JPH05223391A - Absorption cold/warm water device - Google Patents

Absorption cold/warm water device

Info

Publication number
JPH05223391A
JPH05223391A JP2503892A JP2503892A JPH05223391A JP H05223391 A JPH05223391 A JP H05223391A JP 2503892 A JP2503892 A JP 2503892A JP 2503892 A JP2503892 A JP 2503892A JP H05223391 A JPH05223391 A JP H05223391A
Authority
JP
Japan
Prior art keywords
solution
gas
liquid separator
regenerator
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2503892A
Other languages
Japanese (ja)
Inventor
Hiromitsu Mori
啓充 森
Akio Chikasawa
明夫 近沢
Takeshi Watanabe
剛 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2503892A priority Critical patent/JPH05223391A/en
Publication of JPH05223391A publication Critical patent/JPH05223391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To obtain an absorption cold/warm water device in which an operation can be performance in a high efficiency without decreasing a COP, a load can be controlled with a relatively simple structure and a facility cost is low in the device of the structure having a solution return passage. CONSTITUTION:An absorption cold/warm water device has a high temperature regenerator 2, a low temperature regenerator 3, a condenser 4 and a solution pump 8. The regenerator 2 has a gas/liquid separator 12. The oven also has a solution return passage 13 for returning solution from the separator 12 to the high temperature regenerator. The device comprises first control means 15 for so controlling an operation of the pump 8 that a level position of the solution is held constant in the separator 12. The oven also comprises first valve means 17 for switching the passage in an intermediate concentration solution passage 16 in which solution flows from the separator 12, and second control means 21 for controlling the means 17 to an open side when a solution temperature in the separator 12 becomes a predetermined value or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、再生器に気液分離器を
備え、気液分離器から再生器へ溶液を戻す溶液戻り路を
設けた吸収冷温水機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller-heater equipped with a gas-liquid separator in a regenerator and provided with a solution return path for returning a solution from the gas-liquid separator to the regenerator.

【0002】[0002]

【従来の技術】この様な溶液戻り路を備えた吸収冷温水
機は、例えば二重効用式の吸収冷温水機を例に採って説
明すると、高温再生器として貫流方式のものを採用し、
吸収冷温水機を小型化したいという技術的要求に対し
て、高温再生器に於ける空炊きの発生を防止するために
最近提案されているものである。この溶液戻り路を設け
ておくと、高温溶液熱交換器(気液分離器)以降の溶液
路が閉じられると、高温再生器、気液分離器及び溶液戻
り路に渡る一つの閉溶液回路が形成され、この閉回路内
を溶液は循環することとなる。
2. Description of the Related Art An absorption chiller-heater equipped with such a solution return path will be explained by taking, for example, a double-effect absorption chiller-heater as a high-temperature regenerator.
It has been recently proposed to prevent the occurrence of empty cooking in a high temperature regenerator in response to the technical demand for downsizing the absorption chiller / heater. If this solution return path is provided, when the solution path after the high temperature solution heat exchanger (gas-liquid separator) is closed, one closed solution circuit across the high temperature regenerator, the gas-liquid separator and the solution return path will be created. Once formed, the solution will circulate within this closed circuit.

【0003】さて、従来吸収冷温水機に於ける負荷制御
は、燃焼側制御と溶液循環側制御とを併用しておこなわ
れてきており、これらの制御が吸収冷温水機の起動、定
常運転等の状況に応じて適切に組み合わされて使用され
ていた。燃焼側制御の例としては、制御モータにより燃
焼部のガス弁と空気弁とを比例制御する、もしくはガス
流量調整弁を比例制御し、燃焼ファンをインバータによ
って組合わせて制御する等の方式があり、溶液循環側
(量)制御としては、インバータにより溶液ポンプを比
例制御する等の方式がある。
Conventionally, load control in an absorption chiller-heater has been performed by using combustion side control and solution circulation side control in combination, and these controls are performed such as start-up and steady operation of the absorption chiller-heater. It was used in an appropriate combination depending on the situation. As an example of the combustion side control, there is a method of proportionally controlling the gas valve and the air valve of the combustion section by a control motor, or the gas flow rate adjusting valve by proportional control, and combining and controlling the combustion fan by an inverter. As the solution circulation side (quantity) control, there is a method such as proportional control of a solution pump by an inverter.

【0004】[0004]

【発明が解決しようとする課題】しかしながらこのよう
な負荷制御においては、例えば戻り冷水温度を検知し
て、燃焼ガス流量、燃焼用空気流量、溶液循環流量等を
負荷・発停状況に応じて同時に制御する必要があるた
め、以下のような問題があった。 1.制御系が複雑である。 2.インバータ等の装置を組込む必要があり、コスト高
になる。 3.サイクルの溶液濃度差(濃溶液・希溶液濃度差)を
一定に保つために(濃度幅が不安定になるとCOP低下
の原因となる)、燃焼量に応じて、厳密な溶液循環量制
御が必要である。 従って本発明の目的は、溶液戻り路を備えた構成の吸収
冷温水機において、COPの低下を起こすことなく高効
率の運転が可能であるとともに、比較的簡単な構成で負
荷制御をおこなうことができる、設備コストの低い吸収
冷温水機を得ることである。
However, in such load control, for example, the return cold water temperature is detected and the combustion gas flow rate, the combustion air flow rate, the solution circulation flow rate, etc. are simultaneously determined according to the load / start / stop situation. Since it needs to be controlled, there are the following problems. 1. The control system is complicated. 2. Since it is necessary to incorporate a device such as an inverter, the cost becomes high. 3. In order to maintain a constant solution concentration difference (concentration difference between concentrated solution and diluted solution) in the cycle (which causes COP drop when the concentration range becomes unstable), it is necessary to strictly control the solution circulation amount according to the combustion amount. Is. Therefore, it is an object of the present invention to enable highly efficient operation of an absorption chiller-heater configured to have a solution return path without lowering COP and to perform load control with a relatively simple configuration. It is possible to obtain an absorption chiller-heater with low equipment cost.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
の本発明による吸収冷温水機の特徴構成は、気液分離器
内に於ける溶液面位置を一定に保つように溶液ポンプの
作動を制御する第一制御手段を設けるとともに、気液分
離器から溶液が流れでる中濃度溶液路に、流路の開閉を
おこなう第一弁手段を設け、第一弁手段を気液分離器内
の溶液温度が一定値以上で開側に、一定値未満で閉側に
制御する第二制御手段を設けたことにあり、その作用・
効果は次の通りである。
In order to achieve this object, the feature of the absorption chiller-heater according to the present invention is that the solution pump is operated so that the solution surface position in the gas-liquid separator is kept constant. In addition to providing the first control means for controlling, in the medium-concentration solution passage through which the solution flows from the gas-liquid separator, the first valve means for opening and closing the flow path is provided, and the first valve means is the solution in the gas-liquid separator. There is a second control means for controlling the open side when the temperature is above a certain value and the closed side when the temperature is below a certain value.
The effects are as follows.

【0006】[0006]

【作用】つまり、この吸収冷温水機においては、気液分
離器内の液面レベルは、第一制御手段による溶液ポンプ
制御により一定に保たれるとともに、中濃度溶液路に第
一弁手段が配設され、第二制御手段により気液分離器内
の溶液温度が一定値になると第一弁手段が開方向に制御
される。
That is, in this absorption chiller-heater, the liquid level in the gas-liquid separator is kept constant by the solution pump control by the first control means, and the first valve means is provided in the medium-concentration solution passage. The second valve means controls the first valve means to open when the solution temperature in the gas-liquid separator reaches a constant value.

【0007】以下定常運転状態と立ち上がり状態につい
て別個に説明する。 (1)定常運転状態 この状態において、例えば、気液分離器内の溶液温度が
一定の温度まで上がると第一弁手段が開側に操作され、
中液が流れ出す。中液が流れ出すと気液分離器の液面が
下がって第一制御手段が働き、希溶液が再生器に供給さ
れる。この供給がおこなわれると、気液分離器内の溶液
の温度が下がって中液の流量が減り、第二制御手段の働
きにより希溶液の流量も減って、気液分離器内の溶液温
度はほぼ一定に保たれ、安定した運転が可能となる(こ
の時溶液の濃度もほぼ一定に確保される)。 従って、
この構成では再生器の入熱量が多いと、気液分離器内の
溶液温度が上がりやすいので中液の流量は全体に増加す
るが、冷凍サイクル上の温度、圧力はほぼ一定に保たれ
るので、結果として冷凍能力が良好な状態に維持され
る。一方、逆に再生器の入熱量が少ないと、反対のこと
がおこり冷凍サイクルの温度、圧力は一定のままで(濃
度差を守ったままで)冷凍能力が低下する。こういった
状況においては、いずれの場合においても冷凍サイクル
の温度、圧力がほぼ一定であるので成績係数はあまり変
化しない。従って、再生器の入熱量(燃焼量)のみを負
荷によって比例制御することにより、効率を落とすこと
なく、的確な冷凍能力の比例制御ができる。
The steady operation state and the rising state will be separately described below. (1) Steady operating state In this state, for example, when the solution temperature in the gas-liquid separator rises to a constant temperature, the first valve means is operated to the open side,
Medium liquid flows out. When the middle liquid flows out, the liquid level of the gas-liquid separator lowers, the first control means operates, and the dilute solution is supplied to the regenerator. When this supply is performed, the temperature of the solution in the gas-liquid separator decreases, the flow rate of the medium solution decreases, and the flow rate of the dilute solution also decreases due to the function of the second control means, so that the solution temperature in the gas-liquid separator decreases. It is kept almost constant and stable operation is possible (at this time, the concentration of the solution is also kept almost constant). Therefore,
In this configuration, when the heat input of the regenerator is large, the solution temperature in the gas-liquid separator easily rises, so the flow rate of the middle liquid increases overall, but the temperature and pressure on the refrigeration cycle are kept almost constant. As a result, the refrigerating capacity is maintained in a good state. On the other hand, when the heat input to the regenerator is small, the opposite occurs and the refrigerating capacity decreases while the temperature and pressure of the refrigeration cycle remain constant (while the concentration difference is maintained). In such a situation, the coefficient of performance does not change much in any case because the temperature and pressure of the refrigeration cycle are almost constant. Therefore, by proportionally controlling only the heat input amount (combustion amount) of the regenerator by the load, it is possible to perform accurate proportional control of the refrigerating capacity without lowering the efficiency.

【0008】(2)立ち上がり時の挙動 吸収冷温水機立ち上がりの時のように、溶液の温度が低
い場合は、中濃度溶液路内の中濃度溶液は、第二制御手
段の働きにより気液分離器内の溶液温度が一定の温度に
ならないと流れない。従って溶液は再生器と気液分離器
との間で、溶液循環を繰替えすこととなり、希濃度溶液
も供給されることがないため、気液分離器内の液温度は
早く上昇し、冷凍サイクルの立ち上がりが早くなる。こ
こで、本願の構成においては、燃焼制御は従来通りにお
こなわれる。しかしながら溶液循環側の制御が、上に説
明したようにおこなわれることとなる。従って、この制
御構成を採用する場合は、燃焼側の負荷に応じた制御に
より、自動的に溶液循環側が調整され、動作される。
(2) Behavior at start-up When the temperature of the solution is low as when the absorption chiller-heater starts up, the medium-concentration solution in the medium-concentration solution passage is separated into gas and liquid by the action of the second control means. It does not flow unless the temperature of the solution in the vessel reaches a constant temperature. Therefore, the solution will repeat the solution circulation between the regenerator and the gas-liquid separator, and since the dilute solution will not be supplied, the liquid temperature in the gas-liquid separator will rise quickly and the frozen The cycle starts faster. Here, in the configuration of the present application, the combustion control is performed as usual. However, the control on the solution circulation side will be performed as described above. Therefore, when this control configuration is adopted, the solution circulation side is automatically adjusted and operated by the control according to the load on the combustion side.

【0009】[0009]

【発明の効果】従って、本願の構成を採用することによ
り以下のような利点を得ることができる。 1.非常に単純な制御系で負荷制御ができ、故障も少な
く信頼性も向上する。 2.燃焼量制御と、溶液流量制御は独立しており、しか
も燃焼量に応じて、自動的に溶液流量が決まるため外乱
の影響を受けにくい。 3.2.と関連して、常に濃−希溶液濃度幅が一定とな
りCOPの低下がない。 4.単純で安価なシステムとして構成できる。 5.立上がりが早い。 6.気液分離器内の液面が一定になるように制御するた
め、気液分離が確実に行える。
Therefore, the following advantages can be obtained by adopting the configuration of the present application. 1. The load can be controlled with a very simple control system, and there are few failures and reliability is improved. 2. The combustion amount control and the solution flow rate control are independent, and since the solution flow rate is automatically determined according to the combustion amount, it is less likely to be affected by disturbance. 3.2. In connection with the above, the concentration range of the concentrated-dilute solution is always constant and the COP does not decrease. 4. Can be configured as a simple and inexpensive system. 5. Starts up quickly. 6. Since the liquid level in the gas-liquid separator is controlled to be constant, the gas-liquid separation can be reliably performed.

【0010】[0010]

【実施例】図1には、吸収式冷温水機1のシステム図が
示されている。先ず、図1に基づいて、吸収式冷温水機
1のシステム構成を説明する。この吸収式冷温水機1は
いわゆる二重効用吸収式冷温水機であり、高温再生器2
及び低温再生器3、低温再生器3の蒸気路下流側に設け
られる凝縮器4、室内機5の冷却系との熱交換をおこな
う蒸発器6、蒸発器6からの水蒸気を吸収液に吸収させ
る吸収器7、溶液ポンプ8、低温溶液熱交換器9、高温
溶液熱交換器10等を備えて構成されている。
1 is a system diagram of an absorption chiller-heater 1. First, the system configuration of the absorption chiller-heater 1 will be described with reference to FIG. This absorption chiller-heater 1 is a so-called double-effect absorption chiller-heater, and has a high-temperature regenerator 2
Also, the low temperature regenerator 3, the condenser 4 provided on the downstream side of the vapor path of the low temperature regenerator 3, the evaporator 6 that performs heat exchange with the cooling system of the indoor unit 5, and the absorption liquid absorbs water vapor from the evaporator 6. An absorber 7, a solution pump 8, a low temperature solution heat exchanger 9, a high temperature solution heat exchanger 10 and the like are provided.

【0011】次にさらに詳細に高温再生器2周りの構成
について説明する。この高温再生器2には希溶液導入路
11から希溶液が供給されるとともに、再生器2内にお
いて再生されて、高温再生器2に対して、高い位置に配
設される気液分離器12に、濃溶液及び蒸気が送られ
る。この気液分離器12は、液流入部12aに流入逆止
弁を、内部にレベルスイッチ12bを備えて構成されて
おり、蒸気側が低温再生器3の蒸気路に接続され、溶液
側が高温溶液熱交換器10を介して、低温再生器3の溶
液部に接続されている。さて、前述の気液分離器12と
希溶液導入路11との間には、気液分離器12により分
離された溶液が、希溶液導入路11に導かれる溶液戻り
路13が備えられるとともに、さらに前述の溶液戻り路
13を介して溶液が希溶液導入路11から気液分離器1
2へ流れるのを防止する逆止弁14が備えられている。
このような構成を採用することにより、以下のような動
作状況が生まれる。即ち、再生器2内においては、希溶
液は、再生操作を受けて蒸気及び沸騰液となり、これら
の蒸気と沸騰液が混合状態で気液分離器12に移流され
る。ここで、希溶液が順次溶液ポンプ8により高温再生
器2へ供給される正常な運転状態においては、逆止弁1
4は閉じた状態に維持され、蒸気及び濃溶液が夫々所定
の機器に移流される。一方、何らかの理由により希溶液
の高温再生器2への供給が途切れた場合は、希溶液導入
路11に設けられる逆止弁14が開状態とされ、気液分
離器12から溶液戻り路13を介して希溶液導入路11
への溶液の供給がおこなわれ、高温再生器2の空炊きの
問題が回避される。
Next, the structure around the high temperature regenerator 2 will be described in more detail. The high temperature regenerator 2 is supplied with the dilute solution from the dilute solution introduction path 11 and is regenerated in the regenerator 2 to be disposed at a higher position than the high temperature regenerator 2. To the concentrated solution and steam. The gas-liquid separator 12 is configured to include an inflow check valve in the liquid inflow portion 12a and a level switch 12b inside, and the vapor side is connected to the vapor path of the low temperature regenerator 3 and the solution side is high temperature solution heat. It is connected to the solution section of the low temperature regenerator 3 via the exchanger 10. Now, between the gas-liquid separator 12 and the dilute solution introduction path 11 described above, a solution return path 13 for introducing the solution separated by the gas-liquid separator 12 to the dilute solution introduction path 11 is provided, and Further, the solution is transferred from the dilute solution introduction path 11 to the gas-liquid separator 1 via the solution return path 13 described above.
A check valve 14 is provided to prevent flow to 2.
By adopting such a configuration, the following operating conditions are created. That is, in the regenerator 2, the dilute solution undergoes a regenerating operation to become vapor and boiling liquid, and these vapor and boiling liquid are admixed to the gas-liquid separator 12 in a mixed state. Here, in a normal operating state in which the dilute solution is sequentially supplied to the high temperature regenerator 2 by the solution pump 8, the check valve 1
4 is kept closed and the vapor and concentrated solution are respectively admitted to the designated equipment. On the other hand, if the supply of the dilute solution to the high temperature regenerator 2 is interrupted for some reason, the check valve 14 provided in the dilute solution introduction path 11 is opened, and the gas-liquid separator 12 is passed through the solution return path 13. Through the dilute solution introduction path 11
The solution is supplied to the high temperature regenerator 2 to avoid the problem of empty cooking.

【0012】以下に、本願の吸収式冷温水機1の特徴構
成部について説明する。先ず、溶液ポンプ8に対してこ
れを、気液分離器12内に於ける溶液面位置を一定に保
つように動作・動作停止制御する第一制御手段としての
第一制御装置15が備えられている。さらに、図1に示
すように、高温溶液熱交換器10から低温再生器3に到
る中濃度溶液路16には第一弁手段としての第一電磁開
閉弁17が備えられ、低温再生器3からフラッシュチャ
ンバー18に到る蒸気路19には、第二弁手段としての
第二電磁開閉弁20が備えられている。そして、これら
の第一電磁開閉弁17、第二電磁開閉弁20を開閉制御
する第二制御手段、第三制御手段としての第二制御装置
21及び第三制御装置22が夫々備えられている。ここ
で、第二制御装置21による制御は、前記第一電磁開閉
弁17を気液分離器12内の溶液温度が一定値以上にな
ると開側に、一定値未満になると閉側に制御するもので
あり、第三制御装置22による制御は、第二電磁開閉弁
20を気液分離器12出口の蒸気温度が一定値以上にな
ると開側に、一定値未満になると閉側に制御するという
ものである。
The characteristic components of the absorption chiller-heater 1 of the present invention will be described below. First, the solution pump 8 is provided with a first control device 15 as first control means for controlling the operation / stop of the solution pump 8 so as to keep the solution surface position in the gas-liquid separator 12 constant. There is. Further, as shown in FIG. 1, the medium concentration solution path 16 from the high temperature solution heat exchanger 10 to the low temperature regenerator 3 is provided with a first electromagnetic opening / closing valve 17 as a first valve means, and the low temperature regenerator 3 is provided. A second electromagnetic opening / closing valve 20 as a second valve means is provided in the vapor path 19 extending from the flash chamber 18 to the flash chamber 18. The first electromagnetic on-off valve 17, the second control means for controlling the opening and closing of the second electromagnetic on-off valve 20, the second control device 21 and the third control device 22 as the third control means are respectively provided. Here, the control by the second control device 21 controls the first electromagnetic on-off valve 17 to the open side when the temperature of the solution in the gas-liquid separator 12 becomes a certain value or more, and to the closed side when the solution temperature becomes less than the certain value. The third control device 22 controls the second electromagnetic on-off valve 20 to the open side when the vapor temperature at the outlet of the gas-liquid separator 12 becomes a certain value or more and to the closed side when the vapor temperature becomes less than the certain value. Is.

【0013】さらに具体的に説明すると、気液分離器1
2内のレベルスイッチ12bを設け、これにより溶液ポ
ンプ8の発停がおこなわれ、気液分離器12内液温(例
えば設定温度167℃)により、第一電磁開閉弁17が
開閉されることとなる(高温側で開)。ここで、高温再
生器における燃焼制御は、従来どおりにおこなわれる。
即ち、例えば戻り冷水温度を検知して、燃焼ガス流量、
燃焼用空気流量等が制御される。さらに、高温再生器2
内の圧力変動を極力抑えるために、気液分離器12出口
の蒸気温度の飽和蒸気温度(例えば設定値115℃)に
より、第二電磁開閉弁20が開閉操作される(高温側で
開)。
More specifically, the gas-liquid separator 1
The level switch 12b in 2 is provided to start and stop the solution pump 8, and the first electromagnetic on-off valve 17 is opened and closed by the liquid temperature in the gas-liquid separator 12 (for example, set temperature 167 ° C.). It becomes (open on the high temperature side). Here, the combustion control in the high temperature regenerator is performed as usual.
That is, for example, by detecting the return cold water temperature, the combustion gas flow rate,
The flow rate of combustion air is controlled. Furthermore, high temperature regenerator 2
In order to suppress the internal pressure fluctuation as much as possible, the second electromagnetic opening / closing valve 20 is opened / closed (opened on the high temperature side) by the saturated steam temperature of the steam temperature at the outlet of the gas-liquid separator 12 (for example, the set value 115 ° C.).

【0014】そしてこの構造を採用すると、第一もしく
は第二電磁弁17,20を閉状態に維持した場合は、高
温再生器2と気液分離器12及び溶液戻り路13を介す
る溶液循環路内を溶液が循環することになり、再生器2
に備えられた燃焼装置による加熱により、希溶液の高濃
度化が高効率で行われることとなる。さらに、定常運転
状態においては、第一、第二制御装置15,21もしく
は、第一〜第三制御装置15,21,22が共に働くこ
とにより、気液分離器12から流出する溶液の濃度が、
所定の濃度に効率よく維持され、結果、高いCOPを維
持した高性能の運転が可能となる。
With this structure, when the first or second solenoid valves 17 and 20 are maintained in the closed state, the inside of the solution circulation path through the high temperature regenerator 2, the gas-liquid separator 12 and the solution return path 13 The solution circulates through the regenerator 2
The concentration of the dilute solution can be increased with high efficiency by heating with the combustion device provided in the. Further, in the steady operation state, the concentration of the solution flowing out from the gas-liquid separator 12 is increased by the first and second control devices 15 and 21 or the first to third control devices 15, 21 and 22 working together. ,
It is efficiently maintained at a predetermined concentration, and as a result, high-performance operation while maintaining a high COP is possible.

【0015】〔別実施例〕上記の実施例においては、二
重効用吸収式冷温水機の例を示したが、単効用の吸収式
冷温水機においても、この構造を採用することは可能で
ある。さらに、必ずしも電磁弁を使用する必要はなく、
これは流路を開閉できる構成であればよい。従ってこれ
らの弁を単に弁手段と称するとともに、制御装置につい
ても、任意に構成できる。
[Other Embodiments] In the above embodiments, an example of a double-effect absorption chiller-heater was shown, but this structure can also be adopted in a single-effect absorption chiller-heater. is there. Furthermore, it is not necessary to use a solenoid valve,
This may be any structure that can open and close the flow path. Therefore, these valves are simply referred to as valve means, and the control device can be arbitrarily configured.

【0016】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】吸収式冷温水機のシステム構成を示す図FIG. 1 is a diagram showing a system configuration of an absorption chiller-heater.

【符号の説明】[Explanation of symbols]

2 高温再生器 3 低温再生器 4 凝縮器 8 溶液ポンプ 12 気液分離器 13 溶液戻り路 15 第一制御手段 16 中濃度溶液路 17 第一弁手段 20 第二弁手段 21 第二制御手段 22 第三制御手段 2 high temperature regenerator 3 low temperature regenerator 4 condenser 8 solution pump 12 gas-liquid separator 13 solution return path 15 first control means 16 medium concentration solution path 17 first valve means 20 second valve means 21 second control means 22 second Three control means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高温再生器(2)、低温再生器(3)、
凝縮器(4)及び溶液ポンプ(8)を備えるとともに、
前記高温再生器(2)に気液分離器(12)を備え、前
記気液分離器(12)から前記高温再生器へ溶液を戻す
溶液戻り路(13)を設けた吸収冷温水機において、 前記気液分離器(12)内に於ける溶液面位置を一定に
保つように前記溶液ポンプ(8)の作動を制御する第一
制御手段(15)を設けるとともに、 前記気液分離器(12)から溶液が流れでる中濃度溶液
路(16)に、流路の開閉をおこなう第一弁手段(1
7)を設け、前記第一弁手段(17)を前記気液分離器
(12)内の溶液温度が一定値以上で開側に、一定値未
満で閉側に制御する第二制御手段(21)を設けた吸収
冷温水機。
1. A high temperature regenerator (2), a low temperature regenerator (3),
With a condenser (4) and a solution pump (8),
In an absorption chiller-heater provided with a gas-liquid separator (12) in the high temperature regenerator (2) and provided with a solution return path (13) for returning a solution from the gas-liquid separator (12) to the high temperature regenerator, The gas-liquid separator (12) is provided with first control means (15) for controlling the operation of the solution pump (8) so that the solution surface position in the gas-liquid separator (12) is kept constant. ) To the medium-concentration solution passage (16) through which the solution flows, the first valve means (1) for opening and closing the passage.
7) is provided, and the second control means (21) for controlling the first valve means (17) to the open side when the solution temperature in the gas-liquid separator (12) is a certain value or more and to the closed side when the solution temperature is less than the certain value. ) Provided absorption cold water heater.
【請求項2】 前記気液分離器(12)から前記凝縮器
(4)に到る蒸気路に、流路の開閉をおこなう第二弁手
段(20)を備え、前記第二弁手段(20)を前記気液
分離器(12)出口の蒸気温度が一定値以上で開側に、
一定値未満で閉側に制御する第三制御手段(22)を設
けた請求項1記載の吸収冷温水機。
2. A second valve means (20) for opening and closing a flow path is provided in a vapor path from the gas-liquid separator (12) to the condenser (4), and the second valve means (20). ) To the open side when the vapor temperature at the outlet of the gas-liquid separator (12) is a certain value or higher,
The absorption chiller-heater according to claim 1, further comprising third control means (22) for controlling to a closed side when the value is less than a certain value.
【請求項3】 再生器、凝縮器、溶液ポンプを備えると
ともに、前記再生器に気液分離器を備え、前記気液分離
器から前記再生器へ溶液を戻す溶液戻り路を設けた吸収
冷温水機において、 前記気液分離器内に於ける溶液面位置を一定に保つよう
に前記溶液ポンプの作動を制御する第一制御手段を設け
るとともに、 前記気液分離器から溶液が流れでる中濃度溶液路に、流
路の開閉をおこなう第一弁手段を設け、前記第一弁手段
を前記気液分離器内の溶液温度が一定値以上で開側に、
一定値未満で閉側に制御する第二制御手段を設けた吸収
冷温水機。
3. Absorption cold / hot water provided with a regenerator, a condenser, and a solution pump, the regenerator having a gas-liquid separator, and a solution return path for returning a solution from the gas-liquid separator to the regenerator. In the machine, with the first control means for controlling the operation of the solution pump so as to keep the solution surface position in the gas-liquid separator constant, a medium-concentration solution in which the solution flows out of the gas-liquid separator The passage is provided with a first valve means for opening and closing the flow passage, and the first valve means is opened to the open side when the solution temperature in the gas-liquid separator is a certain value or more.
An absorption chiller-heater equipped with a second control means for controlling to a closed side when the value is less than a certain value.
JP2503892A 1992-02-12 1992-02-12 Absorption cold/warm water device Pending JPH05223391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2503892A JPH05223391A (en) 1992-02-12 1992-02-12 Absorption cold/warm water device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2503892A JPH05223391A (en) 1992-02-12 1992-02-12 Absorption cold/warm water device

Publications (1)

Publication Number Publication Date
JPH05223391A true JPH05223391A (en) 1993-08-31

Family

ID=12154743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2503892A Pending JPH05223391A (en) 1992-02-12 1992-02-12 Absorption cold/warm water device

Country Status (1)

Country Link
JP (1) JPH05223391A (en)

Similar Documents

Publication Publication Date Title
JPH05223391A (en) Absorption cold/warm water device
KR20050101113A (en) Absorption refrigerator
JP3630775B2 (en) Heat input control method of absorption refrigerator
JPH0379630B2 (en)
JP3081472B2 (en) Control method of absorption refrigerator
JP2918648B2 (en) Variable flow control device for cold / hot water / cooling water in absorption chiller / hot / cold water machine
JP2816012B2 (en) Control device for absorption refrigerator
JPS6118366Y2 (en)
JPH0320669B2 (en)
JP3182233B2 (en) Operation control method in absorption refrigerator
JPS6113884Y2 (en)
JPH05223392A (en) Double effect absorption cold/warm water device
JPS5818139Y2 (en) Double effect absorption chiller
JP2780546B2 (en) Heat transfer device
JPH0448454Y2 (en)
JP3594453B2 (en) Operating method of air conditioner
JP3280261B2 (en) Absorption refrigeration equipment
JPS6117319Y2 (en)
KR950008337B1 (en) By-pass line in absorption refregerator
JP2766950B2 (en) Absorption chiller / heater
JPS6142044Y2 (en)
JPH11257787A (en) Absorption cold heat generator
JPH05223390A (en) Controlling method for solution flow rate of absorption cold/warm water device
JPH0868572A (en) Dual-effect absorption refrigerator
JPS6141855A (en) Absorption refrigerator