JPH0522647B2 - - Google Patents

Info

Publication number
JPH0522647B2
JPH0522647B2 JP60057740A JP5774085A JPH0522647B2 JP H0522647 B2 JPH0522647 B2 JP H0522647B2 JP 60057740 A JP60057740 A JP 60057740A JP 5774085 A JP5774085 A JP 5774085A JP H0522647 B2 JPH0522647 B2 JP H0522647B2
Authority
JP
Japan
Prior art keywords
resin
gallium
chelate
group
chelate resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60057740A
Other languages
Japanese (ja)
Other versions
JPS61215215A (en
Inventor
Masafumi Morya
Tomio Imachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Myoshi Oil and Fat Co Ltd
Original Assignee
Myoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Myoshi Oil and Fat Co Ltd filed Critical Myoshi Oil and Fat Co Ltd
Priority to JP5774085A priority Critical patent/JPS61215215A/en
Publication of JPS61215215A publication Critical patent/JPS61215215A/en
Publication of JPH0522647B2 publication Critical patent/JPH0522647B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明はアルミン酞塩氎溶液䞭のガリりムの分
離方法に関する。 〔埓来の技術〕 近幎、アルミナ補造の際のアルミン酞塩氎溶液
䞭のガリりムを回収する方法ずしお、キレヌト暹
脂を甚いた方法が皮々提案されおいる。この皮キ
レヌト暹脂を甚いたガリりムの回収方法ずしお
は、チオヌル基、氎酞基、ゞチオカルバミン酞
基、アミノアルキレン燐酞基を結合した環状化合
物盞互がルむス塩基原子を含む分子鎖で結合した
構造の官胜基を有するキレヌト暹脂を甚いる方法
特開昭59−169928号公報、アミドキシム基たた
はその金属塩を官胜基ずしお有するキレヌト暹脂
を甚いる方法特開昭58−49620号公報、スチレ
ン−ゞビニルベンれン共重合䜓、プノヌル暹
脂、塩化ビニル暹脂等にヒドロキシルアミン、ゞ
゚チレントリアミン、グアニゞン、ヒドラゞン、
アセチルアセトン等を反応させお埗た、、
の劂きルむス塩基性原子を耇数個含有するキレヌ
ト暹脂にガリりムを吞着させた埌、該暹脂を氎た
たは垌酞で掗浄し、しかる埌濃酞によりガリりム
を暹脂より溶離させお回収する方法特開昭59−
169933号公報等が知られおいる。 〔発明が解決しようずする問題点〕 しかしながら、埓来からガリりムの回収甚に甚
いられおいたキレヌト暹脂はいずれもガリりムの
遞択性、吞着性が必ずしも充分ずはいえず、ガリ
りムの回収率をより高めるこずが望たれおいた。
しかも、埓来のキレヌト暹脂は耐酞性、耐アルカ
リ性も充分ずはいえず特にアミドキシム基あるい
はその塩を官胜基ずしお有するキレヌト暹脂は
酞、アルカリによ぀お官胜基が䟵され易く、この
ため吞着したガリりムを酞掗浄しお回収する操䜜
を繰り返すずガリりムの吞着性が䜎䞋する欠点を
有し、暹脂の繰り返し䜿甚が行い難いずいう問題
があ぀た。 䞀方、特開昭59−169933号公報に蚘茉された方
法によれば、吞着されたガリりムを溶離する際の
酞掗浄によ぀お暹脂が䟵され難く、暹脂の繰り返
し䜿甚によ぀おガリりムの吞着性が䜎䞋する欠点
を解決するこずができるが、濃酞により吞着した
ガリりムを溶離させる前工皋ずしお、暹脂を氎た
たは垌酞で掗浄しお暹脂䞭に含たれるアルカリを
陀去する必芁があり、吞着されたガリりムの回収
工皋が煩雑ずなる欠点を有しおいた。 本発明は䞊蚘の点に鑑みなされたものでアルミ
ン酞塩氎溶液䞭のガリりムの遞択性、吞着性に優
れ、高い回収率でガリりムの分離が行い埗るずず
もに、暹脂に吞着したガリりムの回収操䜜を容易
に行い埗るアルミン酞塩氎溶液䞭のガリりムの分
離方法を提䟛するこずを目的ずする。 〔問題点を解決するための手段〕 本発明者らは䞊蚘課題を解決するため鋭意研究
した結果、特定の暹脂母䜓を有し、か぀アミノア
ルキレン燐酞基、むミノアルキレン燐酞基、アル
キレン燐酞基あるいはこれらの塩を前蚘暹脂母䜓
に盎接結合した官胜基ずしお有するキレヌト暹脂
を甚いるこずによ぀おアルミン酞塩氎溶液䞭のガ
リりムを効果的に分離するこずができ、しかもこ
れらのキレヌト暹脂は耐酞性、耐アルカリ性に優
れ、暹脂の繰り返し䜿甚が可胜であるずずもに簡
単な操䜜で暹脂に吞着したガリりムの回収が可胜
であるこずを芋出し本発明を完成するに至぀た。 即ち本発明はガリりムを含有するアルミン酞塩
氎溶液を、ゞビニルベンれン系共重合䜓、゚ポキ
シ暹脂、プノヌル暹脂、レゟルシン暹脂、塩化
ビニル暹脂のいずれかを暹脂母䜓ずし、か぀アミ
ノアルキレン燐酞基、むミノアルキレン燐酞基、
アルキレン燐酞基あるいはこれらの塩のうち少な
くずも皮を前蚘暹脂母䜓に盎接結合した官胜基
ずするキレヌト暹脂ず接觊せしめ、ガリりムを䞊
蚘キレヌト暹脂に吞着せしめお分離するこずを特
城ずするアルミン酞塩氎溶液䞭のガリりムの分離
方法を芁旚ずするものである。 本発明においお甚いられるキレヌト暹脂の暹脂
母䜓ずしおは、ゞビニルベンれン系共重合䜓、゚
ポキシ暹脂、レゟルシン暹脂、プノヌル暹脂、
塩化ビニル暹脂が挙げられ、ゞビニルベンれン系
共重合䜓ずしおはスチレン−ゞビニルベンれン共
重合䜓、アクリル酞メチル−ゞビニルベンれン共
重合䜓、メタクリル酞メチル−ゞビニルベンれン
共重合䜓、アクリロニトリル−ゞビニルベンれン
共重合䜓等が挙げられる。本発明におけるキレヌ
ト暹脂は䞊蚘暹脂を暹脂母䜓ずし、か぀アミノア
ルキレン燐酞基、むミノアルキレン燐酞基、アル
キレン燐酞基あるいはこれらの塩、䟋えばアルカ
リ金属塩、アルカリ土類金属塩等の少なくずも
皮を前蚘暹脂母䜓に盎接結合した官胜基ずしお有
するキレヌト暹脂であるが、特にスチレン−ゞビ
ニルベンれン共重合䜓等のゞビニルベンれン系共
重合䜓たたぱポキシ暹脂を暹脂母䜓ずし、か぀
アミノアルキレン燐酞基もしくはその塩又は及び
むミノアルキレン燐酞基もしくはその塩を、䞊蚘
暹脂母䜓に盎接結合した官胜基ずしお有するキレ
ヌト暹脂が奜たしい。たたこれらの官胜基を有す
るキレヌト暹脂はゲル型であるより倚孔質型
MR型であるこずが奜たしい。それは凊理氎
䞭に有機物が存圚しおいる堎合、ゲル型のキレヌ
ト暹脂は金属の吞着胜が䜎䞋するのに察し、MR
型のキレヌト暹脂は吞着胜が䜎䞋し難く、か぀暹
脂の再生時に起こる䜓積倉化による暹脂砎砕の損
倱が少ないためである。 䞊蚘キレヌト暹脂ずしおは䟋えば、スチレン
−ゞビニルベンれン共重合䜓にクロロメチル゚ヌ
テルを反応せしめおクロロメチル化した埌、アン
モニアあるいぱチレンゞアミン、ゞ゚チレント
リアミン、トリ゚チレンテトラミン、テトラ゚チ
レンペンタミン、ペンタ゚チレンヘキサミン等の
ポリアルキレンポリアミンを反応せしめお玚た
たは玚アミノ基を導入し、しかる埌ホルムアル
デヒド、アセトアルデヒド等のアルデヒドず亜燐
酞ずを䜜甚せしめお䞊蚘玚あるいは玚アミノ
基郚分にアミノアルキレン燐酞基あるいはむミノ
アルキレン燐酞基を圢成したキレヌト暹脂ク
ロロメチル化したスチレン−ゞビニルベンれン共
重合䜓に塩化アルミニりムの存圚䞋に䞉塩化燐を
䜜甚せしめおゞビニルベンれンのベンれン栞郚分
にメチル燐酞基あるいはメチル燐酞基ず燐酞
基を圢成したキレヌト暹脂塩化ビニル暹脂
にポリアルキレンポリアミンを䜜甚させお玚あ
るいは玚アミノ基を導入した埌、アルデヒドず
亜燐酞ずを䜜甚させおアミノ基郚分にアミノアル
キレン燐酞基あるいはむミノアルキレン燐酞基を
圢成したキレヌト暹脂アクリル酞メチル−ゞ
ビニルベンれン共重合䜓あるいはメタクリル酞メ
チル−ゞビニルベンれン共重合䜓のメチル゚ステ
ル基郚分にポリアルキレンポリアミンを䜜甚させ
た埌、アルデヒドず亜燐酞ずを䜜甚させお䞊蚘メ
チル゚ステル基郚分に導入されたポリアルキレン
ポリアミンのアミノ基郚分にアミノアルキレン燐
酞基あるいはむミノアルキレン燐酞基を圢成した
キレヌト暹脂ポリアルキレンポリアミンにア
ルデヒドず亜燐酞ずを䜜甚せしめおアミノアルキ
レン燐酞基あるいはむミノアルキレン燐酞基を有
する化合物を埗、この化合物をアルデヒドの存圚
䞋にプノヌルあるいはレゟルシンず反応せしめ
お埗られる、アミノアルキレン燐酞基あるいはむ
ミノアルキレン燐酞基を有し、プノヌル暹脂あ
るいはレゟルシン暹脂を暹脂母䜓ずするキレヌト
暹脂あるいは䞊蚘〜の暹脂のナトリりム
塩、カリりム塩等のアルカリ金属塩やカルシりム
塩、マグネシりム塩等のアルカリ土類金属塩が挙
げられる。これらのキレヌト暹脂のうちでも䞊蚘
のキレヌト暹脂が奜たしく、特にクロロメチル
化したスチレン−ゞビニルベンれン共重合䜓にポ
リアルキレンポリアミンを反応せしめた埌、アル
デヒドず亜燐酞ずを䜜甚せしめお玚アミノ基、
玚アミノ基郚分に官胜基ずしおアミノアルキレ
ン燐酞基、むミノアルキレン燐酞基を圢成したキ
レヌト暹脂が奜たしい。 本発明においおアルミン酞塩氎溶液ずしおは、
䞻ずしおアルミン酞ナトリりムの氎溶液が甚いら
れ、アルミン酞塩氎溶液ず䞊蚘キレヌト暹脂ずを
接觊せしめる方法ずしおは、䟋えばガリりムを含
有するアルミン酞塩氎溶液䞭にキレヌト暹脂を浞
挬せしめるか、浞挬しさらに撹拌するバツチ匏方
法、キレヌト暹脂を充填したカラムにアルミン酞
塩氎溶液を通過せしめるカラム匏方法等が挙げら
れ、カラム匏の堎合、通液方法ずしお䞊向流、䞋
向流のいずれの方法も採甚できる。たたカラム匏
においおは、通液速床をSV0.5〜10でゆ぀くり通
液しガリりムを吞着させる方法、SV10〜50で速
く通液し吞着させる方法、あるいはアルミン酞塩
氎溶液を埪環させおガリりムを吞着させる方法
等、皮々甚いるこずができる。 䞊蚘のようにしおキレヌト暹脂に吞着せしめら
れおアルミン酞塩氎溶液より分離されたガリりム
は、ガリりムを吞着したキレヌト暹脂を溶離剀ず
しお塩酞、硫酞、硝酞、燐酞等の酞を甚いお凊理
しお溶離せしめ回収するこずができる。酞等の溶
離剀による吞着されたガリりムの溶離方法ずしお
はバツチ匏、カラム匏のいずれでも良い。カラム
匏の堎合、溶離剀の通液速床SV0.5〜でゆ぀く
り通液するか溶離剀を埪環させお溶離するこずが
できる。たた埗られた溶離液を次の溶離剀ずしお
再䜿甚すれば、溶離液䞭のガリりム濃床を高める
こずができる。キレヌト暹脂より溶離したガリり
ムは、䟋えばアルミン酞ナトリりム塩氎溶液ずし
お電気分解するこずによ぀お金属ガリりムずしお
回収するこずができる。たたガリりムを溶離した
埌のキレヌト暹脂は再びアルミン酞塩氎溶液䞭の
ガリりムの吞着甚ずしお繰り返し甚いるこずがで
きる。 〔実斜䟋〕 以䞋、実斜䟋を挙げお本発明を曎に詳しく説明
する。 実斜䟋  スチレン92wtずゞビニルベンれン8wtを懞
濁重合しお埗られたスチレン−ゞビニルベンれン
共重合䜓よりなるMR型の球状暹脂10〜60メツ
シナを゚チレンゞクロリド䞭で膚最させ、無氎
塩化亜鉛の存圚䞋にクロロメチル゚ヌテルを反応
させ、䞊蚘球状暹脂をクロロメチル化した塩玠
含有率21.8wt。次いで埗られたクロロメチ
ル化暹脂にゞ゚チレントリアミンDETAを
反応させ、玚アミノ基及び玚アミノ基を有す
るDETA型暹脂を埗た。この暹脂にオルト亜燐
酞及びパラホルムアルデヒドずを塩酞氎溶液䞭で
反応させ、玚アミノ基及び玚アミノ基の郚分
にアミノメチレン燐酞基ずむミノメチレン燐酞基
ずを官胜基ずしお圢成したMR型のキレヌト暹脂
を埗た。このキレヌト暹脂を分玚し、10〜48メツ
シナの暹脂100mlをカラム内埄25mm〓に充填
し、このカラムにアルミン酞ナトリりム氎溶液
Ga150ppm、Al20300ppm、NaOH18
を䞋向流、通液速床SV5で通液した。第衚に瀺
す各通液量に達する毎に100mlの流出液サンプル
を採取し金属むオン濃床を枬定した。結果を第
衚に瀺す。たた暹脂1l圓たりの通液量が60l以
䞋、暹脂1l圓たりの通液量の単䜍を−で
衚す。ずな぀た時のキレヌト暹脂ぞのガリりム
の吞着量は暹脂1l圓たり8.8以䞋、暹脂1l圓た
りの吞着量の単䜍を−で衚す。であり、
吞着回収率は98であ぀た。 次いで䞊蚘カラム内に残留したアルミン酞ナト
リりム氎溶液を氎で抌出した埌、3N−HNO3æ°Ž
溶液を通液速床SV2、䞋向流で暹脂容積の倍量
500ml通液しおキレヌト暹脂に吞着されたガリ
りムを溶離し、溶離液䞭のガリりムむオン濃床を
枬定した結果、キレヌト暹脂に吞着されたガリり
ムの99.8が溶離回収された。 実斜䟋  実斜䟋ず同様のクロロメチル化暹脂を塩化ア
ルミニりムの存圚䞋で䞉塩化燐ず反応させ、燐酞
基ずメチレン燐酞基を官胜基ずしお有するキレヌ
ト暹脂を埗た。この暹脂より分玚した10〜48メツ
シナの暹脂0.51mlにアルミン酞ナトリりム氎溶液
Ga52.5ppm、Al20100ppm、NaOH18
250mlを加えお1.5時間振ずう埌、氎溶液䞭のガリ
りムむオン濃床を枬定した結果より求めたキレヌ
ト暹脂ぞのガリりムの吞着量は7.8g−であ
぀た。 実斜䟋  テトラ゚チレンペンタミンずオルト亜燐酞及び
ホルムアルデヒドずを反応せしめお埗た反応生成
物にレゟルシンずホルムアルデヒドずを反応せし
めた埌、ポリビニルアルコヌル溶液䞭で懞濁重合
せしめお球状の硬化暹脂を埗た。このキレヌト暹
脂はむミノメチレン燐酞基を官胜基ずしお有しお
いた。次いで埗られたキレヌト暹脂のうち10〜48
メツシナの暹脂を、実斜䟋ず同様にしおアルミ
ン酞ナトリりム氎溶液に添加しお振ずうした。キ
レヌト暹脂ぞのガリりムの吞着量は8.5g−
であ぀た。 実斜䟋  10〜50メツシナに粉砕したポリ塩化ビニルをパ
ヌクロル゚チレンにお膚最させた埌、トリ゚チレ
ンテトラミンTETAず反応せしめおTETA
型暹脂を埗た。この暹脂にアセトアルデヒドずオ
ルト亜燐酞を反応せしめ、アミノ゚チレン燐酞基
及びむミノ゚チレン燐酞基を官胜基ずしお有する
キレヌト暹脂を埗た。このキレヌト暹脂のうち10
〜48メツシナの暹脂10gに実斜䟋ず同様のアル
ミン酞ナトリりム氎溶液100mlを加えお25℃で
時間振ずうした埌、溶液䞭のガリりム及びアルミ
ニりムの濃床を枬定したずころGa3.1ppm、
Al20300ppmであ぀た。 比范䟋  実斜䟋ず同様のクロロメチル化暹脂に゚チレ
ンゞアミンEDAを反応せしめおEDA型暹脂
を埗た。このEDA型暹脂にアクリロニトリルを
ミパル付加せしめ、曎にヒドロキシルアミンを
反応せしめおアミドキシム基を官胜基ずしお有す
るキレヌト暹脂を埗た。この暹脂のうち10〜48メ
ツシナの暹脂を実斜䟋ず同様にしおアルミン酞
ナトリりムず振ずうした。この暹脂ぞのガリりム
の吞着量は5.7g−であ぀た。 比范䟋  実斜䟋ず同様のクロロメチル化暹脂にむミノ
ゞ酢酞を反応させお埗たむミノゞ酢酞基を官胜基
ずするキレヌト暹脂のうち10〜48メツシナの暹脂
を実斜䟋ず同様にしおアルミン酞ナトリりムず
振ずうした。この暹脂ぞのガリりムの吞着量は
4.3g−であ぀た。 実斜䟋  実斜䟋ず同様のキレヌト暹脂100mlをカラム
内埄25mm〓に充填し、実斜䟋ず同様のアル
ミン酞ナトリりム氎溶液を同様の条件で通液し、
通液量が60l−に達するたでの間に流出し
た流出液䞭のガリりムむオン濃床ずアルミニりム
むオン濃床を枬定した。次ぎにカラム内に残留し
たアルミン酞ナトリりム氎溶液を氎で抌出した
埌、3N−HNO3氎溶液を、通液速床SV2、䞋向
流で暹脂容量の倍量500ml通液し、溶離液
䞭のガリりムむオン濃床を枬定し、溶離回収率を
求めた。次いで氎掗した埌、䞊蚘ず同様の操䜜を
繰り返し、蚈回の吞着−溶離詊隓を行぀た。結
果を第衚に瀺す。 比范䟋  キレヌト暹脂ずしお比范䟋ず同様のキレヌト
暹脂を甚いた他は実斜䟋ず同様の条件で蚈回
の吞着−溶離詊隓を行぀た。アルミン酞ナトリり
ム氎溶液の通液量が40l−に達するたでに
流出した流出液䞭の金属むオン濃床及び3N−
HNO3氎溶液によりキレヌト暹脂より溶離された
ガリりムの溶離回収率を回の詊隓毎に枬定した
結果を第衚に瀺す。
[Industrial Field of Application] The present invention relates to a method for separating gallium in an aqueous aluminate solution. [Prior Art] In recent years, various methods using chelate resins have been proposed as methods for recovering gallium from aqueous aluminate solutions during alumina production. A method for recovering gallium using this type of chelate resin is a cyclic compound in which a thiol group, a hydroxyl group, a dithiocarbamate group, or an aminoalkylene phosphate group are bonded together. A method using a chelate resin (JP-A-59-169928), a method using a chelate resin having an amidoxime group or its metal salt as a functional group (JP-A-58-49620), styrene-divinylbenzene copolymer , phenolic resin, vinyl chloride resin, etc. with hydroxylamine, diethylenetriamine, guanidine, hydrazine,
N, O, S obtained by reacting acetylacetone etc.
A method of adsorbing gallium onto a chelate resin containing a plurality of Lewis basic atoms, such as chelate resin, washing the resin with water or dilute acid, and then eluting gallium from the resin with concentrated acid to recover it (Unexamined Japanese Patent Publication No. Showa 59-
169933) etc. are known. [Problems to be solved by the invention] However, the chelate resins conventionally used for gallium recovery do not necessarily have sufficient gallium selectivity and adsorption properties, and it is difficult to improve the gallium recovery rate. That was what was hoped for.
Moreover, the acid and alkali resistance of conventional chelate resins is not sufficient, and in particular, the functional groups of chelate resins having amidoxime groups or their salts as functional groups are easily attacked by acids and alkalis, so the adsorbed gallium If the process of acid washing and recovery is repeated, the adsorption of gallium decreases, making it difficult to use the resin repeatedly. On the other hand, according to the method described in JP-A No. 59-169933, the resin is not easily attacked by acid washing when eluting adsorbed gallium, and repeated use of the resin improves the adsorption properties of gallium. However, as a pre-process to elute the adsorbed gallium with concentrated acid, it is necessary to wash the resin with water or dilute acid to remove the alkali contained in the resin. This method has the disadvantage that the process for recovering gallium is complicated. The present invention has been developed in view of the above points, and has excellent selectivity and adsorption properties for gallium in aqueous aluminate solutions, enables separation of gallium with a high recovery rate, and facilitates the recovery operation of gallium adsorbed on resin. The purpose of the present invention is to provide a method for separating gallium in an aqueous aluminate solution that can be carried out in the following manner. [Means for Solving the Problems] As a result of intensive research in order to solve the above problems, the present inventors have found that the present inventors have a specific resin matrix and an aminoalkylene phosphate group, an iminoalkylene phosphate group, an alkylene phosphate group, or Gallium in an aluminate aqueous solution can be effectively separated by using a chelate resin having a salt as a functional group directly bonded to the resin matrix, and these chelate resins have acid resistance and alkali resistance. The present inventors have completed the present invention by discovering that the resin can be used repeatedly, and the gallium adsorbed to the resin can be recovered with a simple operation. That is, the present invention uses a gallium-containing aluminate aqueous solution as a base resin of either a divinylbenzene copolymer, an epoxy resin, a phenol resin, a resorcinol resin, or a vinyl chloride resin, and an aminoalkylene phosphate group or an iminoalkylene phosphate group. basis,
An aluminate aqueous solution characterized in that the aluminate aqueous solution is brought into contact with a chelate resin having at least one alkylene phosphate group or a salt thereof as a functional group directly bonded to the resin matrix, and gallium is adsorbed to the chelate resin and separated. The gist of this article is a method for separating gallium in The resin base of the chelate resin used in the present invention includes divinylbenzene copolymer, epoxy resin, resorcinol resin, phenol resin,
Examples of the divinylbenzene copolymer include styrene-divinylbenzene copolymer, methyl acrylate-divinylbenzene copolymer, methyl methacrylate-divinylbenzene copolymer, and acrylonitrile-divinylbenzene copolymer. etc. The chelate resin in the present invention uses the above-mentioned resin as a resin base, and contains at least one of an aminoalkylene phosphate group, an iminoalkylene phosphate group, an alkylene phosphate group, or a salt thereof, such as an alkali metal salt or an alkaline earth metal salt.
This is a chelate resin having a species as a functional group directly bonded to the resin matrix, and in particular, the resin matrix is a divinylbenzene copolymer such as a styrene-divinylbenzene copolymer or an epoxy resin, and an aminoalkylene phosphate group or its A chelate resin having a salt or an iminoalkylene phosphoric acid group or a salt thereof as a functional group directly bonded to the resin matrix is preferred. Further, the chelate resin having these functional groups is preferably of a porous type (MR type) rather than a gel type. The reason is that when organic matter is present in the treated water, the metal adsorption ability of gel-type chelate resin decreases, whereas MR
This is because the adsorption capacity of type chelate resins is less likely to decrease, and there is less loss due to resin crushing due to volume changes that occur during resin regeneration. Examples of the above chelate resin include ammonia or polyalkylene such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine after reacting chloromethyl ether with styrene-divinylbenzene copolymer to chloromethylate the styrene-divinylbenzene copolymer. A primary or secondary amino group is introduced by reacting a polyamine, and then an aldehyde such as formaldehyde or acetaldehyde is reacted with phosphorous acid to form an aminoalkylene phosphoric acid group or iminoalkylene phosphoric acid group into the primary or secondary amino group. A chelate resin in which a chloromethylated styrene-divinylbenzene copolymer is reacted with phosphorus trichloride in the presence of aluminum chloride to form a methyl phosphate group (or a methyl phosphate group and a phosphoric acid group) on the benzene core of divinylbenzene. ) formed chelate resin; after reacting polyalkylene polyamine to vinyl chloride resin to introduce a primary or secondary amino group, aldehyde and phosphorous acid are reacted to form an aminoalkylene phosphate group or iminoalkylene on the amino group. Chelate resin with phosphoric acid groups formed; after reacting with a polyalkylene polyamine on the methyl ester group portion of methyl acrylate-divinylbenzene copolymer or methyl methacrylate-divinylbenzene copolymer, aldehyde and phosphorous acid are reacted. A chelate resin in which an aminoalkylene phosphoric acid group or an iminoalkylene phosphoric acid group is formed on the amino group of the polyalkylene polyamine introduced into the methyl ester group; Alternatively, a compound having an iminoalkylene phosphate group is obtained, and this compound is reacted with phenol or resorcinol in the presence of an aldehyde. and alkaline metal salts such as sodium salts and potassium salts, and alkaline earth metal salts such as calcium salts and magnesium salts of the above resins. Among these chelate resins, the above-mentioned chelate resins are preferable, and in particular, after reacting a chloromethylated styrene-divinylbenzene copolymer with a polyalkylene polyamine, aldehyde and phosphorous acid are reacted to form a primary amino group,
Chelate resins in which an aminoalkylene phosphate group or an iminoalkylene phosphate group is formed as a functional group in the secondary amino group portion are preferred. In the present invention, the aluminate aqueous solution includes:
An aqueous solution of sodium aluminate is mainly used, and the method of bringing the aluminate aqueous solution into contact with the above-mentioned chelate resin includes, for example, immersing the chelate resin in an aluminate aqueous solution containing gallium, or a batch method in which the chelate resin is immersed and further stirred. Examples include a column method in which an aluminate aqueous solution is passed through a column packed with a chelate resin, and in the case of a column method, either an upward flow method or a downward flow method can be adopted as the liquid passing method. In addition, in the column type, there are two methods: a slow flow rate of SV0.5 to 10 to adsorb gallium, a fast flow rate of SV10 to 50 to adsorb gallium, or a method to circulate an aluminate aqueous solution to adsorb gallium. Various adsorption methods can be used. The gallium adsorbed on the chelate resin and separated from the aluminate aqueous solution as described above is eluted by treating the chelate resin that has adsorbed gallium with an acid such as hydrochloric acid, sulfuric acid, nitric acid, or phosphoric acid as an eluent. It can be recovered. The adsorbed gallium may be eluted using an eluent such as an acid by either a batch method or a column method. In the case of a column type, elution can be carried out by slowly passing the eluent at a flow rate of SV 0.5 to 5 or by circulating the eluent. Moreover, if the obtained eluent is reused as the next eluent, the gallium concentration in the eluent can be increased. The gallium eluted from the chelate resin can be recovered as metallic gallium, for example, by electrolysis as an aqueous solution of sodium aluminate. Further, the chelate resin after eluting gallium can be repeatedly used for adsorption of gallium in an aqueous aluminate solution. [Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 An MR type spherical resin (10 to 60 mesh) made of a styrene-divinylbenzene copolymer obtained by suspension polymerization of 92 wt% styrene and 8 wt% divinylbenzene was swollen in ethylene dichloride and anhydrous chlorinated. The spherical resin was chloromethylated by reacting chloromethyl ether in the presence of zinc (chlorine content: 21.8 wt%). Next, the obtained chloromethylated resin was reacted with diethylenetriamine (DETA) to obtain a DETA type resin having a primary amino group and a secondary amino group. This resin is reacted with orthophosphorous acid and paraformaldehyde in an aqueous hydrochloric acid solution to form an MR type chelate with aminomethylene phosphate groups and iminomethylene phosphate groups as functional groups at the primary and secondary amino groups. Resin was obtained. This chelate resin was classified, and 100ml of resin with 10 to 48 meshes was packed into a column (inner diameter 25mm), and the column was filled with a sodium aluminate aqueous solution (Ga: 150ppm, Al: 20300ppm, NaOH: 18%).
The liquid was passed in a downward flow at a flow rate of SV5. Each time the flow rate shown in Table 1 was reached, a 100 ml sample of the effluent was taken and the metal ion concentration was measured. Results first
Shown in the table. Furthermore, when the amount of liquid passed per liter of resin is 60 liters (hereinafter, the unit of the amount of liquid passed per liter of resin is expressed as l/l-R), the amount of gallium adsorbed to the chelate resin is 8.8 per liter of resin. g (hereinafter, the unit of adsorption amount per liter of resin is expressed as g/l-R),
The adsorption recovery rate was 98%. Next, after extruding the sodium aluminate aqueous solution remaining in the column with water, a 3N- HNO3 aqueous solution was passed in a downward flow at a flow rate of SV2 in an amount 5 times the resin volume (500 ml) to be adsorbed on the chelate resin. As a result of eluating the gallium and measuring the gallium ion concentration in the eluent, 99.8% of the gallium adsorbed on the chelate resin was recovered by elution. Example 2 The same chloromethylated resin as in Example 1 was reacted with phosphorus trichloride in the presence of aluminum chloride to obtain a chelate resin having phosphoric acid groups and methylene phosphoric acid groups as functional groups. Sodium aluminate aqueous solution (Ga: 52.5ppm, Al: 20100ppm, NaOH: 18%) was added to 0.51ml of 10 to 48 mesh resin classified from this resin.
After adding 250 ml and shaking for 1.5 hours, the gallium ion concentration in the aqueous solution was measured, and the amount of gallium adsorbed on the chelate resin was 7.8 g/l-R. Example 3 A reaction product obtained by reacting tetraethylenepentamine with orthophosphorous acid and formaldehyde was reacted with resorcinol and formaldehyde, and then suspension polymerized in a polyvinyl alcohol solution to obtain a spherical cured resin. Ta. This chelate resin had an iminomethylene phosphate group as a functional group. Then 10 to 48 of the obtained chelate resins
The mesh resin was added to an aqueous sodium aluminate solution and shaken in the same manner as in Example 2. The amount of gallium adsorbed to the chelate resin is 8.5g/l-R
It was hot. Example 4 Polyvinyl chloride crushed into 10 to 50 meshes was swollen with perchlorethylene and then reacted with triethylenetetramine (TETA) to form TETA.
A mold resin was obtained. This resin was reacted with acetaldehyde and orthophosphorous acid to obtain a chelate resin having aminoethylene phosphoric acid groups and iminoethylene phosphoric acid groups as functional groups. 10 of these chelate resins
Add 100 ml of the same sodium aluminate aqueous solution as in Example 1 to 10 g of ~48 mesh resin and heat at 25°C.
After shaking for an hour, the concentration of gallium and aluminum in the solution was measured: Ga: 3.1ppm.
Al: 20300ppm. Comparative Example 1 The same chloromethylated resin as in Example 1 was reacted with ethylenediamine (EDA) to obtain an EDA type resin. This EDA type resin was subjected to Michael addition of acrylonitrile and further reacted with hydroxylamine to obtain a chelate resin having an amidoxime group as a functional group. 10 to 48 meshes of this resin were shaken with sodium aluminate in the same manner as in Example 2. The amount of gallium adsorbed on this resin was 5.7 g/l-R. Comparative Example 2 Of the chelate resins having iminodiacetic acid groups as functional groups obtained by reacting the same chloromethylated resin as in Example 1 with iminodiacetic acid, 10 to 48 meshes of the resin were treated with aluminic acid in the same manner as in Example 2. Shake with sodium. The amount of gallium adsorbed to this resin is
It was 4.3g/l-R. Example 5 A column (inner diameter 25 mm) was filled with 100 ml of the same chelate resin as in Example 1, and the same sodium aluminate aqueous solution as in Example 1 was passed under the same conditions.
The gallium ion concentration and aluminum ion concentration in the effluent that flowed out until the flow rate reached 60 l/l-R was measured. Next, after extruding the sodium aluminate aqueous solution remaining in the column with water, 5 times the resin volume (500 ml) of 3N-HNO 3 aqueous solution was passed through the column at a flow rate of SV2 in a downward flow. The gallium ion concentration was measured and the elution recovery rate was determined. After washing with water, the same operation as above was repeated, and adsorption-elution tests were conducted three times in total. The results are shown in Table 2. Comparative Example 3 A total of three adsorption-elution tests were conducted under the same conditions as in Example 5, except that the same chelate resin as in Comparative Example 1 was used as the chelate resin. The concentration of metal ions in the effluent and 3N-
Table 3 shows the results of measuring the elution recovery rate of gallium eluted from the chelate resin by the HNO 3 aqueous solution in each of the three tests.

【衚】【table】

【衚】【table】

〔発明の効果〕〔Effect of the invention〕

以䞊説明したように本発明方法は特定の暹脂を
暹脂母䜓ずし、か぀アミノアルキレン燐酞基、む
ミノアルキレン燐酞基、アルキレン燐酞基あるい
はこれらの塩の少なくずも皮を官胜基ずしお有
するキレヌト暹脂にガリりムを含有するアルミン
酞塩氎溶液を接觊せしめ、キレヌト暹脂にガリり
ムを吞着せしめお分離する方法であり、本発明に
おいお甚いられるキレヌト暹脂はアルミン酞塩氎
溶液䞭のガリりムの吞着分離甚に甚いられおいた
埓来のキレヌト暹脂に比べおアルミン酞塩氎溶液
䞭のガリりムに察する遞択性、吞着性に優れるた
め本発明方法によればアルミン酞塩氎溶液䞭のガ
リりムを遞択的に高い回収率で分離回収するこず
ができる。たた本発明においお甚いられるキレヌ
ト暹脂は埓来のキレヌト暹脂に比しお耐酞性、耐
アルカリ性に優れ、酞、アルカリによ぀おキレヌ
ト暹脂の吞着性の䜎䞋をきたす虞れがないため、
キレヌト暹脂に吞着されたガリりムを回収するに
際しお、キレヌト暹脂を盎接匷酞によ぀お凊理す
るこずができ、暹脂に吞着されたガリりムの回収
が容易に行い埗るずずもに、ガリりムを溶離した
埌のキレヌト暹脂を繰り返し䜿甚するこずができ
る等の効果を有する。
As explained above, the method of the present invention uses a specific resin as a resin base and contains gallium in a chelate resin having at least one of an aminoalkylene phosphate group, an iminoalkylene phosphate group, an alkylene phosphate group, or a salt thereof as a functional group. This is a method of separating gallium by adsorbing it onto a chelate resin by contacting an aqueous aluminate solution with the chelate resin used in the present invention. Since it has superior selectivity and adsorptivity for gallium in an aluminate aqueous solution compared to a resin, according to the method of the present invention, gallium in an aluminate aqueous solution can be selectively separated and recovered at a high recovery rate. In addition, the chelate resin used in the present invention has excellent acid resistance and alkali resistance compared to conventional chelate resins, and there is no risk that the adsorption properties of the chelate resin will decrease due to acids and alkalis.
When recovering the gallium adsorbed to the chelate resin, the chelate resin can be directly treated with strong acid, making it easy to recover the gallium adsorbed to the resin, and the chelate resin after eluting the gallium. It has the advantage of being able to be used repeatedly.

Claims (1)

【特蚱請求の範囲】  ガリりムを含有するアルミン酞塩氎溶液を、
ゞビニルベンれン系共重合䜓、゚ポキシ暹脂、フ
゚ノヌル暹脂、レゟルシン暹脂、塩化ビニル暹脂
のいずれかを暹脂母䜓ずし、か぀アミノアルキレ
ン燐酞基、むミノアルキレン燐酞基、アルキレン
燐酞基あるいはこれらの塩のうち少なくずも皮
を前蚘暹脂母䜓に盎接結合した官胜基ずするキレ
ヌト暹脂ず接觊せしめ、ガリりムを䞊蚘キレヌト
暹脂に吞着せしめお分離するこずを特城ずするア
ルミン酞塩氎溶液䞭のガリりムの分離方法。  キレヌト暹脂が倚孔質型の暹脂である特蚱請
求の範囲第項蚘茉のアルミン酞塩氎溶液䞭のガ
リりムの分離方法。
[Claims] 1. An aqueous aluminate solution containing gallium,
Divinylbenzene copolymer, epoxy resin, phenol resin, resorcinol resin, vinyl chloride resin as a resin base, and at least one of aminoalkylene phosphate groups, iminoalkylene phosphate groups, alkylene phosphate groups, or salts thereof A method for separating gallium in an aqueous aluminate solution, which comprises contacting with a chelate resin having a functional group directly bonded to the resin matrix, and separating gallium by adsorbing it onto the chelate resin. 2. The method for separating gallium in an aqueous aluminate solution according to claim 1, wherein the chelate resin is a porous resin.
JP5774085A 1985-03-22 1985-03-22 Separation of gallium from aqueous solution of aluminate Granted JPS61215215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5774085A JPS61215215A (en) 1985-03-22 1985-03-22 Separation of gallium from aqueous solution of aluminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5774085A JPS61215215A (en) 1985-03-22 1985-03-22 Separation of gallium from aqueous solution of aluminate

Publications (2)

Publication Number Publication Date
JPS61215215A JPS61215215A (en) 1986-09-25
JPH0522647B2 true JPH0522647B2 (en) 1993-03-30

Family

ID=13064307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5774085A Granted JPS61215215A (en) 1985-03-22 1985-03-22 Separation of gallium from aqueous solution of aluminate

Country Status (1)

Country Link
JP (1) JPS61215215A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123016A (en) * 1985-11-21 1987-06-04 Sumitomo Chem Co Ltd Recovery of rare metal from strongly acidic solution
CN102021334A (en) * 2010-12-15 2011-04-20 䞭囜铝䞚股仜有限公叞 Method for extracting gallium and vanadium from seed precipitation mother liquor of Bayer process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169928A (en) * 1983-03-15 1984-09-26 Sumitomo Chem Co Ltd Recovery of gallium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169928A (en) * 1983-03-15 1984-09-26 Sumitomo Chem Co Ltd Recovery of gallium

Also Published As

Publication number Publication date
JPS61215215A (en) 1986-09-25

Similar Documents

Publication Publication Date Title
US4159311A (en) Recovery of lithium from brines
US3998924A (en) Recovery of non-ferrous metals from acidic liquors with a chelate exchange resin in presence of iron(III)
JPH0356783B2 (en)
US4116857A (en) Recovery of Mg++ from brines
JPH05212382A (en) Method for removing heavy metal ion from waste liquid stream
US4999171A (en) Process for recovery of gallium by chelate resin
US3003866A (en) Selective elution of copper, nickel, and cobalt from aminocarboxylic acid chelate exchange resins
JPS60145913A (en) Elution of indium absorbed to chelate resin
JP2579773B2 (en) Purification method of alkaline solution
EP0087934A1 (en) Alkylaminophosphonic chelating resins, their preparation and use in purifying brines
JPH0522647B2 (en)
JPS60215721A (en) Method for recovering gallium
US4183900A (en) Recovery of Mg++ from brines
JPH0549729B2 (en)
US4243555A (en) Composition for recovery of MG++ from brines
US2863717A (en) Recovery of uranium values from copper-bearing solutions
US4522951A (en) Removal of Mg++ and Ca++ ions from NaCl brine
JP2539413B2 (en) Adsorbent for gallium recovery
JPH0471597B2 (en)
JP2876754B2 (en) Arsenic removal method
JPS621325B2 (en)
JPS61270345A (en) Method for concentrating indium and gallium in water
JPS62228436A (en) Method for separating and recovering cobalt
JPH05214576A (en) Method for removing impure metal ion in copper electrolyte
JPH0561988B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term