JPH05225962A - Manufacture of sodium-sulfur battery - Google Patents

Manufacture of sodium-sulfur battery

Info

Publication number
JPH05225962A
JPH05225962A JP4025320A JP2532092A JPH05225962A JP H05225962 A JPH05225962 A JP H05225962A JP 4025320 A JP4025320 A JP 4025320A JP 2532092 A JP2532092 A JP 2532092A JP H05225962 A JPH05225962 A JP H05225962A
Authority
JP
Japan
Prior art keywords
sodium
titanium nitride
sulfur battery
nitride layer
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4025320A
Other languages
Japanese (ja)
Inventor
Nobuo Tsuno
伸夫 津野
Toshikatsu Kashiwaya
俊克 柏屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4025320A priority Critical patent/JPH05225962A/en
Publication of JPH05225962A publication Critical patent/JPH05225962A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a sodium-sulfur battery allowing the formation of a dense nitrided titanium layer of high corrosion resistance and reliability on the surface of the anode vessel of the battery in a relatively short time. CONSTITUTION:In a manufacture method for a sodium-sulfur battery where a solid electrolyte having alkaline ion conductivity is used to separate an anode chamber from a cathode chamber, and a molten sulfur compound is housed in the anode chamber, with molten sodium contained in the cathode chamber, nitrided titanium is deposited with a CVD method on the surface of a metal vessel forming the anode chamber, at least where the surface is in contact with the molten sulfur compound, thereby forming a nitrided titanium layer. The thickness of the layer is preferably taken at a value approximately between 2.5mum and 15mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリイオン伝導性
を有する固体電解質を利用したナトリウム−硫黄電池の
製造方法に関するもので、特に、ナトリウム−硫黄電池
の陽極側金属容器の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sodium-sulfur battery using a solid electrolyte having alkali ion conductivity, and more particularly to a method for manufacturing an anode side metal container of a sodium-sulfur battery.

【0002】[0002]

【従来の技術】一般に、ナトリウム−硫黄電池は、陽極
室を構成する金属容器の表面が溶融硫黄化合物(多硫化
ナトリウム)により腐食されると、陽極活物質が腐食反
応生成物形成のために消費されるため、電池反応に必要
な陽極活物質量が減少して電池容量が低下したり、陽極
表面の金属硫化物の電気抵抗の影響で電池の内部抵抗が
増加して充電効率を低下させやすい。
2. Description of the Related Art Generally, in a sodium-sulfur battery, when a surface of a metal container forming an anode chamber is corroded by a molten sulfur compound (sodium polysulfide), the anode active material is consumed for forming a corrosion reaction product. Therefore, the amount of the anode active material required for the battery reaction decreases and the battery capacity decreases, or the internal resistance of the battery increases due to the electric resistance of the metal sulfide on the anode surface, and the charging efficiency tends to decrease. ..

【0003】従来より、この種のナトリウム−硫黄電池
の陽極室を構成する陽極容器としては、溶融多硫化ナト
リウムによる腐食を防止するため、陽極容器の表面に耐
食性の優れた窒化チタン層を形成するものが知られる。
例えば、特開昭61−264659号公報には、容器表
面に低圧溶射により窒化チタン層を形成するものが開示
され、特開昭62−2684069号公報には、チタン
製容器を窒化することにより表面に窒化チタン層を形成
するものが開示されている。また、特開昭62−290
067号公報に示されるものは、窒素系ガス中で容器表
面を窒化処理した後、チタンまたはチタン化合物と添加
物との混合粉末を水素もしくは不活性ガスまたは真空中
で加熱して窒化チタン層を形成する。
Conventionally, as an anode container constituting the anode chamber of this type of sodium-sulfur battery, a titanium nitride layer having excellent corrosion resistance is formed on the surface of the anode container in order to prevent corrosion due to molten sodium polysulfide. Things are known.
For example, Japanese Unexamined Patent Publication (Kokai) No. 61-264659 discloses a titanium nitride layer formed on the surface of a container by low pressure spraying, and Japanese Unexamined Patent Publication (Kokai) No. 62-2684069 discloses a surface formed by nitriding a titanium container. A method for forming a titanium nitride layer is disclosed. In addition, JP-A-62-290
No. 067 discloses a titanium nitride layer obtained by nitriding the surface of a container in a nitrogen-based gas and then heating a mixed powder of titanium or a titanium compound and an additive in hydrogen or an inert gas or in vacuum. Form.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のナトリウム−硫黄電池の陽極容器の製造方法
によると、特開昭61−264659号公報に示される
ようなものでは、溶射により形成した窒化チタン層中に
多数の気孔が生じやすく、溶融多硫化ナトリウムが該気
孔を通じて浸透し、容器基材が腐食されるという問題が
ある。
However, according to such a conventional method for manufacturing an anode container for a sodium-sulfur battery, the conventional method for producing an anode container for a sodium-sulfur battery is such that the nitridation formed by thermal spraying is the same as that disclosed in JP-A-61-264659. There is a problem that a large number of pores are likely to be formed in the titanium layer, the molten sodium polysulfide penetrates through the pores, and the container base material is corroded.

【0005】また、特開昭62−2684069号公報
または特開昭62−290067号公報に示されるよう
なものでは、窒化チタン層形成時に電気炉等に容器基材
を長時間保持するため、生産効率が低下するという問題
がある。本発明が解決しようとする課題は、陽極容器の
表面に耐食性および信頼性の高い緻密な窒化チタン層を
比較的短時間で形成可能にしたナトリウム−硫黄電池の
製造方法を提供することにある。
Further, in the case of the one disclosed in JP-A-62-2684069 or JP-A-62-290067, the container base material is held for a long time in an electric furnace or the like when the titanium nitride layer is formed, so that it is produced. There is a problem of reduced efficiency. The problem to be solved by the present invention is to provide a method for manufacturing a sodium-sulfur battery in which a dense titanium nitride layer having high corrosion resistance and high reliability can be formed on the surface of an anode container in a relatively short time.

【0006】[0006]

【課題を解決するための手段】本発明のナトリウム−硫
黄電池の製造方法は、アルカリイオン伝導性を有する固
体電解質により陽極室と陰極室とを区画形成し、陽極室
内には溶融多硫化ナトリウムを収容し、陰極室内には溶
融ナトリウムを収容したナトリウム−硫黄電池の製造法
において、前記陽極室を形成する金属容器の少なくとも
溶融多硫化ナトリウムと接触する表面にCVD法を用い
て窒化チタンを付着させることにより窒化チタン層を形
成することを特徴とする。
The method for producing a sodium-sulfur battery of the present invention comprises an anode chamber and a cathode chamber defined by a solid electrolyte having alkali ion conductivity, and molten sodium polysulfide is stored in the anode chamber. In a method for manufacturing a sodium-sulfur battery that contains molten sodium in the cathode chamber, titanium nitride is attached to at least the surface of the metal container forming the anode chamber in contact with molten sodium polysulfide by the CVD method. Thus, a titanium nitride layer is formed.

【0007】前記窒化チタン層の層厚を2.5〜15μ
mにしたことを特徴とする。前記金属容器は、比較的強
度が高く、窒化チタンとの結合性が良いアルミニウム合
金、ステンレス等の材質のものを用いるとよい。前記C
VD法は、原料ガスによる反応速度が比較的大きい熱C
VD法を用いるのが望ましい。熱CVD法を用いた場
合、例えば、電気炉内に金属容器を配置し、四塩化チタ
ンガス、窒素ガス、および水素ガスを流通させながら9
50℃程度で約3時間反応させると、比較的良質な窒化
チタン層を得ることができる。金属容器がAl合金から
なる場合にはCVD法として、プラズマCVD法、真空
CVD法等を用いてもよい。
The thickness of the titanium nitride layer is 2.5 to 15 μm.
It is characterized in that it is m. The metal container is preferably made of a material such as aluminum alloy or stainless steel, which has a relatively high strength and has a good bondability with titanium nitride. The C
The VD method uses heat C, which has a relatively high reaction rate due to the source gas.
It is desirable to use the VD method. When the thermal CVD method is used, for example, a metal container is placed in an electric furnace, and titanium tetrachloride gas, nitrogen gas, and hydrogen gas are circulated while flowing.
A relatively good titanium nitride layer can be obtained by reacting at about 50 ° C. for about 3 hours. When the metal container is made of an Al alloy, a plasma CVD method, a vacuum CVD method or the like may be used as the CVD method.

【0008】前記窒化チタン層の層厚を2.5μm以上
としたのは、2.5μm未満であると、ナトリウム−硫
黄電池の耐用期間中に溶融多硫化ナトリウムが窒化チタ
ン層を腐食し容器基材に達しやすくなるからであり、1
5μm以下としたのは、15μmを超えると、窒化チタ
ン層の形成時にCVD法による反応時間が比較的長時間
になるからである。
The reason why the thickness of the titanium nitride layer is 2.5 μm or more is that if the thickness is less than 2.5 μm, molten sodium polysulfide corrodes the titanium nitride layer during the service life of the sodium-sulfur battery and the container substrate Because it is easier to reach the material, 1
The reason for setting the thickness to 5 μm or less is that if the thickness exceeds 15 μm, the reaction time by the CVD method at the time of forming the titanium nitride layer becomes relatively long.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。ナトリウ
ム−硫黄電池の陽極容器として用いるステンレス製容器
の表面に次に示すように熱CVD法により窒化チタン層
を形成した。まず、熱CVD装置内にステンレス製容器
(SUS430製)を配置し、950℃に昇温し、次い
で、反応ガスとして四塩化チタンガス、窒素ガスおよび
水素ガスを導入し、所定時間反応させた。反応ガスの流
量比は、(水素ガス+四塩化チタンガス):窒素ガス=
7:1に設定した。熱CVD装置内で1時間反応させた
ものを実施例1とし、3時間反応させたものを実施例2
とした。窒化チタン層の層厚は、実施例1が1μm、実
施例2が3μmであった。
EXAMPLES Examples of the present invention will be described below. A titanium nitride layer was formed on the surface of a stainless steel container used as an anode container of a sodium-sulfur battery by a thermal CVD method as shown below. First, a stainless steel container (made of SUS430) was placed in a thermal CVD apparatus, the temperature was raised to 950 ° C., and then titanium tetrachloride gas, nitrogen gas and hydrogen gas were introduced as reaction gases and reacted for a predetermined time. The flow rate ratio of the reaction gas is (hydrogen gas + titanium tetrachloride gas): nitrogen gas =
It was set to 7: 1. Example 1 was the one reacted for 1 hour in the thermal CVD apparatus, and Example 2 was the one reacted for 3 hours.
And The layer thickness of the titanium nitride layer was 1 μm in Example 1 and 3 μm in Example 2.

【0010】耐食性試験1(耐多硫化ナトリウム性) 次に、実施例1および実施例2について、多硫化ナトリ
ウムに対する窒化チタン層の耐食性を調査するため、溶
融多硫化ナトリウム(Na24 )中で浸漬試験を行な
った。試験条件は、浴槽温度:330℃、浸漬時間:9
60時間に設定した。なお、比較例1としてステンレス
製容器(SUS430製)の表面に低圧溶射により窒化
チタン層を50μm形成したものと、比較例2としてチ
タン製容器の表面を窒化することにより窒化チタン層を
10μm形成したものについても、同様な条件で試験を
行なった。結果を表1に示す。
Corrosion Resistance Test 1 (Sodium Polysulfide Resistance) Next, in order to investigate the corrosion resistance of the titanium nitride layer with respect to sodium polysulfide in Examples 1 and 2, in molten sodium polysulfide (Na 2 S 4 ). The immersion test was carried out. The test conditions are bath temperature: 330 ° C., immersion time: 9
It was set to 60 hours. In Comparative Example 1, a titanium nitride layer having a thickness of 50 μm was formed on the surface of a stainless steel container (SUS430) by low pressure spraying, and as Comparative Example 2, the surface of a titanium container was nitrided to form a titanium nitride layer of 10 μm. The thing was also tested under the same conditions. The results are shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】実施例1および実施例2による窒化チタン
層は、比較例1および比較例2に比べて層厚が小さく、
特に比較例2に対しては窒化チタン層の作成時間が大幅
に短縮されているにもかかわらず、窒化チタン層の表面
がほとんど腐食されなかった。これに対し、比較例1
は、低圧溶射時に窒化チタン層に生じた気孔を通じて基
材のステンレス製容器が腐食され、比較例2は、窒化チ
タン層の表面が2〜3μm程度腐食され、硫化物が形成
された。すなわち、熱CVD法により窒化チタン層を形
成した実施例1および実施例2は、耐多硫化ナトリウム
性に優れることが判明した。
The titanium nitride layers according to Examples 1 and 2 have a smaller layer thickness than Comparative Examples 1 and 2,
Especially for Comparative Example 2, the surface of the titanium nitride layer was scarcely corroded although the time for forming the titanium nitride layer was significantly shortened. On the other hand, Comparative Example 1
In the comparative example 2, the stainless steel container of the base material was corroded through the pores formed in the titanium nitride layer during low pressure spraying, and in Comparative Example 2, the surface of the titanium nitride layer was corroded by about 2 to 3 μm, and sulfide was formed. That is, it was found that Examples 1 and 2 in which the titanium nitride layer was formed by the thermal CVD method had excellent sodium polysulfide resistance.

【0013】耐食性試験2(充放電時の窒化チタン層の
腐食) 次に、実施例1について、充放電時の窒化チタン層の腐
食量を調査するため、実施例1の条件で作製した陽極容
器を使用して製作した試験用のナトリウム−硫黄電池に
ついて充放電試験を行なった。充放電試験は、試験時間
を短縮するため、通常の約3倍の電流密度165mA/
cm2 で充放電を繰返し、所定サイクル経過後に解体し
たナトリウム−硫黄電池について、陽極容器内面の窒化
チタン層の存在の有無を確認することにより行なった。
結果を表2に示す。
Corrosion Resistance Test 2 (Corrosion of Titanium Nitride Layer During Charging / Discharging) Next, in Example 1, in order to investigate the amount of corrosion of the titanium nitride layer during charging / discharging, an anode container manufactured under the conditions of Example 1 A charge-discharge test was conducted on a test sodium-sulfur battery manufactured using In the charge / discharge test, in order to reduce the test time, the current density is about 3 times the normal current density of 165 mA /
The charging / discharging was repeated at cm 2 , and the sodium-sulfur battery dismantled after the lapse of a predetermined cycle was confirmed by checking the presence or absence of the titanium nitride layer on the inner surface of the anode container.
The results are shown in Table 2.

【0014】[0014]

【表2】 [Table 2]

【0015】表2から判るように、実施例1は、200
サイクルの充放電で1μmの窒化チタン層が消失した。
これにより、通常の充放電時の電流密度に換算した場
合、実施例1の窒化チタン層は、600サイクルの充放
電に対し1μm程度損失すると考えられるため、充放電
における総通電電気量に相当する1500サイクルまで
容器基材の耐食性を保持するには、窒化チタン層の層厚
が2.5μm以上必要とされることが判明した。
As can be seen from Table 2, the first embodiment has 200
The titanium nitride layer with a thickness of 1 μm disappeared due to the charge and discharge of the cycle.
As a result, when converted to a current density during normal charge / discharge, the titanium nitride layer of Example 1 is considered to lose about 1 μm after 600 cycles of charge / discharge, which corresponds to the total amount of electricity supplied during charge / discharge. It has been found that the titanium nitride layer needs to have a thickness of 2.5 μm or more in order to maintain the corrosion resistance of the container substrate up to 1500 cycles.

【0016】耐食性試験3(充放電時の内部抵抗および
電池容量の変化) 次に、実施例2について、充放電の内部抵抗および電池
容量の変化量を調査するため、実施例2を用いて製作し
たナトリウム−硫黄電池の充放電試験を行なった。充放
電時の電流密度は、前記耐食性試験2と同様165mA
/cm2 に設定した。結果を図1に示す。
Corrosion resistance test 3 (changes in internal resistance and battery capacity during charging / discharging) Next, Example 2 was manufactured to investigate the amount of change in internal resistance during charging / discharging and battery capacity. The charge-discharge test of the sodium-sulfur battery was performed. The current density during charging / discharging was 165 mA, the same as in the above corrosion resistance test 2.
/ Cm 2 was set. The results are shown in Figure 1.

【0017】図1に示すように、実施例2は、500サ
イクルの充放電後も内部抵抗および電池容量に電池性能
を劣化させるような変化は見られなかった。すなわち、
実施例2の窒化チタン層によると、溶融硫黄化合物によ
る容器基材の腐食が防止されるとともに、電池性能が確
実に維持されることが確認された。本発明を適用するナ
トリウム−硫黄電池の模式的構造は、例えば図1に示す
とおりである。
As shown in FIG. 1, in Example 2, no change that deteriorates the battery performance was observed in the internal resistance and the battery capacity even after 500 cycles of charging and discharging. That is,
It was confirmed that according to the titanium nitride layer of Example 2, corrosion of the container base material by the molten sulfur compound was prevented and the battery performance was reliably maintained. A schematic structure of a sodium-sulfur battery to which the present invention is applied is as shown in FIG. 1, for example.

【0018】ナトリウム−硫黄電池10は、陽極活物質
である溶融硫黄Sを含浸したカーボンマットなどの陽極
用導電材Mを収納する円筒状の陽極容器1と、この陽極
容器1の上端部に対し、α−アルミナ製の絶縁リング2
および中間部材5を介して連結された陰極容器3と、前
記絶縁リング2の内周部に固着され、かつ、陰極活物質
である溶融金属ナトリウムNaを貯留し、ナトリウムイ
オンNa+ を選択的に浸透させる機能を有した下方へ延
びる多結晶β−アルミナ製の有底円筒状をなす固体電解
質管4とから構成される。陽極容器1の内壁面には、陽
極用伝導材Mの頂面より高い位置まで窒化チタン層7が
形成されている。
The sodium-sulfur battery 10 has a cylindrical anode container 1 containing a conductive material M for the anode such as carbon mat impregnated with molten sulfur S as an anode active material, and an upper end portion of the anode container 1. , Α-alumina insulation ring 2
And a cathode container 3 connected via an intermediate member 5, and is fixed to the inner peripheral portion of the insulating ring 2 and stores molten metal sodium Na which is a cathode active material and selectively selects sodium ions Na +. The solid electrolyte tube 4 has a bottomed cylindrical shape and is made of polycrystalline β-alumina and has a function of permeating downward. The titanium nitride layer 7 is formed on the inner wall surface of the anode container 1 to a position higher than the top surface of the conductive material M for anode.

【0019】放電時には陰極室R1からナトリムイオン
Na+ が固体電解質管4を透過して陽極室R2内の硫黄
Sと次のように反応し、多硫化ナトリウムを生成する。 2Na+XS→Na2 Sx また、充電時には放電時とは逆の反応が起こり、多硫化
ナトリウムがナトリウムNaおよび硫黄Sに分解する。
During discharge, sodium ion Na + from the cathode chamber R1 passes through the solid electrolyte tube 4 and reacts with the sulfur S in the anode chamber R2 as follows to produce sodium polysulfide. 2Na + XS → Na 2 Sx When charging, the reaction opposite to that during discharging occurs, and sodium polysulfide is decomposed into sodium Na and sulfur S.

【0020】本発明の方法によるナトリウム−硫黄電池
10は、耐食性に優れた均質で緻密な窒化チタン層を有
するため、長期間に渡って使用しても陽極容器1の基材
が腐食されず、電池性能が低下しにくい。
Since the sodium-sulfur battery 10 according to the method of the present invention has a uniform and dense titanium nitride layer having excellent corrosion resistance, the base material of the anode container 1 is not corroded even when used for a long period of time. Battery performance does not easily deteriorate.

【0021】[0021]

【発明の効果】以上説明したように、本発明のナトリウ
ム−硫黄電池の製造方法によると、陽極容器の表面に比
較的短時間で耐食性の高い緻密な窒化チタン層を形成す
ることができるため、耐久性および信頼性の高いナトリ
ウム−硫黄電池を効率よく生産することができるという
効果がある。
As described above, according to the method of manufacturing a sodium-sulfur battery of the present invention, a dense titanium nitride layer having high corrosion resistance can be formed on the surface of the anode container in a relatively short time. There is an effect that a highly durable and highly reliable sodium-sulfur battery can be efficiently produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】充放電サイクル数とナトリウム−硫黄電池の比
内部抵抗および比電池容量との関係を示す特性図であ
る。
FIG. 1 is a characteristic diagram showing the relationship between the number of charge / discharge cycles and the specific internal resistance and specific battery capacity of a sodium-sulfur battery.

【図2】本発明の実施例によるナトリウム−硫黄電池を
示す模式図である。
FIG. 2 is a schematic diagram showing a sodium-sulfur battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 陽極容器 3 陰極容器 4 固体電解質管 7 窒化チタン層 10 ナトリウム−硫黄電池 1 Anode Container 3 Cathode Container 4 Solid Electrolyte Tube 7 Titanium Nitride Layer 10 Sodium-Sulfur Battery

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルカリイオン伝導性を有する固体電解
質により陽極室と陰極室とを区画形成し、陽極室内には
溶融硫黄化合物を収容し、陰極室内には溶融ナトリウム
を収容したナトリウム−硫黄電池の製造法において、 前記陽極室を形成する金属容器の少なくとも溶融硫黄化
合物と接触する表面にCVD法を用いて窒化チタンを付
着させることにより窒化チタン層を形成することを特徴
とするナトリウム−硫黄電池の製造方法。
1. A sodium-sulfur battery in which an anode chamber and a cathode chamber are partitioned and formed by a solid electrolyte having alkali ion conductivity, a molten sulfur compound is contained in the anode chamber, and molten sodium is contained in the cathode chamber. In the manufacturing method, a titanium nitride layer is formed by depositing titanium nitride using a CVD method on at least a surface of the metal container forming the anode chamber, the surface being in contact with the molten sulfur compound. Production method.
【請求項2】 前記窒化チタン層の層厚を2.5〜15
μmにしたことを特徴とする請求項1記載のナトリウム
−硫黄電池の製造方法。
2. The layer thickness of the titanium nitride layer is 2.5 to 15
The method for producing a sodium-sulfur battery according to claim 1, wherein the sodium-sulfur battery has a thickness of μm.
JP4025320A 1992-02-12 1992-02-12 Manufacture of sodium-sulfur battery Pending JPH05225962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4025320A JPH05225962A (en) 1992-02-12 1992-02-12 Manufacture of sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4025320A JPH05225962A (en) 1992-02-12 1992-02-12 Manufacture of sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JPH05225962A true JPH05225962A (en) 1993-09-03

Family

ID=12162692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4025320A Pending JPH05225962A (en) 1992-02-12 1992-02-12 Manufacture of sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH05225962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100294467B1 (en) * 1994-06-07 2001-10-24 남창우 Process for producing solid electrolyte for sodium-sulfur battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100294467B1 (en) * 1994-06-07 2001-10-24 남창우 Process for producing solid electrolyte for sodium-sulfur battery

Similar Documents

Publication Publication Date Title
US9419299B2 (en) Battery cells with lithium ion conducting tape-cast ceramic, glass and glass-ceramic membranes
US4117209A (en) Electrochemical cells
US4803134A (en) High energy density lithium-oxygen secondary battery
EP0607806B1 (en) Alkaline storage battery and method for producing the same
JPH05225962A (en) Manufacture of sodium-sulfur battery
US4076903A (en) Alkali metal-sulphur cells
CN100573985C (en) Alkaline battery and production method thereof
JP2000156328A (en) Manufacture of collector used in capacitor or battery
EP0567506B1 (en) Improvements to high temperature secondary batteries
EP0125626B1 (en) Improvement in molybdenum-coated aluminium cathodes for alkali metal/sulfur battery cells
US2534638A (en) Electrolytic production of fluorine
JPS62290067A (en) Manufacture of battery
JPH05258769A (en) Manufacture of sodium-sulphur battery
JPH0389469A (en) Sodium-sulfur battery
JPH05242909A (en) Anode vessel for sodium-sulfur battery and manufacture thereof
JP3340273B2 (en) Composite electrode and method for producing nitrogen trifluoride gas using the same
JPS5978457A (en) Manufacture of sintered substrate for alkaline battery
JP2574516B2 (en) Method for manufacturing sodium-sulfur battery
JP3617628B2 (en) Anode container for sodium-sulfur battery
JP4357133B2 (en) Hydrogen storage alloy for electrode, hydrogen storage alloy electrode and alkaline storage battery
JPH05190203A (en) Sodium-sulfur battery and manufacture thereof
JPH05190202A (en) Sodium-sulfur battery and manufacture thereof
JPH1131505A (en) Alkaline storage battery electrode and its manufacture, and alkaline storage battery
JPH11323557A (en) Raw material vaporizer for electrochemical vapor-deposition, electrochemical vapor deposition device and solid electrolytic film forming method using the device
JP2938602B2 (en) Sodium-sulfur battery and method of manufacturing the same