JPH0522478Y2 - - Google Patents

Info

Publication number
JPH0522478Y2
JPH0522478Y2 JP1987135235U JP13523587U JPH0522478Y2 JP H0522478 Y2 JPH0522478 Y2 JP H0522478Y2 JP 1987135235 U JP1987135235 U JP 1987135235U JP 13523587 U JP13523587 U JP 13523587U JP H0522478 Y2 JPH0522478 Y2 JP H0522478Y2
Authority
JP
Japan
Prior art keywords
rudder
plate
ship
water flow
edge surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987135235U
Other languages
Japanese (ja)
Other versions
JPS6440798U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987135235U priority Critical patent/JPH0522478Y2/ja
Publication of JPS6440798U publication Critical patent/JPS6440798U/ja
Application granted granted Critical
Publication of JPH0522478Y2 publication Critical patent/JPH0522478Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、船舶の舵装置に関するものである。[Detailed explanation of the idea] Industrial applications The present invention relates to a rudder device for a ship.

従来の技術 従来広く一般に使用されている船舶の舵は、後
甲板からほぼ垂直に下方に延び、船体に対して回
動自在に支持された舵軸の下端で、プロペラのす
ぐ後方に位置するように、矩形の側面をもつ舵板
を舵軸に直角に取付けたものであり、その舵板1
の水平断面の形状は、第8図に示すように全体と
して凸状の流線形をしている。
BACKGROUND TECHNOLOGY The rudder of a ship, which has been widely used in the past, extends downward from the rear deck almost perpendicularly, and is located at the lower end of the rudder shaft, which is rotatably supported relative to the ship's hull, and is positioned immediately behind the propeller. A rudder plate with rectangular sides is attached perpendicularly to the rudder shaft, and the rudder plate 1
The shape of the horizontal cross section is generally convex and streamlined as shown in FIG.

考案が解決しようとする問題点 近年、船舶の出入港、狭水路航行時の安全性向
上および船の離接岸時の作業能率向上などのため
に、船舶の操縦性を高めるような高性能な舵が要
求されるようになつている。
Problems that the invention aims to solve In recent years, high-performance rudders have been developed to improve the maneuverability of ships, in order to improve safety when ships enter and leave ports, navigate in narrow channels, and improve work efficiency when ships leave and berth. is increasingly required.

しかしながら、上記のような従来広く一般に使
用されている舵は、船舶の操縦性を高めるという
要求を十分に満足する性能を有していない。すな
わち、 (a) 操縦時の船体を旋回させるモーメントの発生
は、水流により舵板1の表面に垂直に働く水圧
力Hsと、舵により偏流する水流F1またはF2
反力とに依存するが、上記従来の舵は、舵板1
の表面が全体として凸状の流線形になつている
ため、水流の反力による回転モーメントの発生
がない。このため舵の性能が鈍感であり、した
がつて船の旋回操縦のとき、旋回時間が長く、
旋回直径が大きくなり、船の直進中の保針性、
針路安定性が劣り、また後進中に転舵しても、
舵板1に当る水流の弱さから、船を旋回させる
力が極めて弱い。
However, the rudder as described above, which has been widely used in the past, does not have the performance that fully satisfies the demand for improving the maneuverability of ships. That is, (a) The generation of the moment that turns the ship during maneuvering depends on the water pressure Hs acting perpendicularly to the surface of the rudder plate 1 due to the water flow and the reaction force of the water flow F 1 or F 2 deflected by the rudder. However, in the above conventional rudder, the rudder plate 1
Because the entire surface of the tube has a convex streamlined shape, no rotational moment is generated due to the reaction force of the water flow. For this reason, the performance of the rudder is insensitive, and therefore the turning time is long when turning the ship.
The turning diameter becomes larger, which improves the ability of the ship to maintain course while traveling straight,
Course stability is poor, and even if you turn the wheel while going astern,
Due to the weakness of the water flow hitting the rudder plate 1, the force for turning the ship is extremely weak.

(b) 舵板1の頂面および底面付近において、一旦
舵板1に当つた強いプロペラ後流が舵板1の表
面に沿つて流れず、舵板1の上方外および下方
外に逸流することにより、舵効率が低下する。
(b) Near the top and bottom surfaces of the rudder plate 1, the strong propeller wake that once hits the rudder plate 1 does not flow along the surface of the rudder plate 1, but deviates upward and outward from the rudder plate 1. This reduces rudder efficiency.

(c) 船体の船尾部分の形状により程度の差はある
が、船尾部における水流のベクトルは、船の前
進中は後方に向つて水平より上向きになり、ま
た船の後進中は前方に向つて水平より下向きに
なり、かつ水面に近いほど流速は大きいのが普
通であるが、船尾部におけるこのような水流の
特性を効果的に利用して舵効率を上げるような
舵の形状、構造になつていない。
(c) Although there are differences in degree depending on the shape of the stern part of the ship, the water flow vector at the stern is upward from the horizontal when the ship is moving forward, and forward when the ship is moving backward. Normally, the flow velocity is higher as it points downward from the horizontal and closer to the water surface, but the shape and structure of the rudder should effectively utilize these characteristics of water flow at the stern to increase rudder efficiency. Not yet.

一方上記のような従来の一般的な舵に対し、操
縦性を改善する手段の一つとして、舵面を前後に
2分割してヒンジで連結し、後部分(フラツプ)
をヒンジを中心として機械的に回動できるように
した、いわゆるフラツプ舵がある。しかしこの舵
は、機構が複雑で製作コストが高く、また水中に
可動部分であることで、保守点検に難があり、か
つそのための費用も高いという問題がある。
On the other hand, as a means of improving the maneuverability of the conventional general rudder as described above, the control surface is divided into two parts, front and rear, connected by a hinge, and the rear part (flap)
There is a so-called flap rudder that can be mechanically rotated around a hinge. However, this rudder has a complicated mechanism and is expensive to manufacture, and since the rudder is a moving part underwater, it is difficult to maintain and inspect, and the cost thereof is also high.

本考案は、上記のような問題点を解決して従来
広く一般に用いられているものと同程度の製作コ
ストで、保守点検の問題もなく、高い操縦性を有
するという要望を満足する船舶の舵装置を提供す
ることを目的とするものである。
The present invention solves the above-mentioned problems and creates a ship rudder that satisfies the requirements of having a manufacturing cost comparable to that of conventionally widely used rudders, no maintenance and inspection problems, and high maneuverability. The purpose is to provide a device.

問題点を解決するための手段 上記の問題点を解決するために本考案の船舶の
舵装置は、舵板とその頂辺部に取付けた頂端板と
底辺部に取付けた底端板とからなり、前記舵板
は、その側面が後方に向かつて上向きの船尾部の
水流の方向に平行な頂辺と底辺とを有する四辺形
状で、水流の方向に沿つた断面が、長手方向の中
心線に対して対称的で、かつ凸半円形状の前縁面
と、前記前縁面より幅の小さい後縁面と、前記前
縁面に連続して長手方向に延び、幅を次第に減少
して最小断面幅を形成する中間部側面と、この中
間部側面に連続して長手方向に延び、前記後縁面
までの比較的短い長さにわたつて断面幅が増加す
る後部側面との組合わせからなり、前記頂端板お
よび底端板は、前記水流の方向に平行でその長さ
が前記舵板の長手方向とほぼ等しく、かつ幅方向
に張出し部を有することを特徴とするものであ
る。
Means for Solving the Problems In order to solve the above problems, the ship's rudder device of the present invention consists of a rudder plate, a top end plate attached to the top part of the rudder plate, and a bottom end plate attached to the bottom part of the rudder plate. , the rudder plate has a quadrilateral shape with a top side and a bottom side facing rearward and parallel to the direction of the water flow in the stern section, and the cross section along the direction of the water flow is parallel to the center line in the longitudinal direction. a leading edge surface having a convex semicircular shape and symmetrical to the front edge surface; a trailing edge surface having a width smaller than the leading edge surface; It consists of a combination of an intermediate side surface that forms a cross-sectional width and a rear side surface that extends in the longitudinal direction continuously from the intermediate side surface and whose cross-sectional width increases over a relatively short length up to the rear edge surface. , the top end plate and the bottom end plate are parallel to the direction of the water flow, have substantially the same length as the longitudinal direction of the rudder plate, and have an overhang in the width direction.

作 用 上記の構成において、船の前進中、舵を一方の
舷側に、ある角度転じると、プロペラ後流が舵板
の前記舷側の凹状面を形成する中間部側面と後部
側面に沿つて後方へ偏流し、このとき舵板に対し
面に垂直に作用する水圧力に加えて、偏流による
水流の反力が前記凹状面に作用することになり、
これにより大きな船体回転モーメントが生じて舵
の性能が良く、船体を速やかに、かつ小さい旋回
直径で旋回させることができ、また船の直進前進
中、外力により所定の進路から外れたときはこれ
を復元するために、一方の舷側へ小角度の転舵
(当て舵)を行なえば、舵板面に垂直に作用する
水圧力は比較的小さいにもかかわらず、プロペラ
後流が舵板の凹状面を形成する中間部側面と後部
側面に沿つて後方へ偏流することによつて発生す
る反力の作用が大きく、速に元の針路に戻るため
の比較的大きな船体回転モーメントが生じ、また
船の後進中に転舵すると、プロペラ後流は後方か
ら前方へと流れて舵板面には船の後進速力にほぼ
相当する低い流速の水流が、当ることになるが、
この場合でも舵板面に垂直に作用する水圧は小さ
いにもかかわらず、舵板の凹状の側面に沿う偏流
により生じる反力が比較的大きく作用して後進中
でも船を旋回でき、大きな船体回転モーメントが
生じる。そして舵板の頂部と底部に、船尾部の水
流の方向と平行に、すなわち、後方に向つて水平
より上向きに頂端板と底端板を設けているので、
この頂端板と底端板を舵板の前縁端と後縁端に対
し直角方向に設けた場合より抵抗が少なく、また
転舵したとき一旦舵面に当つた強いプロペラ後流
は舵板の上方外および下方外に逸流することな
く、すべて舵板の側面に沿つて流れるから、水流
の持つエネルギーを最大限に舵に作用させること
ができ、舵効率が高まり、船の旋回性能、保針
性、針路安定性の向上および船首揺れ(ヨーイン
グ)の防止に寄与するとともに、これら両端板が
船尾部の上下方向の動きに対して抵抗となること
により縦揺れ(ピツチング)の防止にも寄与し、
また底端板は座礁などの場合舵板を損傷から守る
機能も発揮する。
Effect In the above configuration, when the rudder is turned to one side at a certain angle while the ship is moving forward, the propeller wake flows rearward along the intermediate side and rear side forming the concave surface on the side of the rudder plate. At this time, in addition to the water pressure that acts perpendicularly to the surface of the rudder plate, the reaction force of the water flow due to the drift acts on the concave surface,
This generates a large hull rotation moment, which improves rudder performance and allows the hull to turn quickly and with a small turning diameter. In order to recover, if the rudder is turned at a small angle to one side (steer rudder), the propeller wake will be pushed to the concave surface of the rudder, even though the water pressure acting perpendicularly to the rudder surface is relatively small. The reaction force generated by the flow drifting backwards along the intermediate side and aft side that forms the ship is large, and a relatively large turning moment is generated to quickly return the ship to its original course. When steering while moving astern, the wake of the propeller flows from the rear to the front, and the rudder surface is hit by a stream of water at a low velocity roughly equivalent to the astern speed of the ship.
Even in this case, although the water pressure that acts perpendicularly to the rudder plate surface is small, the reaction force generated by the drifting flow along the concave side of the rudder plate is relatively large, allowing the ship to turn even when moving astern, and creating a large hull rotation moment. occurs. Since the top and bottom end plates of the rudder plate are provided parallel to the direction of the water flow at the stern, that is, upward from the horizontal toward the rear,
The resistance is lower than when the top plate and bottom plate are installed perpendicular to the leading and trailing edges of the rudder plate, and the strong propeller wake that once hits the rudder surface when steering is Since all water flows along the side of the rudder plate without straying upward or downward, the energy of the water current can be applied to the rudder to the maximum extent, increasing rudder efficiency and improving the ship's turning performance and maintenance. This contributes to improved courseability, course stability, and prevention of bow rocking (yawing), and also helps prevent pitching (pitching) by providing resistance to the vertical movement of the stern section. death,
The bottom end plate also functions to protect the rudder plate from damage in the event of a grounding.

実施例 以下本考案の一実施例を図面に基づいて説明す
る。
Embodiment An embodiment of the present invention will be described below based on the drawings.

第1図は本考案の一実施例の船舶の舵装置を取
付けた船尾部を示す概略側面図、第2図〜第4図
は同船舶の舵装置を示し、第2図は側面図、第3
図は第2図のX−X線矢視方向の後面図、第4図
は第2図のY−Y線切断断面図である。第1図に
おいて、船尾部11に周知のプロペラ12が取付
けられている。前記船尾部11の船殻のライン
は、一般に後方に向かつて上向きの流線型となつ
ているため、船の前進時には船尾部11のプロペ
ラ後流F1は、前記船尾部11の船殻ラインに沿
つて後方に、水平線(プロペラ軸心線L)に対し
て角度αだけ上向きの水流ベクトルを有し、また
船の後進時には船体に対する水流ベクトルは、前
記水流F1と反対方向のベクトル、すなわち前方
に水平線(プロペラ軸心線L)に対して角度αだ
け下向きのベクトルをもつて流れる。前記プロペ
ラ12の後方に、その軸心線にほぼ直交して舵軸
13を船尾部11に取付け、その下端に前記プロ
ペラ12のすぐ後方に位置するように舵部14を
固定して取付けている。舵軸13は船尾部11に
設けた舵取機(図示せず)により回動される。
Fig. 1 is a schematic side view showing the stern section of a ship equipped with a rudder device according to an embodiment of the present invention; Figs. 2 to 4 show the rudder device of the same ship; Fig. 2 is a side view; 3
The figure is a rear view taken along the line X--X in FIG. 2, and FIG. 4 is a sectional view taken along the line Y--Y in FIG. 2. In FIG. 1, a well-known propeller 12 is attached to a stern section 11. The line of the hull of the stern section 11 generally has a streamlined shape that points backward and upward, so when the ship moves forward, the propeller wake F 1 of the stern section 11 flows along the hull line of the stern section 11. Therefore, there is a water flow vector pointing upward at an angle α with respect to the horizontal line (propeller axis L), and when the ship is moving backward, the water flow vector toward the ship body is a vector in the opposite direction to the water flow F1 , that is, forward. It flows with a vector pointing downward by an angle α with respect to the horizontal line (propeller axis L). A rudder shaft 13 is attached to the stern section 11 behind the propeller 12 and substantially perpendicular to its axial center line, and a rudder section 14 is fixedly attached to the lower end thereof so as to be located immediately behind the propeller 12. . The rudder shaft 13 is rotated by a steering gear (not shown) provided in the stern section 11.

前記舵部14は、第2図〜第4図にも示すよう
に、舵板15と、この舵板15の頂辺部に一体的
に形成された頂端板16と、底辺部に一体的に形
成された底端板17とからなつている。前記舵板
15の側面は、前記プロペラ12の軸心線Lとほ
ぼ直交する、すなわち前記舵軸13の軸心線とほ
ぼ平行な前縁端15aと後縁端15bおよび船尾
部11における水流F1の方向と平行な頂辺15
c、底辺15dとでほぼ平行四辺形状に形成され
ている。前記舵板15の水流F1の方向に沿つた
断面、すなわち第2図のY−Y線切断断面は、第
4図に示すように、長手方向中心線lに対して対
称であり、凸半円形状の前縁面15Aと、直線状
(または凸半円形状)で前記前縁面15Aの部分
の直径より幅の小さい後縁面15Bと、前記前縁
面15Aに連続して長手方向に延び、最大断面幅
Tを形成したのち、幅を漸減して最小断面幅tに
至るまで凹状面を形成する中間部側面15Cと、
この中間部側面15Cに連続して長手方向に延
び、前記後縁面15Bまでの比較的短い長さにわ
たつて幅が漸増して凹状面を形成する後部側面1
5Dとの組合せからなつている。前記舵板15の
高さ、水流方向の幅および舵軸13の軸心から前
縁端15aと後縁端15bまでのそれぞれの寸法
比は、舵部14を所定の最大舵角にとつた状態に
おいてプロペラ後流F1がすべて舵板15に当る
に十分なものにし、また最大断面幅T、最小断面
幅tおよび後縁面15Bの幅などは、船の旋回性
能と舵板15の中立位置、すなわち船の直進時に
おける舵部14の抵抗(ドラグ)損失との兼ね合
いで最適の値を選定すればよい。
As shown in FIGS. 2 to 4, the rudder section 14 includes a rudder plate 15, a top end plate 16 integrally formed on the top side of the rudder plate 15, and an integrally formed bottom side. A bottom end plate 17 is formed. The side surface of the rudder plate 15 has a front edge end 15a and a rear edge end 15b that are substantially perpendicular to the axis L of the propeller 12, that is, substantially parallel to the axis L of the rudder shaft 13, and a water flow F in the stern section 11. Vertex 15 parallel to the direction of 1
c and a base 15d, forming a substantially parallelogram shape. As shown in FIG. 4, the cross section of the rudder plate 15 along the direction of the water flow F1 , that is, the cross section cut along the line Y--Y in FIG. A circular front edge surface 15A, a linear (or convex semicircular) rear edge surface 15B having a width smaller than the diameter of the front edge surface 15A, and a rear edge surface 15B that is continuous with the front edge surface 15A in the longitudinal direction. an intermediate side surface 15C that extends to form a maximum cross-sectional width T and then gradually decreases in width to form a concave surface until it reaches the minimum cross-sectional width t;
A rear side surface 1 extends in the longitudinal direction continuously from the intermediate side surface 15C, and gradually increases in width over a relatively short length up to the rear edge surface 15B to form a concave surface.
It consists of a combination with 5D. The height of the rudder plate 15, the width in the water flow direction, and the dimensional ratio from the axis of the rudder shaft 13 to the leading edge end 15a and the trailing edge end 15b are determined when the rudder section 14 is set at a predetermined maximum rudder angle. The maximum cross-sectional width T , the minimum cross-sectional width t, the width of the trailing edge surface 15B, etc. are determined based on the turning performance of the ship and the neutral position of the rudder plate 15. That is, the optimum value may be selected in consideration of the resistance (drag) loss of the rudder section 14 when the ship is moving straight.

前記舵板15の頂辺15cに一体的に形成され
た頂端板16と、底辺15dに一体的に形成され
た底端板17は、それぞれ船尾部11の周辺の水
流F1の方向に平行に、すなわちプロペラ12の
軸心線Lに対して角度αに傾斜して取付けられ、
長さは前記頂辺15c、底辺15dでほぼ等し
く、かつ幅方向にそれぞれ張出し部16a,17
aを有している。この頂端板16の張出し部16
aは長手方向の折り線16bに沿つて上方に折り
曲げられ、また底端板17の張出し部17aは長
手方向の折り線17bに沿つて下方に折り曲げら
れている。なお、前記各張出し部16a,17a
の折り曲げは、個々の船の条件によつて、頂端板
16か底端板17のいずれか一方だけでもよく、
またいずれも折り曲げないようにしてもよい。
A top end plate 16 integrally formed on the top side 15c of the rudder plate 15 and a bottom end plate 17 integrally formed on the bottom side 15d are respectively parallel to the direction of the water flow F 1 around the stern part 11. , that is, it is installed at an angle α with respect to the axis L of the propeller 12,
The lengths are approximately equal at the top side 15c and the bottom side 15d, and the overhanging portions 16a and 17 are provided in the width direction, respectively.
It has a. The overhanging portion 16 of this top end plate 16
a is bent upward along the longitudinal fold line 16b, and the projecting portion 17a of the bottom end plate 17 is bent downward along the longitudinal fold line 17b. In addition, each of the above-mentioned overhang portions 16a, 17a
Depending on the conditions of each ship, only either the top end plate 16 or the bottom end plate 17 may be bent.
Further, neither of them may be bent.

前記舵軸13と舵板15との連結は、前記頂端
板16を利用して行なうことができる。すなわち
頂端板16の舵軸13との結合部を肉厚部16c
とし、これに舵軸13のフランジ13aとを合わ
せてボルト、ナツトで連結する。
The rudder shaft 13 and the rudder plate 15 can be connected using the top end plate 16. In other words, the connection portion of the top end plate 16 with the rudder shaft 13 is the thick portion 16c.
This is then connected to the flange 13a of the rudder shaft 13 using bolts and nuts.

上記の舵装置は、可動部分も無く、構造も簡単
で、従来の一般的な舵装置と同程度のコストで製
作できる。
The above rudder device has no moving parts, has a simple structure, and can be manufactured at a cost comparable to that of conventional general rudder devices.

次に上記の舵装置の作用について説明する。 Next, the operation of the above rudder device will be explained.

船の前進中に、舵部14を一方の舷側にある角
度で転舵すると、第5図イに示すように、プロペ
ラ後流F1は船尾部11の形状によつて、後方に
上向きの水流F1として、この水流の方向に平行
な頂端板16と底端板17とによつて境界を定め
られた舵板15に低抵抗で流入し、その水流は頂
端板16と底端板17とによつて舵板15から上
方外および下方外に逸流することなく、舵板15
の側面に沿つて流れる。この水流F1は、中間部
側面15Cと後部側面15Dとで形成される凹状
面に沿つて偏流する。このとき舵板15には、面
に垂直に作用する水圧力Hsに加えて、偏流によ
る水流F1の反力Hdが凹状面に作用して、これに
よる大きな船体回転モーメントが発生して、舵の
ききが良く、船体を速やかに、かつ小さい旋回直
径で旋回させることができる。一方、従来の舵の
場合、第8図イに示すように、舵板1の側面が全
体として凸状面であるので、偏流による水流F1
の反力などが発生せず、したがつて船体を方向転
換させるモーメントは舵板1の側面へ垂直に作用
する水圧力Hsによるものだけである。
When the rudder section 14 is turned at a certain angle to one side while the ship is moving forward, the propeller wake F 1 becomes a rearward upward water flow due to the shape of the stern section 11, as shown in Fig. 5A. F 1 , the water flows with low resistance into the rudder plate 15 bounded by the top plate 16 and the bottom plate 17 parallel to the direction of the water flow; As a result, the rudder plate 15 is prevented from deviating upwardly and downwardly from the rudder plate 15.
flows along the sides of the This water flow F 1 drifts along the concave surface formed by the intermediate side surface 15C and the rear side surface 15D. At this time, in addition to the water pressure Hs that acts perpendicularly to the surface of the rudder plate 15, the reaction force Hd of the water flow F1 due to the drift acts on the concave surface, which generates a large hull rotation moment, and the rudder It has good maneuverability and allows the hull to turn quickly and with a small turning diameter. On the other hand, in the case of a conventional rudder, as shown in FIG .
Therefore, the moment for turning the hull is only due to the water pressure Hs acting perpendicularly to the side surface of the rudder plate 1.

次に船が直進前進中、外力より所定の針路から
外れると、オートパイロツト装置がこれを検知し
て、針路を復元するために舵部14を当て舵とし
て小角度に転舵するが、第5図ロにも示すよう
に、このとき舵板15へ流入するプロペラ後流
F1の挙動は上記の前進転舵の場合と同様である。
この場合舵板15の側面に垂直に作用する水圧力
Hsは比較的小さいにもかかわらず、水流F1が舵
板15の凹状面に沿つて偏流することにより発生
する反力Hdの作用が比較的大きく、速やかに元
の針路に復帰できる。一方、従来の舵の場合、第
8図ロに示すように、舵板1の側面が全体として
凸状面であるので、偏流による水流F1の反力な
どが発生せず、船体の針路を復元させるモーメン
トは舵板1の側面へ垂直に作用する弱い水圧力
Hsによるものだけである。
Next, when the ship is moving straight ahead and deviates from the predetermined course due to an external force, the autopilot system detects this and uses the rudder section 14 as a counter rudder to steer the ship to a small angle in order to restore the course. As shown in Figure B, the propeller wake flowing into the rudder plate 15 at this time
The behavior of F 1 is similar to the case of forward steering described above.
In this case, water pressure acting perpendicularly to the side surface of the rudder plate 15
Although Hs is relatively small, the action of the reaction force Hd generated by the water flow F 1 drifting along the concave surface of the steering plate 15 is relatively large, and the water can quickly return to its original course. On the other hand, in the case of a conventional rudder, as shown in FIG . The restoring moment is a weak water pressure acting vertically on the side of the rudder plate 1.
Only due to Hs.

次に、船の後進中に舵部14を一方の舷側にあ
る角度で転舵した場合、第5図ハに示すように、
舵板15には後方から水流が流入するが、この水
流は船尾部11の形状によつて前方に下向きの水
流F2で、この水流F2の方向に平行な頂端板16
と底端板17とによつて境界を定められた舵板1
5に流入し、上方外および下方外に逸流すること
なく舵板15の側面の凹状面に沿つて偏流する。
この場合の水流F2の速さは、船の後進速力にほ
ぼ等しく、船が前進中のプロペラ後流F1に比べ
ると相当に低く、したがつて舵板15の側面へ垂
直に作用する水圧力Hsは小さいにもかかわらず、
凹状面に沿う水流F2の偏流による反力Hdが比較
的大きく作用して、大きな船体回転モーメントが
発生して良好な操縦性を発揮する。一方、従来の
舵の場合、第8図ハに示すように、舵板1の側面
が全体として凸状面であるので、水流F2による
反力などが発生せず、船体回転モーメントは舵板
1の側面へ垂直に作用する弱い水圧力Hsだけで
あり、舵の性能が悪い。
Next, when the rudder section 14 is turned to one side at a certain angle while the ship is moving astern, as shown in FIG.
Water flows into the rudder plate 15 from behind, but due to the shape of the stern part 11, this water flow is a forward downward water flow F2 , and the top end plate 16 is parallel to the direction of this water flow F2 .
and a bottom end plate 17.
5 and is deflected along the concave surface of the side surface of the rudder plate 15 without escaping upward or downward.
In this case, the speed of the water flow F 2 is approximately equal to the astern speed of the ship, and is considerably lower than the propeller wake F 1 when the ship is moving forward. Although the pressure Hs is small,
A relatively large reaction force Hd due to the drift of the water flow F 2 along the concave surface acts, generating a large hull rotational moment and exhibiting good maneuverability. On the other hand, in the case of a conventional rudder, as shown in FIG . There is only a weak water pressure Hs acting vertically on the side of 1, and the rudder performance is poor.

上記の舵装置において、舵板15の頂辺部と底
辺部に、頂端板16と底端部17を水流F1の方
向と平行に一体的に配設し、それぞれ幅方向に張
出し部16a,17aを形成しているので、抵抗
損失が少なく、かつ上記のように舵板15の側面
に当つた水流を舵板の上方外および下方外へ逸流
することなく、すべて舵板15の側面に沿つて流
して、水流の持つエネルギーを最大限に舵に作用
させることができるので舵効率を高くできるが、
前記張出し部16a,17aを上方および下方へ
折り曲げているので、舵板15の側面に当つて一
部前方に反射した水流を、前記折曲げ部分から上
方および下方へそれぞれ逃がすことができ、前記
反射流と舵板15への流入水流との衝突に起因す
る流入水流のエネルギーの一部減殺を防ぐことが
できる。また前記頂端板16と底端板17は、船
尾部11の上下方向の動きに対して抵抗として働
くから、船の縦揺れ(ピツチング)を防止し、特
に底端板17は万一船が座礁したとき舵板15を
損傷から守る機能も有している。
In the above rudder device, a top end plate 16 and a bottom end 17 are integrally arranged on the top and bottom sides of the rudder plate 15 in parallel to the direction of the water flow F1 , and the projecting portions 16a and 17 extend in the width direction, respectively. 17a, the resistance loss is small, and the water flow that hits the side surface of the rudder plate 15 does not deviate upward and outward from the rudder plate 15 as described above, and all of the water flow is directed to the side surface of the rudder plate 15. The rudder efficiency can be increased because the energy of the water current can be applied to the rudder to the maximum extent by flowing along the rudder.
Since the projecting portions 16a and 17a are bent upward and downward, the water flow that hits the side surface of the rudder plate 15 and is partially reflected forward can escape from the bent portion upward and downward, respectively. Part of the energy of the inflowing water flow caused by the collision between the water flow and the inflowing water flow to the rudder plate 15 can be prevented from being attenuated. In addition, the top end plate 16 and the bottom end plate 17 act as resistance against the vertical movement of the stern section 11, so they prevent the ship from pitching. It also has the function of protecting the rudder plate 15 from damage when this happens.

第6図は本考案の他の実施例の船舶の舵装置を
示す断面図である。第6図に示す実施例におい
て、舵板25の側面を、上記の第1の実施例が中
間部側面15Cと後部側面15Dとの滑らかな曲
線の凹状面であつたのに代えて、直線の組合わせ
により平面状凹面を形成したもので、同等の効果
を発揮する。すなわち、舵板25の断面は、長手
方向中心線lに対して対称的であり、凸半円形状
の前縁面25Aと、直線状(または凸半円形状)
で前記前縁面25Aの部分の直径より幅の小さい
後縁面25Bと、前記前縁面25Aに連続して長
手方向に最大断面幅Tから幅を減少していくよう
に直線的に延び、最小断面幅tに達すると前記長
手方向中心線lに平行に直線的に延びる中間部側
面25Cと、この最小断面幅の中間部側面25C
に連続して、長手方向に後縁面25Bまで比較的
短い長さにわたつて断面幅が漸増するように直線
的に延びた後部側面25Dとを組合わせて形成し
たものであり、その他の部分は上記の第1の実施
例のものと全く同様に形成されている。このよう
に形成された舵装置において、舵板25の側面に
中間部側面25Cと後部側面25Dとで形成され
た平面状凹面により、上記の第1の実施例の舵装
置における舵板15の側面の凹状面と同様の作用
効果が得られる。
FIG. 6 is a sectional view showing a rudder device for a ship according to another embodiment of the present invention. In the embodiment shown in FIG. 6, the side surface of the steering plate 25 is a straight line instead of the smooth curved concave surface of the intermediate side surface 15C and the rear side surface 15D in the first embodiment. A planar concave surface is formed by combining them, and the same effect is achieved. That is, the cross section of the steering plate 25 is symmetrical with respect to the longitudinal center line l, with a front edge surface 25A having a convex semicircular shape, and a linear (or convex semicircular) front edge surface 25A.
and a rear edge surface 25B whose width is smaller than the diameter of the portion of the front edge surface 25A, and a rear edge surface 25B extending linearly so as to decrease in width from the maximum cross-sectional width T in the longitudinal direction continuously from the front edge surface 25A, An intermediate side surface 25C that extends linearly parallel to the longitudinal center line l when the minimum cross-sectional width t is reached, and an intermediate side surface 25C having the minimum cross-sectional width.
It is formed by combining a rear side surface 25D which extends linearly so that the cross-sectional width gradually increases over a relatively short length in the longitudinal direction up to the rear edge surface 25B, and other parts. is formed exactly the same as that of the first embodiment described above. In the rudder device formed in this way, the planar concave surface formed on the side surface of the rudder plate 25 by the intermediate side surface 25C and the rear side surface 25D makes the side surface of the rudder plate 15 in the rudder device of the first embodiment described above The same effect as the concave surface can be obtained.

第7図は本考案のさらに他の実施例の舵装置を
取付けた船尾部を示す概略側面図である。第7図
に示す実施例は、第1図〜第4図に示す第1の実
施例および第6図に示す第2の実施例の舵板1
5,25の前縁端15a,25aおよび後縁端1
5b,25bとが、プロペラの軸心線にほぼ鉛直
方向に直交する状態に形成されていたのに対し、
舵板35の側面において、その前縁端35aと後
縁端35bとを頂辺35cの長さが底辺35dの
長さより長くなるように傾斜して台形状に形成し
たものであり、その他は上記両実施例と同様の形
状、構造を有している。
FIG. 7 is a schematic side view showing the stern section of a ship equipped with a rudder device according to still another embodiment of the present invention. The embodiment shown in FIG. 7 is the same as the rudder plate 1 of the first embodiment shown in FIGS. 1 to 4 and the second embodiment shown in FIG.
5, 25 front edge ends 15a, 25a and rear edge end 1
5b and 25b were formed to be substantially perpendicular to the axis of the propeller,
On the side surface of the rudder plate 35, the front edge 35a and the rear edge 35b are inclined and formed into a trapezoid shape so that the length of the top side 35c is longer than the length of the bottom side 35d, and the other parts are as described above. It has the same shape and structure as both embodiments.

この第7図に示す実施例の舵装置においては、
流速の大きい水面側の水流部分が舵板35の頂辺
35cの側の広い面積部分に作用し、流速のより
小さい底面側の水流部分が舵板35の底辺35d
の側の狭い面積部分に作用することになり、水流
のエネルギーをより有効に利用しうることになつ
て、舵板35の側面に働く水圧力と水流の偏流の
反力を共により大きく発生させる。すなわち、よ
り大きい船体回転モーメントを発生させることが
できるとともに、その他上記両実施例と同様の作
用効果を発揮する。
In the rudder device of the embodiment shown in FIG.
The water flow part on the water surface side with a higher flow velocity acts on a wide area part on the top side 35c of the rudder plate 35, and the water flow part on the bottom side with a lower flow velocity acts on the bottom side 35d of the rudder plate 35.
The energy of the water flow can be used more effectively, and both the water pressure acting on the side of the rudder plate 35 and the reaction force of the drift of the water flow are generated to a greater extent. . That is, a larger hull rotation moment can be generated, and other effects similar to those of the above-mentioned embodiments can be exhibited.

考案の効果 以上のように、本考案の船舶の舵装置において
は、舵板の頂辺部および底辺部に頂端板および底
端板を、抵抗損失を生じないように後方に上向き
となる船尾部の水流の方向に平行に設けたので、
前進時のプロペラ後流および後進時の後方からの
水流は舵板に効果的に流入し、かつその流入水流
を舵板の上方外および下方外に逸流することなく
舵板の側面に沿つて流れることになり、水流の水
力を舵板に効果的に作用させることができ、また
舵板の側面を左右対称で凹状面としたことによ
り、船の前進転舵時において急速、かつ旋回直径
の小さい旋回が可能になり、船の直進時において
はすぐれた保針性、針路安定性の確保および船首
揺れ(ヨーイング)の防止が可能になり、船の後
進転舵時においてもすぐれた旋回能力を発揮し、
さらに前記頂端板および底端板により船の縦揺れ
(ピツチング)が防止され、座礁時の舵板保護が
可能になる、などの格別の効果を奏し、しかも構
造が簡単で、従来の一般的な舵装置と同程度の製
作コストで、保守点検の問題もない。
Effects of the Invention As described above, in the ship rudder device of the present invention, a top end plate and a bottom end plate are provided at the top and bottom parts of the rudder plate, and the stern part faces upward to avoid resistance loss. Since it was installed parallel to the direction of water flow,
The water flow after the propeller when moving forward and from the rear when moving astern effectively flows into the rudder plate, and the inflow water flow is routed along the sides of the rudder plate without deviating above or below the rudder plate. The hydraulic power of the water flow can be effectively applied to the rudder plate, and by making the sides of the rudder plate symmetrical and concave, the ship can be steered rapidly and with a small turning diameter when the ship is steered forward. This makes it possible to make small turns, and when the ship is proceeding straight, it is possible to maintain excellent course keeping, course stability, and prevent the bow of the ship (yawing).It also provides excellent turning ability when the ship is steering astern. demonstrate,
Furthermore, the top end plate and the bottom end plate prevent the ship from pitching and protect the rudder plate in the event of a grounding. The production cost is about the same as that of the rudder system, and there are no problems with maintenance and inspection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例の船舶の舵装置を取
付けた船尾部を示す概略側面図、第2図〜第4図
は同船舶の舵装置を示し、第2図は側面図、第3
図は第2図のX−X線矢視方向の後面図、第4図
は第2図のY−Y線切断断面図、第5図イ,ロ,
ハは同船舶の舵装置の作用説明図、第6図は本考
案の他の実施例の船舶の舵装置の断面図、第7図
は本考案のさらに他の実施例の船舶の舵装置を取
付けた船尾部を示す概略側面図、第8図イ,ロ,
ハは従来例の作用説明図である。 11……船尾部、12……プロペラ、14……
舵部、15,25,35……舵板、15A,25
A……前縁面、15B,25B……後縁面、15
C,25C……中間部側面、15D,25D……
後部側面、15a,25a,35a……前縁端、
15b,25b,35b……後縁端、15c,3
5c……頂辺、15d,35d……底辺、16…
…頂端板、16a……張出し部、17……底端
板、17a……張出し部。
Fig. 1 is a schematic side view showing the stern section of a ship equipped with a rudder device according to an embodiment of the present invention; Figs. 2 to 4 show the rudder device of the same ship; Fig. 2 is a side view; 3
The figure is a rear view in the X-X arrow direction of Figure 2, Figure 4 is a cross-sectional view taken along the Y-Y line in Figure 2, Figures 5 A, B,
Fig. 6 is a sectional view of a rudder device of a ship according to another embodiment of the present invention, and Fig. 7 is a diagram illustrating the rudder device of a ship according to still another embodiment of the present invention. Schematic side view showing the attached stern section, Figure 8 A, B,
C is an explanatory diagram of the operation of the conventional example. 11...Stern section, 12...Propeller, 14...
Rudder section, 15, 25, 35... Rudder plate, 15A, 25
A... Leading edge surface, 15B, 25B... Trailing edge surface, 15
C, 25C... Middle part side, 15D, 25D...
Rear side surface, 15a, 25a, 35a...front edge end,
15b, 25b, 35b... Trailing edge end, 15c, 3
5c...top side, 15d, 35d...bottom side, 16...
...Top end plate, 16a... Overhanging portion, 17... Bottom end plate, 17a... Overhanging portion.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 舵板とその頂辺部に取付けた頂端板と底辺部に
取付けた底端板とからなり、前記舵板は、その側
面が後方に向かつて上向きの船尾部の水流の方向
に平行な頂辺と底辺とを有する四辺形状で、水流
の方向に沿つた断面が、長手方向の中心線に対し
て対称的で、かつ凸半円形状の前縁面と、前記前
縁面より幅の小さい後縁面と、前記前縁面に連続
して長手方向に延び、幅を次第に減少して最小断
面幅を形成する中間部側面と、この中間部側面に
連続して長手方向に延び、前記後縁面までの比較
的短い長さにわたつて断面幅が増加する後部側面
との組合わせからなり、前記頂端板および底端板
は、前記水流の方向に平行でその長さが前記舵板
の長手方向とほぼ等しく、かつ幅方向に張出し部
を有することを特徴とする船舶の舵装置。
It consists of a rudder plate, a top end plate attached to the top side of the rudder plate, and a bottom end plate attached to the bottom side of the rudder plate. and a base, whose cross section along the water flow direction is symmetrical with respect to the longitudinal center line, and has a convex semicircular front edge surface, and a rear edge surface having a width smaller than the front edge surface. an edge surface, an intermediate side surface that extends longitudinally continuous with the leading edge surface and whose width gradually decreases to form a minimum cross-sectional width; and a trailing edge that extends longitudinally continuously with the intermediate side surface. said top and bottom end plates are parallel to the direction of the water flow and have a length extending along the longitudinal direction of said rudder plate. A rudder device for a ship, characterized in that it has an overhang in the width direction that is substantially equal to the width direction.
JP1987135235U 1987-09-04 1987-09-04 Expired - Lifetime JPH0522478Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987135235U JPH0522478Y2 (en) 1987-09-04 1987-09-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987135235U JPH0522478Y2 (en) 1987-09-04 1987-09-04

Publications (2)

Publication Number Publication Date
JPS6440798U JPS6440798U (en) 1989-03-10
JPH0522478Y2 true JPH0522478Y2 (en) 1993-06-08

Family

ID=31394685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987135235U Expired - Lifetime JPH0522478Y2 (en) 1987-09-04 1987-09-04

Country Status (1)

Country Link
JP (1) JPH0522478Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2507201B2 (en) * 1991-08-02 1996-06-12 日本操舵システム株式会社 Boat rudder
JP5119203B2 (en) * 2009-05-25 2013-01-16 勝 朝良 Compound rudder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1426412A (en) * 1973-01-24 1976-02-25 Werftunion Gmbh Co Ships rudder
JPS5950889A (en) * 1982-09-17 1984-03-24 Sanoyasu:Kk Stern fin to control stern eddy
JPS62100298A (en) * 1985-10-24 1987-05-09 Sanraku Inc Production of protein a

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053438Y2 (en) * 1985-12-17 1993-01-27

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1426412A (en) * 1973-01-24 1976-02-25 Werftunion Gmbh Co Ships rudder
JPS5950889A (en) * 1982-09-17 1984-03-24 Sanoyasu:Kk Stern fin to control stern eddy
JPS62100298A (en) * 1985-10-24 1987-05-09 Sanraku Inc Production of protein a

Also Published As

Publication number Publication date
JPS6440798U (en) 1989-03-10

Similar Documents

Publication Publication Date Title
JP5250550B2 (en) Ship with a control surface at the bow
US6886485B2 (en) Twin-rudder system for large ship
JP2009541138A (en) ship
JP4936798B2 (en) Mariner type high-lift two-wheel rudder device
RU2533955C2 (en) Rudder and vessel with such rudder
JPH0522478Y2 (en)
JP2507201B2 (en) Boat rudder
JPH0513680Y2 (en)
JPH0513679Y2 (en)
JP2888759B2 (en) Marina type shilling rudder
CA3169008A1 (en) Gate rudder provided with port rudder and starboard rudder disposed on either side of propeller of ship
JP2002274490A (en) High lift rudder for ship
JPH05116687A (en) Skeg for ship rudder
US3611973A (en) Rudder assembly
JP2002293294A (en) High-lift twin rudder system for marine vessel
JPH0721440Y2 (en) Dual rudder device for ships
US4100874A (en) Flap rudder
JP3415948B2 (en) Ship maneuvering method
JP7422839B2 (en) rudder
KR0161319B1 (en) Rudder structure of a ship
JPH057237B2 (en)
JPH05338582A (en) Drift prevention device for hull
JPH04128999U (en) ship rudder system
JPH0412396Y2 (en)
JPS61169393A (en) 2-shaft, 2-rudder high-speed cruiser