected in series, the length of the stripe is substantially lengthened and the light output is increased.

【0008】[0008]

【実施例】本発明の実施例を図面を参照して説明する。
図1に示すように、半導体基板1上に複数本(実施例で
は6本)のDFBレーザのストライプ2a〜2fが並列
に形成されている(ストライプ2aを光入力ストライ
プ、ストライプ2fを光出力ストライプとする)。そし
て、ストライプ2aより発振した光を全反射を利用した
導波路よりなる全反射ミラー部3a(光学的接続部)に
よって隣のストライプ2bに導波し、このストライプ2
bの光を全反射ミラー部3bによってストライプ2cに
導波するというように、2本あてのストライプに対して
千鳥状に全反射ミラー部3a〜3eが形成されている。
Embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a plurality of (6 in the embodiment) DFB laser stripes 2a to 2f are formed in parallel on a semiconductor substrate 1 (stripe 2a is an optical input stripe and stripe 2f is an optical output stripe. And). Then, the light oscillated from the stripe 2a is guided to the adjacent stripe 2b by the total reflection mirror portion 3a (optical connection portion) which is a waveguide using total reflection, and this stripe 2
The light of b is guided to the stripe 2c by the total reflection mirror portion 3b, and total reflection mirror portions 3a to 3e are formed in a zigzag pattern with respect to the two stripes.

【0009】また、各ストライプ2a〜2fと全反射ミ
ラー部3a〜3eとの間に、発振光の回析格子の位相を
整合する位相調整領域4a〜4jが形成されている。こ
れは、各ストライプ2a〜2fの回析格子の位相を合わ
す必要があるが、直接導波路層を接続すると導波路層の
長さによりすべてのストライプの位相を合わせなければ
ならず、導波路層の長さの制御精度が要求され製作上面
倒となるので、波長可変3電極DBRレーザに採用され
ている位相調整領域を形成して、この領域に印加する電
圧の制御をすることにより、簡単に位相調整をするもの
である。
Further, between the stripes 2a to 2f and the total reflection mirror portions 3a to 3e, there are formed phase adjusting regions 4a to 4j for matching the phase of the diffraction grating of the oscillated light. This requires that the phases of the diffraction gratings of the stripes 2a to 2f be matched, but if the waveguide layers are directly connected, the phases of all the stripes must be matched depending on the length of the waveguide layer. Since the control accuracy of the length is required and the manufacturing top view becomes inconvenient, it is easy to form the phase adjustment region adopted in the wavelength tunable 3-electrode DBR laser and control the voltage applied to this region. The phase is adjusted.

【0010】而して、前記の全反射ミラー部3a〜3e
は、偏光成分による位相差が生じないように、位相差補
償膜5を真空蒸着等によって形成し、また光学的接続部
においては反射防止膜6をコートしてある。例えば、3
0゜入射型全反射ミラー部の位相差補償膜5について
は、屈折率が1.98の誘電体膜(例えば、ZrO2
をスパッタ蒸着法、CVD法等の回り込みの良好な方法
によって成膜した場合、偏光成分による位相差は1゜以
内に抑えることができる。また、反射防止膜6について
は、例えば、誘電体多層膜のTiO2 及びSiO2 の順
にレーザ発振波長の1/4の光学膜厚だけ上記の方法で
成膜することにより、反射率を0.1%以下に抑えるこ
とができる。
Thus, the total reflection mirror portions 3a to 3e described above are used.
In order to prevent a phase difference due to the polarized component, the phase difference compensating film 5 is formed by vacuum vapor deposition or the like, and the antireflection film 6 is coated on the optical connecting portion. For example, 3
Regarding the retardation compensation film 5 of the 0 ° incidence type total reflection mirror part, a dielectric film (eg, ZrO 2 ) having a refractive index of 1.98.
When the film is formed by a method such as a sputter deposition method or a CVD method, which has a good wraparound method, the phase difference due to the polarization component can be suppressed within 1 °. The antireflection film 6 has a reflectance of 0.1% by forming the dielectric multilayer film of TiO 2 and SiO 2 in this order by an optical film thickness of ¼ of the laser oscillation wavelength. It can be suppressed to 1% or less.

【0011】上記DFBレーザは、複数本(6本)のス
トライプ2a〜2fが並列に形成され、全反射ミラー部
3a〜3eにより光学的、電気的に直列に接続されてい
るので、実質的にDFBレーザの導波路長が長くなり、
光出力を増大することが可能となる。
In the above DFB laser, a plurality of (six) stripes 2a to 2f are formed in parallel and are connected in series optically and electrically by total reflection mirror portions 3a to 3e, so that they are substantially connected. The waveguide length of the DFB laser becomes longer,
It is possible to increase the light output.

【0012】上記DFBレーザは、位相調整領域4a〜
4jへ電圧を印加して位相を180゜ずらすと光が消滅
することを利用して、DFBレーザに印加する電流を変
化させることなく、位相調整領域のみの電圧(電流)変
化によって、レーザの光出力をスイッチングすることも
可能である。
The above-mentioned DFB laser has phase adjustment regions 4a ...
By utilizing the fact that light disappears when a voltage is applied to 4j and the phase is shifted by 180 °, the laser light is changed by changing the voltage (current) only in the phase adjustment region without changing the current applied to the DFB laser. It is also possible to switch the output.

【0013】次に、上記DFBレーザの製法を簡単に説
明する。nまたはP型のInP基板上にnまたはP型I
nPバッファー層を成長し、干渉露光法または電子ビー
ム露光法により、上記nまたはP型のバッファー層の表
面にDFBレーザの回析格子をパターニングし、クラッ
ド層(n型InP)、導波路層(InGaAsP)、活
性層(InGaAsP)、クラッド層(P型InP)お
よびギャップ層(InGaAsまたはInGaAsP)
を成長し、メサエッチングを行い、レーザの導波路(ス
トライプ)及び位相調整領域を作成する。
Next, a method for manufacturing the above DFB laser will be briefly described. n or P type I on n or P type InP substrate
An nP buffer layer is grown, a diffraction grating of a DFB laser is patterned on the surface of the n or P type buffer layer by an interference exposure method or an electron beam exposure method, and a cladding layer (n type InP) and a waveguide layer ( InGaAsP), active layer (InGaAsP), cladding layer (P-type InP) and gap layer (InGaAs or InGaAsP)
Are grown and mesa etching is performed to form a laser waveguide (stripe) and a phase adjustment region.

【0014】次に、P型InP及びn型InPの順にブ
ロック層を成長し、一基板内のDFBレーザの一部のブ
ロック層をエッチングし、n型のバッファー層を露出す
ると同時に、全反射ミラー部を形成する。そして、スパ
ッタまたはCVD法等により、絶縁膜及び位相補償膜を
被覆し、フォトリソ・エッチング加工により適当な形に
パターニングする。最後に電極を形成する。
Next, a block layer is grown in order of P-type InP and n-type InP, and a part of the block layer of the DFB laser in one substrate is etched to expose the n-type buffer layer and at the same time, a total reflection mirror. To form a part. Then, the insulating film and the phase compensation film are covered by a sputtering method or a CVD method, and patterned into an appropriate shape by photolithography / etching. Finally, the electrodes are formed.

【0015】なお、本実施例はInP(InGaAs
P)系の化合物半導体レーザについて説明したが、Ga
As系の化合物半導体レーザにおいても応用可能であ
る。
In this embodiment, InP (InGaAs
The P) -based compound semiconductor laser has been described.
It can also be applied to an As-based compound semiconductor laser.

【0016】[0016]

【発明の効果】本発明は、1基板上に複数本のDFBレ
ーザのストライプを並列に形成し、全反射ミラー部の導
波路により光学的、電気的に直列に接続したので、実質
的にDFBレーザの導波路(ストライプ)長が長くな
り、光出力を増大することができる。また、DFBレー
ザのストライプを電気的に直列に接続したので、1基板
内に流れる電流は1つのDFBレーザに流れる電流とほ
ぼ等しく、電流による発熱に伴うレーザ出力の低下が少
ない。さらに、位相調整領域への印加電圧の制御によ
り、1基板内の他のDFBレーザストライプの位相と簡
単に整合することができる。
According to the present invention, since a plurality of DFB laser stripes are formed in parallel on one substrate and are optically and electrically connected in series by the waveguide of the total reflection mirror portion, the DFB laser is practically used. The waveguide (stripe) length of the laser becomes long, and the optical output can be increased. Further, since the stripes of the DFB laser are electrically connected in series, the current flowing in one substrate is almost the same as the current flowing in one DFB laser, and the decrease in laser output due to heat generation due to the current is small. Further, by controlling the voltage applied to the phase adjustment region, it is possible to easily match the phase with the other DFB laser stripes in one substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】全反射ミラー部の説明図である。FIG. 2 is an explanatory diagram of a total reflection mirror unit.

【符号の説明】[Explanation of symbols]

1 半導体基板 2a〜2f DFBレーザのストライプ(導波路) 3a〜3e 全反射ミラー部(光学的接続) 4a〜4j 位相調整領域 5 位相差補償膜 6 反射防止膜 DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2a-2f Stripe (waveguide) of DFB laser 3a-3e Total reflection mirror part (optical connection) 4a-4j Phase adjustment area 5 Phase difference compensation film 6 Antireflection film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に、複数本並列に形成した
分布帰還型半導体レーザのストライプと、該各ストライ
プを光学的に接続すると共に電気的に直列接続するよう
に形成された導波路よりなる全反射ミラー部と、上記各
ストライプの端部と全反射ミラー部との間に形成され、
各ストライプの位相を整合する位相調整領域とを備えた
ことを特徴とする分布帰還型半導体レーザ。
1. A semiconductor substrate comprising a plurality of stripes of distributed feedback semiconductor lasers formed in parallel and a waveguide formed so that the stripes are optically connected and electrically connected in series. Total reflection mirror portion, formed between the end of each stripe and the total reflection mirror portion,
A distributed feedback semiconductor laser, comprising: a phase adjustment region that matches the phase of each stripe.
JP6153492A 1992-02-17 1992-02-17 Distributed feedback type semiconductor laser Pending JPH05226785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6153492A JPH05226785A (en) 1992-02-17 1992-02-17 Distributed feedback type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6153492A JPH05226785A (en) 1992-02-17 1992-02-17 Distributed feedback type semiconductor laser

Publications (1)

Publication Number Publication Date
JPH05226785A true JPH05226785A (en) 1993-09-03

Family

ID=13173871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6153492A Pending JPH05226785A (en) 1992-02-17 1992-02-17 Distributed feedback type semiconductor laser

Country Status (1)

Country Link
JP (1) JPH05226785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303495A (en) * 1997-04-30 1998-11-13 Fujitsu Ltd Semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303495A (en) * 1997-04-30 1998-11-13 Fujitsu Ltd Semiconductor laser

Similar Documents

Publication Publication Date Title
US10193305B2 (en) Wavelength tunable laser device and laser module
US8155161B2 (en) Semiconductor laser
US5978400A (en) Laser
JP5239898B2 (en) Tunable laser
KR0142437B1 (en) Phase-coating for dfb/dbr laser diodes
JP3729170B2 (en) Semiconductor laser
JP2006278770A (en) Variable wavelength laser
US11909174B2 (en) Reflection filter device and wavelength-tunable laser device
WO2016152274A1 (en) Variable wavelength laser element and laser module
US20210376558A1 (en) Semiconductor optical integrated device
JP2007158057A (en) Integrated laser device
US8149889B2 (en) Semiconductor laser device
US6947453B2 (en) Tunable diffractive device
WO2016042658A1 (en) Laser device and laser device control method
JPH04142788A (en) Distributed feedback type semiconductor laser
JP5001239B2 (en) Semiconductor tunable laser
JP3220259B2 (en) Laser device
JP2011086714A (en) Wavelength tunable laser
JP7269185B2 (en) Tunable lasers and optical modules
JPH05226785A (en) Distributed feedback type semiconductor laser
JP5058087B2 (en) Tunable semiconductor laser
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
JP5034572B2 (en) Light source device
JP2000223774A (en) Wavelength-variable light source
JP2007248901A (en) Optical transceiver