JPH0522471B2 - - Google Patents

Info

Publication number
JPH0522471B2
JPH0522471B2 JP57069654A JP6965482A JPH0522471B2 JP H0522471 B2 JPH0522471 B2 JP H0522471B2 JP 57069654 A JP57069654 A JP 57069654A JP 6965482 A JP6965482 A JP 6965482A JP H0522471 B2 JPH0522471 B2 JP H0522471B2
Authority
JP
Japan
Prior art keywords
transformer
semiconductor switching
current
signal
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57069654A
Other languages
Japanese (ja)
Other versions
JPS58190282A (en
Inventor
Osamu Udeki
Ryoji Saito
Masachika Hojo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57069654A priority Critical patent/JPS58190282A/en
Publication of JPS58190282A publication Critical patent/JPS58190282A/en
Publication of JPH0522471B2 publication Critical patent/JPH0522471B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】 本発明は電力変換用変圧器の1次巻線の各々の
端子に接続された一対の半導体スイツチング素子
の内の一方をAVR信号によりパルス幅制御を行
い、他方をこれに追従させる様に制御して前記変
圧器の偏励磁を抑止する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention performs pulse width control on one of a pair of semiconductor switching elements connected to each terminal of a primary winding of a power conversion transformer using an AVR signal, and controls the pulse width of the other one by using an AVR signal. The present invention relates to a method for suppressing biased excitation of the transformer by controlling the transformer to follow the above.

例えば第1図に示す様な公知の電源装置は、ス
イツチングトランジスタQ1,Q2を第2図d,e
に示す様なベース駆動信号によつて交互にオン、
オフさせて同図b,cに示す様なコレクタ電流を
夫々通流させ、直流電源Eから電力変換用変圧器
Tの1次巻線N1,N′1に交互に反対方向に電流を
流すことにより、変圧器Tの2次巻線N2,N′2
交流電圧を誘起させ、該電圧を整流器D1,D2
介して整流し、チヨークコイルCHとコンデンサ
Cとで平滑して負荷L0に所望の直流電圧を与え
ている。
For example, a known power supply device as shown in FIG. 1 uses switching transistors Q 1 and Q 2 as shown in FIG.
Turns on alternately by the base drive signal shown in
The collector currents shown in b and c of the same figure are turned off, and the currents are passed from the DC power supply E to the primary windings N 1 and N' 1 of the power conversion transformer T alternately in opposite directions. As a result, an alternating current voltage is induced in the secondary windings N 2 and N' 2 of the transformer T, the voltage is rectified through the rectifiers D 1 and D 2 , smoothed by the choke coil CH and the capacitor C, and then applied to the load. The desired DC voltage is applied to L 0 .

尚、ここでPWは出力電圧に比例する電圧を検
出しパルス幅制御信号を生ずるパルス幅制御回
路、OSは第2図aに示す様な矩形波を発振する
発振器、PRはトランジスタQ1,Q2を過電流から
保護するための過電流保護回路、DVは第2図
d,eに示す様なベース駆動信号を生ずる駆動回
路である。
Here, PW is a pulse width control circuit that detects a voltage proportional to the output voltage and generates a pulse width control signal, OS is an oscillator that oscillates a rectangular wave as shown in Figure 2a, and PR are transistors Q 1 and Q. 2 is an overcurrent protection circuit for protecting 2 from overcurrent, and DV is a drive circuit that generates a base drive signal as shown in FIG. 2d and e.

斯かる構成の電源装置は、トランジスタ及び変
圧器などの利用率が比較的高く、同電力の変換に
適した方式であるが、最近では装置を小型軽量化
すべく変換周波数を高くする傾向があるため、ト
ランジスタなどの蓄積時間が無視できなくなつて
来た。一般にトランジスタQ1,Q2の蓄積時間は
第2図b〜eに示すベース駆動信号とコレクタ電
流との時間差であり、この蓄積時間はトランジス
タ及びその駆動条件により異なる。
A power supply device with such a configuration has a relatively high utilization rate of transistors and transformers, and is a method suitable for converting the same electric power. However, recently there has been a trend to increase the conversion frequency to make the device smaller and lighter. , the accumulation time of transistors, etc. has become impossible to ignore. Generally, the accumulation time of transistors Q 1 and Q 2 is the time difference between the base drive signal and the collector current shown in FIGS. 2b to 2e, and this accumulation time varies depending on the transistor and its driving conditions.

従つてトランジスタQ1,Q2の蓄積時間に差が
あれば、トランジスタQ1,Q2の夫々のオン期間
はその差分だけ異なり、この現象が各サイクルで
生ずれば駆動パルスのパルス幅及びトランジスタ
の飽和電圧が等しい場合、変圧器Tの磁束は一方
向に偏り続け、ついには変圧器Tは飽和に至り、
トランジスタQ1,Q2の蓄積時間の長い方に過大
な電流が流れてしまう。
Therefore, if there is a difference in the storage time of transistors Q 1 and Q 2 , the on-periods of transistors Q 1 and Q 2 will differ by that difference, and if this phenomenon occurs in each cycle, the pulse width of the drive pulse and the transistor When the saturation voltages of are equal, the magnetic flux of transformer T continues to be biased in one direction, and finally transformer T reaches saturation,
An excessive current flows through the transistors Q 1 and Q 2 whose storage time is longer.

斯かる偏励磁による過大電流から各回路部品を
保護する方法として、従来は抵抗R1,R2でトラ
ンジスタQ1,Q2を流れる電流を検出し、この検
出値が設定値を越えると過電流保護回路4を作動
させてトランジスタQ1,Q2を強制的にターンオ
フさせているが、フエライトコアを用いた変圧器
では飽和現象が速いため、トランジスタQ1,Q2
の最大コレクタ電流に十分余裕があり且つ回路の
レギユレーシヨンがある程度大きくなるように設
計しなければ保護できず、また他の方法としては
トランジスタの蓄積時間、飽和電圧などの特性の
等しいものを選定して使用している。しかし上述
において前者の方法はトランジスタの容量に余裕
を持たせねばならないので高価になり且つ変圧器
が大型化する欠点を有し、後者の方法はトランジ
スタの選別にかなりの費用がかかるなどの欠点を
有している。
Conventionally, as a method to protect each circuit component from excessive current caused by such biased excitation, the current flowing through transistors Q 1 and Q 2 is detected using resistors R 1 and R 2 , and when this detected value exceeds a set value, an overcurrent is detected. The protection circuit 4 is activated to forcibly turn off the transistors Q 1 and Q 2 , but since the saturation phenomenon occurs quickly in a transformer using a ferrite core, the transistors Q 1 and Q 2 are turned off quickly.
Protection cannot be achieved unless the circuit is designed to have sufficient margin for the maximum collector current and a certain degree of regulation.Another method is to select transistors with the same characteristics such as storage time and saturation voltage. I am using it. However, as mentioned above, the former method has the disadvantage of being expensive and increasing the size of the transformer because it requires a margin in the capacity of the transistor, while the latter method has the disadvantage of requiring a considerable amount of cost to select the transistor. have.

また他の偏励磁を抑止する方法として、スイツ
チングトランジスタQ1,Q2の両者をAVR信号で
制御しながら、夫々のトランジスタQ1,Q2を流
れる電流を比較して互いに等しくなるように両ト
ランジスタQ1,Q2をパルス幅制御する方法もあ
るが、両トランジスタの夫々が2つの制御フアク
タで制御されるので回路構成が複雑になり、高価
になるという欠点がある。
Another method for suppressing biased excitation is to control both switching transistors Q 1 and Q 2 using the AVR signal, compare the currents flowing through each transistor, and adjust the currents so that they are equal to each other. There is also a method of controlling the pulse width of the transistors Q 1 and Q 2 , but each of the transistors is controlled by two control factors, so the circuit configuration becomes complicated and expensive.

本発明は前記の様な従来の欠点を除去するため
に、マスター側の第1の半導体スイツチング素子
をAVR信号で制御し、スレーブ側の第2の半導
体スイツチング素子を流れる電流の検出値が前記
第1の半導体スイツチング素子を流れる。
In order to eliminate the above-mentioned conventional drawbacks, the present invention controls the first semiconductor switching element on the master side using an AVR signal, and the detected value of the current flowing through the second semiconductor switching element on the slave side is controlled by the first semiconductor switching element on the slave side. The current flows through one semiconductor switching element.

電流のオフ信号発生時点での検出値に等しくな
つた時点で第2の半導体スイツチング素子に対し
てオフ信号を発生することにより、第2の半導体
スイツチング素子を流れる電流を第1の半導体ス
イツチング素子を流れる電流に等しくなる様にし
て偏励磁を抑止することを特徴としており、その
目的は比較的簡単な回路構成で電力変換用変圧器
の偏励磁を確実に抑止することにある。
By generating an OFF signal to the second semiconductor switching element when the current becomes equal to the detected value at the time of generation of the OFF signal, the current flowing through the second semiconductor switching element is switched to the first semiconductor switching element. It is characterized by suppressing biased excitation by making it equal to the flowing current, and its purpose is to reliably suppress biased excitation of the power conversion transformer with a relatively simple circuit configuration.

先ず第3図及び第4図によつて本発明の基本的
な回路構成を説明するが、図中、第1図で示した
記号と同一の記号は第1の部材に相当する部材を
示している。マスター側のスイツチングトランジ
スタQ1はその駆動回路DV1からベース駆動信号
を受け、スレーブ側のスイツチングトランジスタ
Q2はその駆動回路DV2によつて駆動される。こ
こではQ1,Q2をトランジスタとして説明するが、
Q1,Q2は単一の、或いは並列接続若しくは直列
接続した複数のトランジスタ、サイリスタの様な
半導体スイツチング素子を意味するものとする。
First, the basic circuit configuration of the present invention will be explained with reference to FIGS. 3 and 4. In the figures, the same symbols as those shown in FIG. 1 indicate members corresponding to the first member. There is. The switching transistor Q 1 on the master side receives a base drive signal from its drive circuit DV 1 , and the switching transistor Q 1 on the slave side receives a base drive signal from its drive circuit DV 1.
Q 2 is driven by its drive circuit DV 2 . Here, we will explain Q 1 and Q 2 as transistors, but
Q 1 and Q 2 refer to a single semiconductor switching element, or a plurality of transistors connected in parallel or series, or semiconductor switching elements such as a thyristor.

駆動回路DV1は発振回路OSからの発振信号S1
により動作してトランジスタQ1をオンさせ、パ
ルス幅制御回路PWからの第1のオフ信号θ1を受
けてトランジスタQ1をターンオフさせる。この
パルス幅制御回路は一般的なものであつて、出力
端子T0とT′0間の直流電圧が基準値を越えるとオ
フ信号θ1を発生する。一方、スレーブ側の駆動回
路DV2は発振回路OSからの信号S1とは180゜位相
が異なる発振信号S2により動作してトランジスタ
Q2をオンさせ、比較回路CMからの第2のオフ信
号θ2によりトランジスタQ2をターンオフさせる
ものである。比較回路CMは、検出用抵抗R1を介
して検出されたトランジスタQ2のコレクタ電流
IC2に比例する検出信号のトランジスタQ1のベー
ス駆動信号が除去される。即ちオフ信号θ1が発生
する時点t1での値を第4図gの様に保持するピー
ク値検出ホールド回路DHからのホールド信号
Hmと同図eに示す様なトランジスタQ2のコレク
タ電流を検出する検出抵抗R2からの検出信号と
を比較し、該検出信号が前記ホールド信号Hmを
越えた時点t4でオフ信号θ2を出力する様になつて
いる。トランジスタQ1,Q2の交互のオン、オフ
に伴い第4図d、eに示す様なコレクタ電流IC1
IC2が変圧器Tの1巻線N1,N′1に流れることによ
り2次巻線N2,N′2には同図aに示すような電圧
が誘起され、このときに変圧器Tに流れる励磁電
流Ihは同図bの様になり、チヨークコイルCHを
流れる電流ILは同図cの様になる。ここで同図
d,eにおける時間τ1、τ2は夫々トランジスタ
Q1,Q2の蓄積時間を示している。偏励磁につい
て第5図をも用いて更に詳しく説明する。
The drive circuit DV 1 is the oscillation signal S 1 from the oscillation circuit OS.
It operates to turn on the transistor Q1 , and turns off the transistor Q1 upon receiving the first off signal θ1 from the pulse width control circuit PW. This pulse width control circuit is a general type, and generates an off signal θ 1 when the DC voltage between the output terminals T 0 and T′ 0 exceeds a reference value. On the other hand, the drive circuit DV 2 on the slave side is operated by the oscillation signal S 2 which has a phase difference of 180° from the signal S 1 from the oscillation circuit OS, and the transistor
The transistor Q 2 is turned on, and the second off signal θ 2 from the comparator circuit CM turns off the transistor Q 2 . The comparator circuit CM is the collector current of the transistor Q2 detected through the detection resistor R1 .
The base drive signal of transistor Q 1 of the detection signal proportional to I C2 is removed. In other words, the hold signal from the peak value detection hold circuit DH holds the value at time t1 when the off signal θ1 is generated as shown in Figure 4g.
Hm is compared with a detection signal from a detection resistor R 2 that detects the collector current of a transistor Q 2 as shown in the figure e, and at a time t 4 when the detection signal exceeds the hold signal Hm, an off signal θ 2 is generated. It is designed to output . As the transistors Q 1 and Q 2 are alternately turned on and off, the collector current I C1 as shown in Fig. 4 d and e is generated.
When I C2 flows through the first windings N 1 and N' 1 of the transformer T, a voltage as shown in the figure a is induced in the secondary windings N 2 and N' 2 , and at this time, the voltage of the transformer T The exciting current Ih flowing through the coil CH becomes as shown in the figure b, and the current I L flowing through the choke coil CH becomes as shown in the figure c. Here, the times τ 1 and τ 2 in d and e of the same figure are respectively transistors.
It shows the accumulation time of Q 1 and Q 2 . Biased excitation will be explained in more detail with reference to FIG.

第5図A,Bは夫々、トランジスタQ1,Q2
蓄積時間が等しい場合と異なる場合とを示し、そ
のaはトランジスタQ1,Q2のコレクタ電流IC1
IC2を同一図面上に示したものであり、bは変圧
器Tの励磁電流Ihを示し、ここでは変圧器Tの各
巻線の巻数比をすべて1として、チヨークコイル
CHの脈動電流は説明を簡単にするため零(CH
の値を無限大と仮定)としている。従つて図面で
は出力電流I0は直線で表わされる。
FIGS. 5A and 5B show the case where the storage times of the transistors Q 1 and Q 2 are equal and different, respectively, where a is the collector current I C1 of the transistors Q 1 and Q 2 ,
I C2 is shown on the same drawing, and b shows the exciting current Ih of the transformer T. Here, the turns ratio of each winding of the transformer T is all 1, and the
The pulsating current of CH is zero (CH
(assuming the value of is infinite). Therefore, the output current I 0 is represented by a straight line in the drawing.

斯かる仮定のもとで先ずトランジスタQ1,Q2
の蓄積時間τ1、τ2が等しい場合には、トランジス
タQ1,Q2のコレクタ電流IC1、IC2は、IC1=IC2=I0
+Ihになる。ここで変圧器Tの自己インダクタン
スをLtとすると、IhはIh=E・t/Ltで表わされ
るものであり(但しEは直流電源ESの電圧)、電
圧Eを一定とすれば時間の経過と共に直線的に増
加する。従つて同図Aから明らかな様にトランジ
スタQ1のオフ信号θ1が発生する時刻t1のときのコ
レクタ電流IC1=ImとトランジスタQ2の第2のオ
フ信号が発生せられる時刻t4のときのコレクタ電
流IC2=ISとを等しくするように制御すれば、コレ
クタ電流IC1、IC2の夫々のピーク電流Ip1とIp2及び
その立上り電流I1,I2(t=0のIC1、t=t3のIC2
は等しくなり、夫々の励磁電流は、Ih=Ih1=Ih2
になる。従つてこの場合は偏励磁が生じない。
Under this assumption, first the transistors Q 1 and Q 2
When the accumulation times τ 1 and τ 2 are equal, the collector currents I C1 and I C2 of the transistors Q 1 and Q 2 are I C1 = I C2 = I 0
It becomes +Ih. Here, if the self-inductance of the transformer T is Lt, then Ih is expressed as Ih = E・t/Lt (where E is the voltage of the DC power supply E S ), and if the voltage E is constant, the time elapses. increases linearly with Therefore, as is clear from Figure A, the collector current I C1 = Im at time t 1 when the off signal θ 1 of transistor Q 1 is generated and the time t 4 when the second off signal θ 1 of transistor Q 2 is generated. If the collector currents I C2 = I S are controlled to be equal when I C1 of , I C2 of t=t 3 )
are equal, and the respective excitation currents are Ih = Ih 1 = Ih 2
become. Therefore, no biased excitation occurs in this case.

次にトランジスタQ1,Q2の蓄積時間τ1、τ2
異なる同図Bの場合には、τ2>τ1と仮定したとす
ると、夫々のトランジスタQ1,Q2のベース駆動
信号が除去される。即ちオフ信号が発生せられる
時刻t1、t4におけるコレクタ電流の値ImとISとを
等しくするように前記トランジスタを制御すれ
ば、同図から明らかな様にコレクタ電流IC1、IC2
のピーク電流Ip1,Ip2は異なる。ここで出力電流
I0が一定と仮定しているので励磁電流Ihは同図
B,bで示すように偏つた状態で流れていること
になる。つまりコレクタ電流のピーク値Ip2がIp1
に較べて大きくなると、励磁電流Ih3が増加する
から次サイクルのコレクタ電流IC1の立上り電流
を減少させ、従つて電流値Imが減少する。この
結果、当然にトランジスタQ2のコレクタ電流の
時刻t4の値IS及びピーク値Ip2を減少させる方向に
働く。ここで正常な動作状態では(Tm+τ1)=
(TS+τ2)(但しTm、TSは夫々トランジスタQ1
Q2の駆動信号送出期間)であり、従つて励磁電
流Ih3=Ih1とおくことが出来るので以下にこの条
件で解析を進めると、トランジスタQ1,Q2のベ
ース信号除去時刻t1、t4のコレクタ電流値Im、IS
は、 Im=E/Lt・Tm+(I0−Ih1)=IS =E/LtTS+(I0−Ih2) ……(1) (但しLtは変圧器Tの自己インダクタンスであ
る。)と表わされ、またコレクタ電流のピーク値
Ip1、Ip2は、 Ip1=(I0−Ih1) +E/Lt(Tm+τ1)=I0+Ih2 ……(2) Ip2=(I0−Ih2) +E/Lt(TS+τ2)=I0+Ih1 ……(3) となり以上の(1)〜(3)式より Ih1=E/2Lt(2Tm−TS+τ1) =E/2Lt{(Tm+τ1)+(Tm+τ1)−(TS+τ2
+ (τ2−τ1)} ……(4) Ih2=E/Lt(TS+τ1) =E/2Lt{(TS+τ2)−(τ2−τ1)} ……(5) になる。
Next, in the case of B in the same figure where the accumulation times τ 1 and τ 2 of the transistors Q 1 and Q 2 are different, assuming that τ 2 > τ 1 , the base drive signals of the respective transistors Q 1 and Q 2 are removed. In other words, if the transistor is controlled so that the collector current values Im and I S at times t 1 and t 4 when the off signal is generated are equal, the collector currents I C1 and I C2 will become equal, as is clear from the figure.
The peak currents Ip 1 and Ip 2 are different. Here the output current
Since it is assumed that I 0 is constant, the excitation current Ih flows in a biased state as shown in B and b in the figure. In other words, the peak value of collector current Ip 2 is Ip 1
When it becomes larger than , the excitation current Ih 3 increases, which reduces the rising current of the collector current I C1 in the next cycle, and therefore the current value Im decreases. As a result, it naturally works in the direction of decreasing the value I S and the peak value Ip 2 of the collector current of the transistor Q 2 at time t 4 . Here, under normal operating conditions (Tm + τ 1 ) =
( TS + τ 2 ) (Tm and T S are transistors Q 1 and TS, respectively)
Therefore, the excitation current Ih 3 can be set as Ih 1 , so if we proceed with the analysis below under this condition, the base signal removal time t 1 of the transistors Q 1 and Q 2 , Collector current value Im, I S at t 4
Im=E/Lt・Tm+( I0Ih1 )= IS =E/ LtTS +( I0Ih2 )...(1) (However, Lt is the self-inductance of the transformer T. ), and the peak value of the collector current is
Ip 1 and Ip 2 are as follows: Ip 1 = (I 0 - Ih 1 ) + E/Lt (Tm + τ 1 ) = I 0 + Ih 2 ... (2) Ip 2 = (I 0 - Ih 2 ) + E/Lt ( TS2 )=I 0 +Ih 1 ...(3) Then, from equations (1) to (3) above, Ih 1 = E/2Lt (2Tm−T S1 ) = E/2Lt {(Tm+τ 1 )+( Tm + τ 1 ) − (T S + τ 2 )
+ (τ 2 − τ 1 )} …(4) Ih 2 = E/Lt (T S + τ 1 ) = E/2Lt {(T S + τ 2 ) − (τ 2 − τ 1 )} ……(5 ) become.

ここで前述より(Tm+τ1)=(TS+τ2)であ
り、そして偏励磁の程度を表わす励磁電流の直流
分TDCをIDC=(Ih1−Ih2)/2で表わすと、 IDC=E/Lt(τ2−τ1) ……(6) となる。
Here, from the above, (Tm + τ 1 ) = ( TS + τ 2 ), and if the DC component of the excitation current T DC representing the degree of biased excitation is expressed as I DC = (Ih 1 − Ih 2 )/2, then I DC = E/Lt(τ 2 −τ 1 ) ...(6).

ここで変圧器の直流偏磁量は磁束密度BDCで表
わすと、 BDC=Lt・IDC/N・S =1/N・S・E(τ2−τ1)/2 ……(7) (但しNは変圧器Tの1次巻線の巻数、Sは変圧
器Tのコア断面積である)になる。従つて電力変
換用変圧器Tを含む電力変換部は前記(7)式で示し
た磁束密度BDCが偏つた状態で動作するが、通常
の設計においては変圧器の磁束密度は電力変換部
の半サイクルで最大磁束密度Bmax=1/N・
S・E/2・(Tm+τ1)が最低限必要であり、
このBmaxに対する偏励磁分の比率は前記BDC
Bmaxから(τ2−τ1)/2(Tm+τ1)になる。
Here, the amount of DC bias in the transformer is expressed by magnetic flux density B DC : B DC = Lt・I DC /N・S = 1/N・S・E(τ 2 −τ 1 )/2 …(7 ) (where N is the number of turns of the primary winding of transformer T, and S is the core cross-sectional area of transformer T). Therefore, the power conversion section including the power conversion transformer T operates with the magnetic flux density B DC shown in equation (7) above biased, but in a normal design, the magnetic flux density of the transformer is equal to that of the power conversion section. Maximum magnetic flux density Bmax = 1/N in half cycle
S・E/2・(Tm+τ 1 ) is the minimum required,
The ratio of the biased excitation to Bmax is the above B DC ,
From Bmax, it becomes (τ 2 −τ 1 )/2(Tm+τ 1 ).

具体的な例を考えると、20KHzの変換周波数で
動作する電力変換部は、(Tm+τ1)が約25μSで
あり、(τ1−τ2)は通常の動作状態では大きく見
積つても3μS以下であるので(τ2−τ1)=3μSとす
ると、(τ2−τ1)/2(Tm+τ1)=0.06となり、6
%程度の余裕を変圧器Tの磁束密度に与えれば十
分である。以上の説明は出力側のチヨークコイル
CHの値を無限大とし、脈動電流を零として考え
たが、チヨークコイルCHの値を有限の値として
考えても同様な結果が導出される。即ちチヨーク
コイルCHを流れる電流は、変圧器Tの1次、2
次の巻数比をnとして1次側換算すると、その換
算した電流iLは、 iL=n.{n・E−V0/LC(t−Tm+τ1/2)+I0} ……(8) になる。
Considering a specific example, in a power converter that operates at a conversion frequency of 20 KHz, (Tm + τ 1 ) is approximately 25 μS, and (τ 1 − τ 2 ) is approximately 3 μS or less under normal operating conditions. Therefore, if (τ 2 - τ 1 ) = 3 μS, then (τ 2 - τ 1 )/2 (Tm + τ 1 ) = 0.06, and 6
It is sufficient to give a margin of about 1.9% to the magnetic flux density of the transformer T. The above explanation is for the output side chiyoke coil.
Although we considered the value of CH to be infinite and the pulsating current to be zero, similar results can be derived even if we consider the value of the chiyoke coil CH to be a finite value. In other words, the current flowing through the chiyoke coil CH is the primary and secondary current of the transformer T.
When converting to the primary side with the following turns ratio as n, the converted current i L is: i L = n . 8) Become.

ここでLCはチヨークコイルCHのインダクタン
スであり、V0は出力電圧である。
Here, L C is the inductance of the choke coil CH, and V 0 is the output voltage.

(8)式においてインダクタンスLCを無限大とし
た場合I0をiLに置き代えれば変圧器Tの偏磁量は
全く同様に算出され、同様な結果が得られる。
When the inductance L C is assumed to be infinite in equation (8), if I 0 is replaced by i L , the amount of biased magnetism of the transformer T is calculated in exactly the same way, and the same result is obtained.

以上述べた様に、スレーブ側のトランジスタ
Q2のコレクタ電流がマスター側のトランジスタ
Q1のベース駆動信号を除去、即ち第1のオフ信
号が発生した時点t1のコレクタ電流の値Imと等
しくなる時点t4でトランジスタQ2のベース駆動信
号を除去する。即ち第2のオフ信号を生ずるよう
に毎サイクル制御すれば、変圧器に僅かな磁束密
度の余裕を持たせるだけで偏励磁を抑止して安定
に動作させることが出来る。
As mentioned above, the transistor on the slave side
The collector current of Q 2 is the master side transistor.
The base drive signal of Q 1 is removed, that is, the base drive signal of transistor Q 2 is removed at time t 4 when the collector current becomes equal to the value Im of the collector current at time t 1 when the first off signal is generated. That is, by controlling the transformer so as to generate the second off signal every cycle, it is possible to suppress biased excitation and operate stably by providing the transformer with a slight margin of magnetic flux density.

次に第6図に示すブリツジ型インバータにより
本発明の一実施例を説明するが、この図において
第3図に示した記号と同一の記号は第3図の部材
に相当する部材を示す。第1の駆動回路DV1は、
第1図aに示す様な発振回路OSからの信号を受
けてマスター側のスイツチングトランジスタQ1
及びQ′1に同図dに示す様なベース駆動信号を与
えてこれらを同時にターンオンさせる。この結
果、第4図dに示す様な電流が、電源ESの正側→
変流器CT→トランジスタQ1→変圧器Tの1次巻
線N1→トランジスタQ′1→電源ESの負側に至る閉
回路で流れ、この電流は変流器CT1で検出され、
ピーク値検出ホールド回路DHに印加される。こ
のビーク値検出ホールド回路DHは逆流阻止用ダ
イオードd1〜d3、変流器CT1のリセツト用抵抗器
r1、トランジスタQ1のコレクタ電流に比例する電
流を検出する抵抗器r2、ノイズ吸収用コンデンサ
C1、トランジスタQ1のベース駆動信号が除去さ
れる時点(第4図ではt=t1)におけるコレクタ
電流IC1の値Imに比例する電圧(以下ホールド値
Hmと言う)をピークホールドするコンデンサ
C2、前記ホールド値Hmをクリヤするためのトラ
ンジスタTr1、及びトランジスタQ1のベース駆動
信号が除去される時点でオンしその蓄積時間τ1
期間のみオンしてトランジスタQ1の蓄積時間に
よる検出電流をバイパスするトランジスタTr2
ら構成されている。従つて変流器CT1からの検出
信号は抵抗r1、ダイオード13を介してコンデン
サC2に充電され、この充電は、出力端子T0,T′0
間の出力電圧が設定値に達したときにパルス幅制
御回路PWが生ずるオフ信号θ1によりトランジス
タTr2がオン(第4図で時刻t1)するまで行われ
る。この結果、マスター側のトランジスタQ1
Q′1のベース駆動信号が除去される時点t1におけ
る第4図gに示す様なコレクタ電流Imに比例す
る電圧、つまりホールド値Hmが比較回路CMの
一方の端子に或る期間中印加され続ける。次に発
振器OSからの発振信号によりベース駆動回路
DV2が動作してスレーブ側のトランジスタQ2
Q′2をターンオンさせる。変流器CT2はそのコレ
クタ電流IC2を検出し、その検出信号はダイオー
ドd4及びコンデンサC3などを介して比較回路CM
の他方の端子に印加される。比較回路CMは変流
器CT2からの検出電圧がホールド値Hmを越える
時点t4(第4図g)で第2の駆動回路DV2にオフ
信号θ2を与える。この結果、トランジスタQ2
Q′2のベースからはベース駆動信号が除去され、
つまりマスター側のトランジスタQ1,Q′1のベー
ス駆動信号の除去時点t1におけるコレクタ電流値
Imとコレクタ電流値ISが等しくなつた時点t4でそ
のベース駆動信号が除去される。斯かる制御を行
うことによつて偏励磁を抑止できることは前記説
明から理解できよう。
Next, an embodiment of the present invention will be described using a bridge type inverter shown in FIG. 6. In this figure, the same symbols as those shown in FIG. 3 indicate members corresponding to those in FIG. 3. The first drive circuit DV 1 is
The switching transistor Q1 on the master side receives a signal from the oscillation circuit OS as shown in Figure 1a.
A base drive signal as shown in d of the same figure is applied to Q'1 and Q'1 to turn them on simultaneously. As a result, a current as shown in Figure 4d flows from the positive side of the power source E S to
Current transformer CT → transistor Q 1 → primary winding N 1 of transformer T → transistor Q′ 1 → flows in a closed circuit to the negative side of power supply E S , and this current is detected by current transformer CT 1 ,
Applied to the peak value detection hold circuit DH. This peak value detection hold circuit DH includes reverse current blocking diodes d 1 to d 3 and a resistor for resetting the current transformer CT 1 .
r 1 , resistor r 2 that detects the current proportional to the collector current of transistor Q 1 , noise absorption capacitor
C 1 , a voltage proportional to the value Im of the collector current I C1 at the time when the base drive signal of the transistor Q 1 is removed (t=t 1 in Fig. 4) (hereinafter referred to as the hold value
A capacitor that holds the peak of Hm
C 2 , the transistor Tr 1 for clearing the hold value Hm, and the transistor Q 1 turn on at the time when the base drive signal is removed, and turn on only for the accumulation time τ 1 according to the accumulation time of the transistor Q 1 It consists of a transistor Tr2 that bypasses the detection current. Therefore, the detection signal from the current transformer CT 1 is charged to the capacitor C 2 via the resistor r 1 and the diode 13, and this charging is applied to the output terminals T 0 and T′ 0
This is continued until the transistor Tr 2 is turned on (time t 1 in FIG. 4) by the off signal θ 1 generated by the pulse width control circuit PW when the output voltage between the two reaches the set value. As a result, the master side transistor Q 1 ,
A voltage proportional to the collector current Im , that is, a hold value Hm, as shown in FIG . continue. Next, the base drive circuit is activated by the oscillation signal from the oscillator OS.
DV 2 works and slave side transistor Q 2 ,
Turn on Q′ 2 . The current transformer CT 2 detects its collector current I C2 , and its detection signal is sent to the comparator circuit CM through the diode d 4 and capacitor C 3 , etc.
is applied to the other terminal of The comparator circuit CM provides an off signal θ 2 to the second drive circuit DV 2 at the time t 4 (FIG. 4g) when the detected voltage from the current transformer CT 2 exceeds the hold value Hm. As a result, transistor Q 2 ,
The base drive signal is removed from the base of Q′ 2 ,
In other words, the collector current value at the time t 1 when the base drive signal of the transistors Q 1 and Q' 1 on the master side is removed is
The base drive signal is removed at time t4 when Im and the collector current value IS become equal. It will be understood from the above description that biased excitation can be suppressed by performing such control.

以上述べた様に本発明は、マスター側の半導体
スイツチング素子のみを出力電圧に応じて直接
AVR動作させ、スレーブ側の半導体スイツチン
グ素子をマスター側の半導体スイツチング素子を
流れる電流に追従させて制御する方法を採つてい
るので、マスター側の半導体スイツチング素子は
スレーブ側の半導体スイツチング素子に拘束され
ず、例えば出力検出がパルス幅増或いは減の信号
を出力すれば直ちに次のサイクルから応答するこ
とができる。従つて、スレーブ側の半導体スイツ
チング素子の制御をマスター側の半導体スイツチ
ング素子の動作に精確に追随するよう制御させる
ことにより、偏励磁抑止制御の精度を向上させて
も、高速応答のパルス幅制御が可能である。つま
り、この発明では、高速応答のパルス幅制御と高
精度の偏励磁抑止制御の双方が可能である。ま
た、電源装置の制御部の構成を簡単にすることが
出来、励磁電流の偏り分の程度を容易に算出でき
るために回路定数の決定及び調整を簡単にするこ
とが出来、高周波化に十分対応できる実用性の大
きな方法を提供するものである。
As described above, the present invention directly controls only the semiconductor switching element on the master side according to the output voltage.
AVR operation is used to control the semiconductor switching device on the slave side by following the current flowing through the semiconductor switching device on the master side, so the semiconductor switching device on the master side is not restricted by the semiconductor switching device on the slave side. For example, if the output detection outputs a pulse width increase or decrease signal, a response can be immediately started from the next cycle. Therefore, even if the accuracy of bias excitation suppression control is improved by controlling the semiconductor switching device on the slave side to accurately follow the operation of the semiconductor switching device on the master side, high-speed response pulse width control will not be possible. It is possible. That is, according to the present invention, both high-speed response pulse width control and high-precision bias excitation suppression control are possible. In addition, the configuration of the control section of the power supply device can be simplified, and the degree of bias in the excitation current can be easily calculated, making it easy to determine and adjust the circuit constants, and is fully compatible with higher frequencies. This provides a highly practical method that can be used.

尚、第6図においてトランジスタQ′1,Q′2に交
互に180゜の駆動信号を与え、トランジスタQ1
Q2をある位相で交互にオン、オフ制御する場合
にも同様に適用出来る。またトランジスタの代り
にサイリスタを用いた場合には駆動信号除去時
点、即ちオフ信号発生時点は消弧信号発生時点に
なる。
In addition, in FIG. 6, a 180° drive signal is applied alternately to the transistors Q' 1 and Q' 2 , and the transistors Q' 1 and Q' 2 are
The same can be applied to the case where Q 2 is controlled to be turned on and off alternately in a certain phase. Further, when a thyristor is used instead of a transistor, the time point at which the drive signal is removed, that is, the time point at which the OFF signal is generated, becomes the time point at which the extinction signal is generated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電力変換用変圧器を備えた従来の電源
装置を示す図、第2図は従来及び本発明を説明す
るための各部の波形、第3図は本発明の方法を実
施するための基本的な回路構成図、第4図は本発
明を説明するための各部の電流電圧波形を示す
図、第5図は偏励磁を説明するための電流波形を
示す図、第6図は本発明の一実施例を実施するた
めの電源装置の回路構成図である。 Q1,Q′1,Q2,Q′2……半導体スイツチング素
子、DV1,DV2……駆動回路、PW……パルス幅
制御回路、DH……ピーク値検出ホールド回路、
CM……比較回路、OS……発振器、ES……直流
電源。
FIG. 1 is a diagram showing a conventional power supply device equipped with a power conversion transformer, FIG. 2 is a diagram showing waveforms of various parts for explaining the conventional power supply device and the present invention, and FIG. 3 is a diagram showing waveforms of various parts for explaining the conventional method and the present invention. A basic circuit configuration diagram, FIG. 4 is a diagram showing current and voltage waveforms of each part to explain the present invention, FIG. 5 is a diagram showing current waveforms to explain biased excitation, and FIG. 6 is a diagram showing the present invention. FIG. 2 is a circuit configuration diagram of a power supply device for implementing one embodiment of the present invention. Q 1 , Q' 1 , Q 2 , Q' 2 ... Semiconductor switching element, DV 1 , DV 2 ... Drive circuit, PW ... Pulse width control circuit, DH ... Peak value detection hold circuit,
CM...comparison circuit, OS...oscillator, E S ...DC power supply.

Claims (1)

【特許請求の範囲】[Claims] 1 電力変換用変圧器の1次巻線の各々の端子に
直列接続された一対の半導体スイツチング素子を
交互にオン・オフさせることにより上記変圧器の
2次巻線間に所望の交流電圧を得るような電力変
換部を備えた電源装置において、上記半導体スイ
ツチング素子のうちのマスター側の半導体スイツ
チング素子を専ら出力電圧が一定になるようにパ
ルス幅制御すると共に、上記半導体スイツチング
素子のうちのスレーブ側の半導体スイツチング素
子を該スレーブ側の半導体スイツチング素子を通
流する電流が上記マスター側の半導体スイツチン
グ素子に対する第1のオフ信号が発生せられる時
点において該マスター側の半導体スイツチング素
子を通流していた電流の値と略等しくなつた時点
で発生せられる第2のオフ信号によりターンオフ
するように専ら制御することにより上記変圧器の
偏磁を抑止したことを特徴とする電力変換用変圧
器の偏励磁抑止方法。
1. A desired AC voltage is obtained between the secondary winding of the transformer by alternately turning on and off a pair of semiconductor switching elements connected in series to each terminal of the primary winding of the power conversion transformer. In a power supply device equipped with such a power converter, the pulse width of the master-side semiconductor switching element among the semiconductor switching elements is controlled so that the output voltage becomes constant, and the pulse width of the master-side semiconductor switching element among the semiconductor switching elements is controlled so that the output voltage becomes constant. The current flowing through the slave-side semiconductor switching device is equal to the current flowing through the master-side semiconductor switching device at the time when the first off signal for the master-side semiconductor switching device is generated. A power conversion transformer for suppressing biased excitation, characterized in that biased magnetization of the transformer is suppressed by exclusively controlling the transformer to be turned off by a second off signal generated when the value of the transformer becomes approximately equal to the value of Method.
JP57069654A 1982-04-27 1982-04-27 Irregular excitation suppressing method for power converting transformer Granted JPS58190282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57069654A JPS58190282A (en) 1982-04-27 1982-04-27 Irregular excitation suppressing method for power converting transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57069654A JPS58190282A (en) 1982-04-27 1982-04-27 Irregular excitation suppressing method for power converting transformer

Publications (2)

Publication Number Publication Date
JPS58190282A JPS58190282A (en) 1983-11-07
JPH0522471B2 true JPH0522471B2 (en) 1993-03-29

Family

ID=13409036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57069654A Granted JPS58190282A (en) 1982-04-27 1982-04-27 Irregular excitation suppressing method for power converting transformer

Country Status (1)

Country Link
JP (1) JPS58190282A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4613933A (en) * 1985-01-07 1986-09-23 Allied Corporation Digital drive system for pulse width modulated power control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368821A (en) * 1976-11-29 1978-06-19 Philips Nv Currenttbalancing circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368821A (en) * 1976-11-29 1978-06-19 Philips Nv Currenttbalancing circuit

Also Published As

Publication number Publication date
JPS58190282A (en) 1983-11-07

Similar Documents

Publication Publication Date Title
US5315498A (en) Apparatus providing leading leg current sensing for control of full bridge power supply
JPH07177745A (en) Switching regulator
EP0163691A4 (en) Switch current sensing with snubber current suppression in a push-pull converter.
JPH0345984B2 (en)
JPS5849112B2 (en) Commutation circuit
JPH0522471B2 (en)
JP2673328B2 (en) DC-DC converter
WO2010110342A1 (en) Power conversion device
JP2817492B2 (en) Forward converter snubber circuit
JPH01295670A (en) Overcurrent protective circuit
JP3274208B2 (en) Deflection control method
JPH02155470A (en) Switching circuit
JPH0635661Y2 (en) Switching regulator
JPH0564451A (en) Power source apparatus
JP4535853B2 (en) Constant voltage power circuit
JP3401923B2 (en) One-stone current complex resonance type converter circuit
JP2002034258A (en) Converter
JP2500989Y2 (en) Switching power supply
JPH118974A (en) Parallel operation switching power supply
JP2681378B2 (en) DC-DC converter
JPH0246236Y2 (en)
JPH07107742A (en) Series resonance converter
JPH08266046A (en) Variable inductance switching power source
JP2000041378A (en) Positive and negative output power circuit
JPS6253177A (en) Constant-frequency switching power unit