JPH05223613A - Flow sensor - Google Patents

Flow sensor

Info

Publication number
JPH05223613A
JPH05223613A JP4028573A JP2857392A JPH05223613A JP H05223613 A JPH05223613 A JP H05223613A JP 4028573 A JP4028573 A JP 4028573A JP 2857392 A JP2857392 A JP 2857392A JP H05223613 A JPH05223613 A JP H05223613A
Authority
JP
Japan
Prior art keywords
resistor
heating resistor
flow sensor
temperature
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4028573A
Other languages
Japanese (ja)
Inventor
Hidetoshi Umemoto
秀利 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4028573A priority Critical patent/JPH05223613A/en
Publication of JPH05223613A publication Critical patent/JPH05223613A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a reduction in drifting along with a higher stability of power consumption when a drive current of an exothermic resistor by using for the exothermic resistor a material with a resistance temperature coefficient thereof smaller than that of the material of a resistance thermometer bulb. CONSTITUTION:A thermal oxidation film 4 is formed on a silicon substrate 8 to check damage in a plasma etching and a ground dielectric layer 5 thereon. Then, a Pt thin film made by a sputtering method undergoes a patterning to form an exothermic resistor 3 on the dielectric layer 5. An Ni thin film made by a sputtering method undergoes a patterning to form an upstream side resistance thermometer bulb 1 and a downstream side resistance thermometer bulb 2 separately. Thereafter, an embossing is performed by plasma etching from the rear of the substrate 8 to form a hollow part at a specified dimension. Thus, the use of the material with a resistance temperature coefficient smaller than that of the material of the resistance thermometer bulb for the exothermic resistor enables the prevention of a change in the power consumption as caused by a change in the temperature of a fluid without lowering a sensor output with respect to a flow rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発熱抵抗体により加熱
された測温抵抗体の抵抗値が流体の通過によって変化す
ることから流体の流量を測定するフローセンサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow sensor for measuring the flow rate of a fluid because the resistance value of a resistance temperature detector heated by a heating resistor changes as the fluid passes through.

【0002】[0002]

【従来の技術】上記のようなフローセンサとして、流体
をパイプ中に流し、そのパイプの外壁に発熱抵抗体と測
温抵抗体を置くものが知られている。図2はそのような
フローセンサを示し、流体21の流れるるパイプ22の外壁
上に抵抗線を巻いて、上流測温抵抗体23、下流測温抵抗
体24、発熱抵抗体25を形成し、流体の流れることによっ
て生ずる抵抗体23、24の抵抗値の差をブリッジ回路で検
出するものである。しかし、さらに感度を高めるために
熱容量の小さな誘電体層よりなるダイヤフラム上に発熱
抵抗体および測温抵抗体を金属薄膜により形成したフロ
ーセンサが製作されている。いずれの場合も、流体の通
過によって抵抗値の変化する測温抵抗体の材料には、上
流、下流の抵抗体の温度差を大きくするために金属を使
用している。たとえば、特開昭60−142268号公報にみら
れるように、抵抗温度係数4000ppm/℃オーダのパーマ
ロイ薄膜で抵抗体を製作している。
2. Description of the Related Art As a flow sensor as described above, there is known a flow sensor in which a fluid is flown into a pipe and a heating resistor and a temperature measuring resistor are placed on the outer wall of the pipe. FIG. 2 shows such a flow sensor, in which a resistance wire is wound on the outer wall of a pipe 22 in which a fluid 21 flows to form an upstream temperature measuring resistor 23, a downstream temperature measuring resistor 24, and a heat generating resistor 25. The bridge circuit detects a difference in resistance value between the resistors 23 and 24 caused by the flow of fluid. However, in order to further increase the sensitivity, a flow sensor has been manufactured in which a heating resistor and a temperature measuring resistor are formed of a metal thin film on a diaphragm made of a dielectric layer having a small heat capacity. In either case, a metal is used as the material of the resistance temperature detector whose resistance value changes due to passage of a fluid in order to increase the temperature difference between the upstream and downstream resistors. For example, as seen in JP-A-60-142268, a resistor is made of a permalloy thin film having a temperature coefficient of resistance of 4000 ppm / ° C.

【0003】図1(a) 、(b) は薄膜抵抗体を有する従来
のフローセンサの構造を示し、例えば特開平1−195327
号公報に記載されているように上流側の測温抵抗体1、
下流側の測温抵抗体2および発熱抵抗体3は下地誘電体
層4の上に同一平面上に近接して同一材質により形成さ
れている。発熱抵抗体3に電極5を介して定電流が流さ
れると測温抵抗体1、2の温度が上昇する。そして、そ
の温度は測温抵抗体1、2の面上をその長さ方向に直角
に流体が流れると低下し、その温度変化による測温抵抗
体1、2の抵抗値変化を電極6を介して接続されるブリ
ッジ回路で算出する。下地誘電体層5は、発熱抵抗体3
および測温抵抗体1、2の絶縁とそれらからの放熱を抑
えて消費電力の低減を図るためのものである。
FIGS. 1 (a) and 1 (b) show the structure of a conventional flow sensor having a thin film resistor.
As described in Japanese Patent Publication No.
The temperature measuring resistor 2 and the heat generating resistor 3 on the downstream side are formed of the same material on the underlying dielectric layer 4 in close proximity to each other on the same plane. When a constant current is applied to the heating resistor 3 via the electrode 5, the temperature of the temperature measuring resistors 1 and 2 rises. Then, the temperature decreases when the fluid flows on the surfaces of the resistance temperature detectors 1 and 2 at right angles to the length direction, and the resistance value change of the resistance temperature detectors 1 and 2 due to the temperature change is passed through the electrode 6. Calculated using a bridge circuit connected by The underlying dielectric layer 5 is the heating resistor 3
It is also intended to reduce the power consumption by suppressing the insulation of the resistance temperature detectors 1 and 2 and the heat radiation from them.

【0004】このフローセンサは、通常パルス駆動され
る。すなわち、消費電力を少なくするために、発熱抵抗
体3には、例えば一定の間隔をおいてmsオーダの幅のパ
ルス電流を流し、発熱量を少なくして感度を高めるため
に、測温抵抗体1には、例えば一定の幅のパルス状に電
圧を印加して抵抗値を検知する。従って、応答速度を速
くするにはこれらのパルスの立上りを急峻にする必要が
ある。
This flow sensor is usually pulse-driven. That is, in order to reduce the power consumption, for example, a pulse current having a width on the order of ms is applied to the heating resistor 3 at regular intervals to reduce the amount of heat generation and enhance the sensitivity. For example, a voltage is applied to 1 in the form of a pulse having a constant width, and the resistance value is detected. Therefore, in order to increase the response speed, it is necessary to make the rising edges of these pulses steep.

【0005】このようなフローセンサは、熱酸化膜4を
4000Åの厚さに形成したシリコン基体8の表面上にCV
D法によりSiO2 層5を形成し、次にその上に温度係数
の大きいNi膜を成膜してフォトリソグラフィ法により測
温抵抗体1、2および発熱抵抗体3にパターニングし、
同時に電極6、7を形成したのち、基体8の裏面よりプ
ラズマエッチングによって測温抵抗体1、2および発熱
抵抗体3の下方に空洞部9を加工することによって製造
する。空洞部9の加工の際、熱酸化膜4はプラズマによ
り除去されているので、測温抵抗体1、2および発熱抵
抗体3の下側にはCVD法によるSiO2 層5のみ存在
し、熱容量が小さくなるので、測温抵抗体1、2の温度
変化は鋭敏となる。
In such a flow sensor, the thermal oxide film 4 is removed.
CV on the surface of the silicon substrate 8 formed to a thickness of 4000Å
The SiO 2 layer 5 is formed by the D method, then a Ni film having a large temperature coefficient is formed on the SiO 2 layer 5, and the temperature measuring resistors 1 and 2 and the heating resistor 3 are patterned by the photolithography method.
At the same time, the electrodes 6 and 7 are formed, and then the cavity 9 is processed from the back surface of the substrate 8 by plasma etching below the temperature measuring resistors 1 and 2 and the heating resistor 3. When the cavity 9 is processed, the thermal oxide film 4 is removed by plasma, so that only the SiO 2 layer 5 formed by the CVD method exists below the temperature measuring resistors 1 and 2 and the heat generating resistor 3, and the heat capacity is reduced. Becomes smaller, the temperature changes of the resistance temperature detectors 1 and 2 become sensitive.

【0006】[0006]

【発明が解決しようとする課題】上述のように従来のフ
ォトリソグラフィでは、センサ部の発熱抵抗体、測温抵
抗体を温度係数の大きい同一材質で形成しているため、
その形成プロセスは簡便であったが、発熱抵抗の駆動電
流をオンした場合にセンサ部が形成されている熱絶縁部
が熱容量に応じてある定常的な温度分布に達するまで
に、温度係数の大きい発熱抵抗体の抵抗値の増加分が大
きいため消費電力が変動し、立ち上がり時間が長くなっ
てしまう。上記のように流体が通過した際の温度差を測
定する測温抵抗体の信号検出はmsオーダで行うため、定
常的な温度分布に達する時間が長いとそれだけ余分な消
費電力が必要となる。このことは、図2のような抵抗線
を用いたフローセンサについてもあてはまる。
As described above, in the conventional photolithography, since the heating resistor and the temperature measuring resistor of the sensor section are made of the same material having a large temperature coefficient,
The formation process was simple, but when the drive current of the heating resistor was turned on, the temperature coefficient was high until the thermal insulation part where the sensor part was formed reached a certain temperature distribution according to the heat capacity. Since the amount of increase in the resistance value of the heating resistor is large, the power consumption fluctuates and the rise time becomes long. As described above, since the signal detection of the resistance temperature detector which measures the temperature difference when the fluid passes is performed in the ms order, if the time to reach the steady temperature distribution is long, extra power consumption is required. This also applies to the flow sensor using the resistance wire as shown in FIG.

【0007】本発明の目的は、上記の欠点を除去し、発
熱抵抗体の駆動電流をオンした場合の消費電力の安定度
が向上し、msオーダの検出を行った際にドリフトの少な
いフローセンサを提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks, improve the stability of power consumption when the drive current of the heating resistor is turned on, and reduce the drift when detecting the ms order. To provide.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、流体の流れる方向に上流側測温抵抗体、
発熱抵抗体および下流側測温抵抗体が順に配列されたフ
ローセンサにおいて、発熱抵抗体が測温抵抗体の材料よ
り抵抗温度係数の小さい材料からなるものとする。そし
て発熱抵抗体および測温抵抗体は誘電体層よりなるダイ
ヤフラム上に形成された薄膜であっても、あるいは流体
の導管の上に巻かれた線であってもよい。また発熱抵抗
体がNb、Pt、Ir、Taの内の一つあるいはその合金よりな
り、測温抵抗体がNi、Fe、Co、Be、W、Rh、Zr、Cu、M
o、Tiの内の一つあるいはその合金よりなることが有効
である。もしくは、発熱抵抗体がW、Rh、Zr、Cu、Mo、
Tiの内の一つあるいはその合金よりなり、測温抵抗体が
Ni、Fe、Co、Beの内の一つあるいはその合金よりなるこ
とが有効である。特に、発熱抵抗体はPtよりなり、測温
抵抗体がNi、W、Rh、Zr、Mo、TiおよびNi−Fe合金のう
ちの一つよりなること、あるいは発熱抵抗体はWよりな
り、測温抵抗体がNi、Fe、Coのうちの一つよりなること
が有効である。
In order to achieve the above object, the present invention is directed to an upstream temperature measuring resistor in the direction of fluid flow,
In a flow sensor in which a heating resistor and a downstream temperature measuring resistor are arranged in order, the heating resistor is made of a material having a resistance temperature coefficient smaller than that of the material of the temperature measuring resistor. The heating resistor and the temperature measuring resistor may be a thin film formed on a diaphragm made of a dielectric layer, or may be a wire wound on a fluid conduit. The heating resistor is made of one of Nb, Pt, Ir, and Ta or its alloy, and the resistance temperature detector is Ni, Fe, Co, Be, W, Rh, Zr, Cu, M.
It is effective to use one of o and Ti or its alloy. Alternatively, if the heating resistor is W, Rh, Zr, Cu, Mo,
Made of one of Ti or its alloy,
It is effective to consist of one of Ni, Fe, Co and Be or an alloy thereof. In particular, the heating resistor is made of Pt and the resistance temperature detector is made of one of Ni, W, Rh, Zr, Mo, Ti and Ni-Fe alloy, or the heating resistor is made of W and It is effective that the temperature resistor is made of one of Ni, Fe, and Co.

【0009】[0009]

【作用】発熱抵抗体に抵抗温度係数の小さい金属抵抗線
あるいは金属薄膜抵抗体を使用し、測温抵抗体は発熱抵
抗体の材料より抵抗温度係数の大きい金属抵抗線あるい
は金属薄膜抵抗体により形成することにより、流量に対
するセンサ出力を低下させずに、流体の温度の変化から
消費電力が変動することを防止し、また発熱抵抗体に駆
動電流をオン状態にした際の消費電力が定常化する時間
の短縮化ができ、測温抵抗体の検出速度を早くすること
ができる。
[Function] A metal resistance wire or metal thin film resistor having a small temperature coefficient of resistance is used for the heating resistor, and the resistance temperature detector is formed by a metal resistance wire or metal thin film resistor having a resistance temperature coefficient larger than that of the material of the heating resistor. By doing so, it is possible to prevent the power consumption from fluctuating due to changes in the temperature of the fluid without lowering the sensor output with respect to the flow rate, and to stabilize the power consumption when the drive current is turned on to the heating resistor. The time can be shortened, and the detection speed of the resistance temperature detector can be increased.

【0010】[0010]

【実施例】本発明の一実施例のフローセンサの構造は図
1と同じで、次のようにして作製された。すなわち、シ
リコン基体8の上にプラズマエッチングの際の損傷を抑
える熱酸化膜4を形成し、その上に下地誘電体層5を形
成する。次いで下地誘電体層5の上にスパッタ法で成膜
したPt薄膜をパターニングして発熱抵抗体3を形成し、
またスパッタ法で成膜したNi薄膜をパターニングして上
流側測温抵抗体1および下流側測温抵抗体2をそれぞれ
形成する。このあと、基体8の裏面からプラズマエッチ
ングにより凹加工を行い、800 μm角の空洞部9を形成
する。本実施例では発熱抵抗体3を形成したのち、上流
側測温抵抗体1、下流側測温抵抗体2を形成する場合、
パターニングに適当なエッチャントを使用できるが、金
属の組合わせでエッチャントの選定が困難な場合は、発
熱体の形成後にその上を別の誘電体層で被覆しその後に
測温抵抗体を形成することも可能である。
EXAMPLE The structure of the flow sensor of one example of the present invention is the same as that of FIG. 1 and was manufactured as follows. That is, the thermal oxide film 4 that suppresses damage during plasma etching is formed on the silicon substrate 8, and the underlying dielectric layer 5 is formed thereon. Next, the Pt thin film formed by sputtering on the underlying dielectric layer 5 is patterned to form the heating resistor 3.
Further, the Ni thin film formed by the sputtering method is patterned to form the upstream temperature measuring resistor 1 and the downstream temperature measuring resistor 2, respectively. After that, recess processing is performed from the back surface of the base body 8 by plasma etching to form a cavity portion 9 of 800 μm square. In this embodiment, when the upstream resistance temperature detector 1 and the downstream resistance temperature detector 2 are formed after forming the heating resistor 3,
A suitable etchant can be used for patterning, but if it is difficult to select the etchant due to the combination of metals, after forming the heating element, cover it with another dielectric layer and then form the resistance temperature detector. Is also possible.

【0011】図3に発熱抵抗体をオン状態にしたときの
消費電力が一定となる時間を温度係数の大小のもので比
較を行った。これにより抵抗温度係数αの小さいものの
方が短時間で定常状態になることがわかった。図4は、
環境条件として室温と70℃とをt0 =30秒の周期で変化
させた場合の発熱抵抗体の消費電力の変動を示してい
る。これにより、温度係数の小さい発熱抵抗体の方が消
費電力が安定していることがわかった。
FIG. 3 compares the time during which the power consumption is constant when the heating resistor is turned on, with the temperature coefficient being large or small. As a result, it was found that the one having a smaller temperature coefficient of resistance α was in a steady state in a shorter time. Figure 4
The figure shows the fluctuation of the power consumption of the heating resistor when the room temperature and 70 ° C. are changed as the environmental conditions at a cycle of t 0 = 30 seconds. As a result, it was found that the heating resistor having a smaller temperature coefficient has more stable power consumption.

【0012】従って、上記の実施例のように測温抵抗体
1、2を抵抗温度係数6750ppm /℃のNiにより形成し、
発熱抵抗体3を抵抗温度係数3920ppm /℃のPtにより形
成することにより、駆動電流を流したときの発熱抵抗体
3の温度および消費電力の立ち上がり時間が短縮し、セ
ンサ表面温度の均一性が向上した。また流体の温度変化
に対しての消費電力の変動が少なく、感度のばらつきも
小さくなった。
Therefore, as in the above embodiment, the resistance temperature detectors 1 and 2 are made of Ni having a resistance temperature coefficient of 6750 ppm / ° C.,
By forming the heating resistor 3 with Pt having a temperature coefficient of resistance of 3920ppm / ° C, the rise time of the temperature of the heating resistor 3 and the power consumption when driving current is reduced, and the uniformity of the sensor surface temperature is improved. did. Moreover, the fluctuation of the power consumption with respect to the temperature change of the fluid was small, and the fluctuation of the sensitivity was also small.

【0013】発熱抵抗体と測温抵抗体との材料の組み合
わせとして種々の例が考えられる。表1は抵抗体として
用いることのできる融点1000℃以上、0〜20℃の温度範
囲の温度係数3500ppm /℃以上の金属を示す。
Various examples can be considered as a combination of materials of the heating resistor and the temperature measuring resistor. Table 1 shows metals that can be used as resistors and have a melting point of 1000 ° C. or more and a temperature coefficient of 3500 ppm / ° C. or more in the temperature range of 0 to 20 ° C.

【0014】[0014]

【表1】 [Table 1]

【0015】例えば、発熱抵抗体3の材料に群III の金
属あるいはその合金の一つを選び、測温抵抗体1、2の
材料には群Iあるいは群IIの金属あるいはその合金の一
つを選ぶ。発熱抵抗単結晶3がPtよりなるときは、測温
抵抗体1、2をNi、W、Rh、Zr、Mo、TiあるいはNi−Fe
合金 (パーマロイ) により形成する。別の組み合わせと
しては、発熱抵抗体3の材料に群IIの金属あるいはその
合金の一つを選び、測温抵抗体1、2の材料に群Iの金
属あるいはその合金の一つを選ぶ。発熱抵抗体3がWよ
りなるときは、測温抵抗体1、2をNi、FeあるいはCoに
より形成する。しかし、同一の群の中で抵抗温度係数の
小さいものと大きいものを選んで組み合わせてもよい。
For example, as the material of the heating resistor 3, one of the metals of group III or its alloy is selected, and as the material of the resistance temperature detectors 1 and 2, one of the metals of group I or group II or its alloy is selected. Choose. When the heating resistance single crystal 3 is made of Pt, the resistance temperature detectors 1 and 2 are set to Ni, W, Rh, Zr, Mo, Ti or Ni-Fe.
It is made of alloy (Permalloy). As another combination, a metal of group II or one of its alloys is selected as the material of the heating resistor 3, and a metal of group I or one of its alloys is selected as the material of the resistance temperature detectors 1 and 2. When the heating resistor 3 is made of W, the temperature measuring resistors 1 and 2 are made of Ni, Fe or Co. However, you may select and combine a thing with a small resistance temperature coefficient and a thing with a large resistance temperature coefficient in the same group.

【0016】このような材料の組み合わせは抵抗体が薄
膜よりなるときにも線よりなるときにも適用できる。な
お、表1の温度係数はバルクの場合で、薄膜のときには
この値より40%位小さくなる。
Such a combination of materials can be applied when the resistor is a thin film or a wire. The temperature coefficient in Table 1 is for bulk, and for thin films it is about 40% smaller than this value.

【0017】[0017]

【発明の効果】本発明によれば、発熱抵抗体に測温抵抗
体より抵抗温度係数の小さい材料の線あるいは薄膜を用
いることに出力感度を低下させないで、発熱抵抗体の消
費電力の安定化するまでの時間を短縮し、また発熱抵抗
体の消費電力の環境温度に対する安定性を向上させるこ
とができる。これにより出力の検出時間が短く、駆動回
路の消費電力が小さく、また環境温度の変化の出力に対
する影響の少ないフローセンサを得ることができた。
According to the present invention, it is possible to stabilize the power consumption of the heating resistor without lowering the output sensitivity by using a wire or thin film of a material having a resistance temperature coefficient smaller than that of the resistance temperature detector for the heating resistor. It is possible to shorten the time until it is done and to improve the stability of the power consumption of the heating resistor against the ambient temperature. As a result, it was possible to obtain a flow sensor in which the output detection time was short, the power consumption of the drive circuit was small, and the influence of changes in environmental temperature on the output was small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施される薄膜抵抗体式フローセンサ
の一例を示し、(a) が平面図、(b) が(a) のA−A線断
面図
FIG. 1 shows an example of a thin film resistor type flow sensor according to the present invention, in which (a) is a plan view and (b) is a sectional view taken along line AA of (a).

【図2】本発明の実施されるワイヤ抵抗体式フローセン
サの一例を示す側面図
FIG. 2 is a side view showing an example of a wire resistor type flow sensor according to the present invention.

【図3】発熱抵抗体の駆動電流を流し始めた時点からの
消費電力の変化線図
FIG. 3 is a diagram showing a change in power consumption from the time when the drive current of the heating resistor is started to flow.

【図4】環境温度の変化する場合の発熱抵抗体の消費電
力の変化線図
FIG. 4 is a change diagram of the power consumption of the heating resistor when the environmental temperature changes.

【符号の説明】[Explanation of symbols]

1 上流側測温抵抗体 2 下流側測温抵抗体 3 発熱抵抗体 5 下地誘電体層 8 シリコン基体 9 空洞部 23 上流側測温抵抗体 24 下流側測温抵抗体 25 発熱抵抗体 DESCRIPTION OF SYMBOLS 1 Upstream temperature measuring resistor 2 Downstream temperature measuring resistor 3 Heating resistor 5 Underlying dielectric layer 8 Silicon substrate 9 Cavity 23 Upstream temperature measuring resistor 24 Downstream temperature measuring resistor 25 Heat generating resistor

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】流体の流れる方向に上流側測温抵抗体、発
熱抵抗体および下流側測温抵抗体が順に配列されたもの
において、発熱抵抗体が測温抵抗体の材料より抵抗温度
係数の小さい材料からなることを特徴とするフローセン
サ。
1. An upstream temperature measuring resistor, a heat generating resistor, and a downstream temperature measuring resistor are sequentially arranged in a fluid flow direction, wherein the heat generating resistor has a resistance temperature coefficient higher than that of the material of the temperature measuring resistor. A flow sensor characterized by being made of a small material.
【請求項2】発熱抵抗体および測温抵抗体が誘電体層よ
りなるダイヤフラム上に形成された薄膜である請求項1
記載のフローセンサ。
2. The heating resistor and the temperature measuring resistor are thin films formed on a diaphragm made of a dielectric layer.
The described flow sensor.
【請求項3】発熱抵抗体および測温抵抗体が流体の導管
の上に巻かれた線である請求項1記載のフローセンサ。
3. The flow sensor according to claim 1, wherein the heating resistor and the temperature measuring resistor are wires wound on a fluid conduit.
【請求項4】発熱抵抗体がニオブ,白金,イリジウムお
よびタンタルの内の一つあるいはその合金よりなり、測
温抵抗体がニッケル、鉄、コバルト、ベリリウム、タン
グステン、ロジウム、ジルコニウム、銅、モリブデンお
よびチタンの内の一つあるいはその合金よりなる請求項
1、2あるいは3記載のフローセンサ。
4. The heating resistor is made of one of niobium, platinum, iridium and tantalum or an alloy thereof, and the resistance temperature detector is nickel, iron, cobalt, beryllium, tungsten, rhodium, zirconium, copper, molybdenum and The flow sensor according to claim 1, which is made of one of titanium or an alloy thereof.
【請求項5】発熱抵抗体は白金よりなり、測温抵抗体が
ニッケル、タングステン、ロジウム、ジルコニウム、モ
リブデン、チタンおよびニッケル、鉄合金のうちの一つ
よりなる請求項4記載のフローセンサ。
5. The flow sensor according to claim 4, wherein the heating resistor is made of platinum, and the temperature measuring resistor is made of one of nickel, tungsten, rhodium, zirconium, molybdenum, titanium and nickel, and an iron alloy.
【請求項6】発熱抵抗体がタングステン、ロジウム、ジ
ルコニウム、銅、モリブデンおよびチタンの内の一つあ
るいはその合金よりなり、測温抵抗体がニッケル、鉄、
コバルトおよびベリリウムの内の一つあるいはその合金
よりなる請求項1、2あるいは3記載のフローセンサ。
6. The heating resistor is made of one of tungsten, rhodium, zirconium, copper, molybdenum and titanium or an alloy thereof, and the resistance temperature detector is nickel, iron,
The flow sensor according to claim 1, 2 or 3, which is made of one of cobalt and beryllium or an alloy thereof.
【請求項7】発熱抵抗体はタングステンよりなり、測温
抵抗体がニッケル、鉄およびコバルトの内の一つよりな
る請求項6記載のフローセンサ。
7. The flow sensor according to claim 6, wherein the heating resistor is made of tungsten and the temperature measuring resistor is made of one of nickel, iron and cobalt.
JP4028573A 1992-02-15 1992-02-15 Flow sensor Pending JPH05223613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4028573A JPH05223613A (en) 1992-02-15 1992-02-15 Flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4028573A JPH05223613A (en) 1992-02-15 1992-02-15 Flow sensor

Publications (1)

Publication Number Publication Date
JPH05223613A true JPH05223613A (en) 1993-08-31

Family

ID=12252361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4028573A Pending JPH05223613A (en) 1992-02-15 1992-02-15 Flow sensor

Country Status (1)

Country Link
JP (1) JPH05223613A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762851A2 (en) 2005-09-07 2007-03-14 Hitachi, Ltd. Flow sensor with metal film resistor
CN102104158A (en) * 2009-12-16 2011-06-22 中国科学院大连化学物理研究所 Micro-flow valve and direct liquid fuel battery fuel supply system
CN106885610A (en) * 2011-01-13 2017-06-23 霍尼韦尔国际公司 Sensor with improved heat endurance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762851A2 (en) 2005-09-07 2007-03-14 Hitachi, Ltd. Flow sensor with metal film resistor
US7404320B2 (en) 2005-09-07 2008-07-29 Hitachi, Ltd. Flow sensor using a heat element and a resistance temperature detector formed of a metal film
EP2293084A1 (en) 2005-09-07 2011-03-09 Hitachi, Ltd. Flow sensor with metal film resistor
USRE43660E1 (en) 2005-09-07 2012-09-18 Hitachi, Ltd. Flow sensor using a heat element and a resistance temperature detector formed of a metal film
CN102104158A (en) * 2009-12-16 2011-06-22 中国科学院大连化学物理研究所 Micro-flow valve and direct liquid fuel battery fuel supply system
CN106885610A (en) * 2011-01-13 2017-06-23 霍尼韦尔国际公司 Sensor with improved heat endurance

Similar Documents

Publication Publication Date Title
JP4966526B2 (en) Flow sensor
KR960015067B1 (en) Silicon-based mass airflow sensor
US7621180B2 (en) Flow sensor with metal film resistor
JP3175887B2 (en) measuring device
US7886594B2 (en) Thermal type fluid flow sensor with metal film resistor
JP3457826B2 (en) Thin film resistor and method of manufacturing the same, flow sensor, humidity sensor, gas sensor, temperature sensor
US6717403B2 (en) Method and system for improving the efficiency of the set and offset straps on a magnetic sensor
JP3379736B2 (en) Heat propagation time measurement type flow sensor and its manufacturing method
JPH0854269A (en) Thermal type microflow sensor and manufacture thereof
JP2007064865A (en) Gas sensor and method of manufacturing gas sensor
JPH05223613A (en) Flow sensor
Betzner et al. Structural design and characteristics of a thermally isolated, sensitivity-enhanced, bulk-micromachined, silicon flow sensor
JPH07191063A (en) Electric circuit for wheatstone bridge and so on having resistance-value adjusting part
JP5108158B2 (en) Flow sensor
JP2001183202A (en) Flow sensor and its manufacturing method
JP3524707B2 (en) Micro flow sensor element
JPH0222516A (en) Flow sensor
JP4962087B2 (en) Thin film thermistor and thin film thermistor manufacturing method
JP5184592B2 (en) Flow sensor
JPH06317440A (en) Thermosensitive microbridge type flowmeter
JPS61235725A (en) Flow rate sensor
JPH08114474A (en) Flowmeter sensor
JPH109922A (en) Thermosensitive micro bridge sensor
JPH0795076B2 (en) Flow velocity sensor
JPH05273163A (en) Thermal transfer detector