JPH05223209A - Fluidized layer burning apparatus and burning method therefor - Google Patents

Fluidized layer burning apparatus and burning method therefor

Info

Publication number
JPH05223209A
JPH05223209A JP2976792A JP2976792A JPH05223209A JP H05223209 A JPH05223209 A JP H05223209A JP 2976792 A JP2976792 A JP 2976792A JP 2976792 A JP2976792 A JP 2976792A JP H05223209 A JPH05223209 A JP H05223209A
Authority
JP
Japan
Prior art keywords
combustion
fluidized bed
solid carbon
gas
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2976792A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hokari
信幸 穂刈
Jinichi Tomuro
仁一 戸室
Hiroshi Matsumoto
弘 松本
Masahide Nomura
政英 野村
Atsushi Morihara
森原  淳
Kazunori Ouchi
和紀 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2976792A priority Critical patent/JPH05223209A/en
Publication of JPH05223209A publication Critical patent/JPH05223209A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To reduce NOx to be discharged from a fluidized layer burning apparatus. CONSTITUTION:The air introduced from an air inlet 1 to a window box 2 is diffused into a fluidizing chamber 4 through an air dispersing plate 3 to fluidize particles of fuel coal, limestone, etc., filled in the chamber 4, and a fluidized layer is burned. Generated burned waste gas is raised in a free board 7 and guided from a burned exhaust gas outlet 8 out of a burning furnace through a gas passage 10 formed of flow contracting members 9 mounted in the board. Vortexes of the gas are formed in the passage among the members 9. An area having a high concentration of unburned carbon particles contained in scattered particles in the passage 10 is formed by an effect for collecting the scattered particles by the members 9. An area in which the gas containing the scattered unburned solid carbon particles floated in high concentration is agitated to be mixed is formed in the board, and NOx reducing reaction of the carbon is expedited to reduce NOx concentration in the exhaust gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流動層燃焼装置および
その燃焼方法に関し、特に、石炭等の燃料を燃焼する際
に燃焼排ガス中の窒素酸化物を燃焼炉内で脱硝する低N
Ox燃焼を可能にする流動層燃焼装置およびその燃焼方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized bed combustion apparatus and a combustion method therefor, and more particularly to a low-N method for denitrifying nitrogen oxides in combustion exhaust gas in a combustion furnace when burning fuel such as coal.
TECHNICAL FIELD The present invention relates to a fluidized bed combustion apparatus that enables Ox combustion and a combustion method thereof.

【0002】[0002]

【従来の技術】従来の石炭等を燃料とする流動層燃焼器
において、燃焼に伴って発生するNOxを低減する方法
として、燃焼器後部に別途脱硝施設を設置しそこにおい
て脱硝を行う方法と燃焼炉内において脱硝を行う方法が
ある。燃焼炉内において脱硝を行う方法において、その
脱硝効率をあげるための手法として、従来、(1)多段
流動層、(2)脱硝剤の注入、(3)固体炭素による脱
硝、などの方法が知られている。
2. Description of the Related Art In a conventional fluidized bed combustor using coal or the like as a fuel, as a method for reducing NOx generated by combustion, a method for performing denitration in a separate denitration facility installed at the rear of the combustor and combustion There is a method of denitration in the furnace. In the method of performing denitration in a combustion furnace, conventionally known methods include (1) multi-stage fluidized bed, (2) injection of denitration agent, (3) denitration using solid carbon, etc. Has been.

【0003】(1)の方法としては、炉内に2段の流動
層を設置し、下段分散板下部に1次空気、上段分散板下
部に2次空気、上段流動層上部に3次空気を流入し、下
段を脱硝に適した還元雰囲気、上段を脱硫と燃焼効率向
上に適した酸化雰囲気として燃焼を行う方法が知られて
いる(特開昭58−40411号公報等参照)。 (2)の方法としては、脱硝剤としてアンモニアを用
い、流動層内の高温、酸化雰囲気下でのアンモニアの酸
化によるNOxの発生を避けるために、フリーボード部
内に2次空気とともにアンモニアを噴霧する方法が知ら
れている(特開昭62−169917号公報等参照)。
As the method (1), a two-stage fluidized bed is installed in the furnace, primary air is placed below the lower dispersion plate, secondary air is placed below the upper dispersion plate, and tertiary air is placed above the upper fluidized bed. A method is known in which the gas is introduced and the lower stage is burned in a reducing atmosphere suitable for denitration, and the upper stage is burnt in an oxidizing atmosphere suitable for desulfurization and combustion efficiency improvement (see JP-A-58-40411). As the method (2), ammonia is used as a denitration agent, and in order to avoid the generation of NOx due to the oxidation of ammonia under high temperature and oxidizing atmosphere in the fluidized bed, ammonia is sprayed together with secondary air in the freeboard section. A method is known (see JP-A-62-169917, etc.).

【0004】(3)の方法としては、燃料である石炭か
ら燃焼過程で生じるチャー中の炭素を用いて脱硝を行う
方法が知られている。この方法では、固体炭素自体がN
Oを還元する反応、および、チャーを触媒とするCOに
よるNOの還元反応が利用される。公知の技術として
は、内部循環型の流動層を用いてチャーを活性化し、チ
ャーの層内滞留時間を増加させることにより脱硝反応を
促進する方法が知られている(特開平2−282601
号公報等参照)。
As the method (3), there is known a method of performing denitration by using carbon in char produced in the combustion process from coal as a fuel. In this method, the solid carbon itself is N
A reaction of reducing O and a reduction reaction of NO with CO catalyzed by char are used. As a known technique, there is known a method of activating char using an internal circulation type fluidized bed and increasing the residence time of char in the bed to accelerate the denitration reaction (Japanese Patent Laid-Open No. 2-282601).
No.

【0005】さらに、流動層燃焼装置のフリーボード部
内に複数の粒子分離器を間隔を保って設け、該粒子分離
器を複数の長尺な部材を逆三角形状に並べて形成し、そ
れにより従来未燃焼のまま炉外へ排出されていた細かい
燃料粒子を補足し炉内で完全燃焼させるようにしたもの
も知られている(特開昭62−142906号公報参
照)。
Further, a plurality of particle separators are provided at intervals in a freeboard portion of a fluidized bed combustion apparatus, and the particle separators are formed by arranging a plurality of long members in an inverted triangular shape, which has not been conventionally used. There is also known one in which fine fuel particles discharged outside the furnace as they are burned are supplemented and completely burned in the furnace (see JP-A-62-142906).

【0006】[0006]

【発明が解決しようとする課題】前記した従来の技術に
おいて、技術上の課題として、次の点が上げられる。1
点目として、還元雰囲気での金属材料の腐食進行の問題
が有る。特に、流動層内に還元雰囲気を作った際、熱交
換器等が硫黄による腐食を受ける怖れが大きい。
In the above-mentioned conventional technique, the following points are raised as technical problems. 1
As a point, there is a problem of progress of corrosion of the metal material in the reducing atmosphere. In particular, when a reducing atmosphere is created in the fluidized bed, there is a great fear that the heat exchanger and the like will be corroded by sulfur.

【0007】2点目として、アンモニアのリークの問題
がある。有害物質であるアンモニアを脱硝剤として用い
た場合、脱硝反応に用いられた後、未反応のアンモニア
が燃焼施設外に漏れ出ることを防がねばならず、アンモ
ニアを燃焼により酸化する後燃焼器やアンモニア回収の
ための施設を設けるか、注入アンモニア量を厳密に制御
する必要が有る。
Second, there is a problem of ammonia leakage. When ammonia, which is a harmful substance, is used as a denitration agent, it is necessary to prevent unreacted ammonia from leaking out of the combustion facility after being used in the denitration reaction. It is necessary to install a facility for ammonia recovery or strictly control the amount of injected ammonia.

【0008】3点目として、脱硫剤である石灰石による
脱硝の阻害の問題が有る。石灰石(CaCO3 )は80
0〜900℃の高温の流動層内では脱炭酸反応を起こし
CaOとして存在する。このCaOが触媒となって石炭
から放出された窒素化合物の酸化反応が促進されNOx
の発生量を増やすことが知られている(例えば、G.J.Vo
gel ,Annual Report of ANL/ES-CEN 1007,1974)。その
ため、脱硫剤が多量に存在する流動層内では、脱硝効率
を上げることに限界が有る。
Third, there is a problem of inhibition of denitration by limestone which is a desulfurizing agent. 80 for limestone (CaCO 3 )
In the fluidized bed at a high temperature of 0 to 900 ° C., a decarboxylation reaction occurs and it exists as CaO. This CaO serves as a catalyst to promote the oxidation reaction of the nitrogen compound released from the coal and NOx.
It is known to increase the generation amount of (for example, GJVo
gel, Annual Report of ANL / ES-CEN 1007, 1974). Therefore, there is a limit to increase the denitration efficiency in a fluidized bed in which a large amount of desulfurizing agent is present.

【0009】4点目として、燃焼炉構造、および制御の
複雑化の問題が有る。流動層燃焼器は、燃焼炉構造が単
純であることが大きな特徴であり利点となる。これに対
して、流動層の配置、形状を特殊化する技術には、燃焼
炉構造が複雑化し、メインテナンスの煩雑化、燃焼炉寸
法の大型化などの問題点が有る。また、流動層形状の特
殊化、空気流入場所の複数化は、燃焼装置の運転制御の
複雑化につながる。
Fourth, there is a problem of complication of combustion furnace structure and control. The fluidized bed combustor has an advantage that the structure of the combustion furnace is simple, which is an advantage. On the other hand, the technique of specializing the arrangement and shape of the fluidized bed has problems such as a complicated combustion furnace structure, complicated maintenance, and an increase in size of the combustion furnace. Further, the specialization of the fluidized bed shape and the plurality of air inflow locations lead to the complicated operation control of the combustion device.

【0010】また、流動層燃焼装置のフリーボード部内
に複数の粒子分離器を間隔を保って設け、それにより細
かい燃料粒子を補足し炉内で完全燃焼させるようにした
流動層燃焼装置においては、その構成上、フリーボード
部内に形成される高濃度の固体炭素領域において該固体
炭素成分が排出ガスと積極的に攪拌混合することは生じ
ないために、固体炭素による脱硝反応の促進は期待され
ず、低NOx燃焼の観点からは必ずしも満足なものとは
いえないものである。
Further, in a fluidized bed combustor in which a plurality of particle separators are provided at intervals in a freeboard portion of the fluidized bed combustor so that fine fuel particles are captured and completely combusted in a furnace, Because of its structure, the solid carbon component is not actively stirred and mixed with the exhaust gas in the high-concentration solid carbon region formed in the freeboard portion, and therefore the solid carbon is not expected to accelerate the denitration reaction. However, it is not always satisfactory from the viewpoint of low NOx combustion.

【0011】本発明は、上記の問題点を解決することを
目的としており、より具体的には、流動層燃焼炉内のフ
リーボード部内にNOxの還元反応を行なうに適した脱
硝領域を形成し、それにより、低NOx燃焼が可能とな
った流動層燃焼装置、およびその燃焼法を提供するもの
である。
An object of the present invention is to solve the above-mentioned problems, and more specifically, a denitration region suitable for carrying out a NOx reduction reaction is formed in a freeboard section in a fluidized bed combustion furnace. The present invention provides a fluidized bed combustion apparatus capable of low NOx combustion and a combustion method thereof.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、フリーボード部内に固体炭素が高濃度
となる領域を形成し、その領域において固体炭素による
NOxの還元が促進されるような構成とした。すなわ
ち、本発明は、下方に空気の供給口と上方に燃焼排出ガ
スの排出口を有する燃焼炉と、該燃焼炉内の下部に設け
られた空気分散板と、該空気分散板上に形成された流動
媒体よりなる流動層と、該流動層上部のフリーボード部
を備え、該流動層中で燃焼を行う流動層燃焼装置におい
て、前記フリーボード部内に、固体炭素がフリーボード
部内の他の領域よりも高濃度に存在する領域を構成する
とともに、該領域において、該高濃度の固体炭素が流動
層表面から上昇する燃焼排出ガスと攪拌混合するように
した流動層燃焼装置を開示する。
In order to solve the above-mentioned problems, the present invention forms a region in the freeboard portion where the concentration of solid carbon is high and promotes the reduction of NOx by the solid carbon in the region. It is configured as follows. That is, according to the present invention, a combustion furnace having an air supply port on the lower side and a combustion exhaust gas discharge port on the upper side, an air dispersion plate provided in the lower part of the combustion furnace, and formed on the air dispersion plate. In a fluidized bed combustor comprising a fluidized bed made of a fluidized medium and a freeboard portion above the fluidized bed, and performing combustion in the fluidized bed, in the freeboard portion, solid carbon is contained in another region in the freeboard portion. Disclosed is a fluidized bed combustor in which a region having a higher concentration than that of the above is constituted, and in which the high concentration solid carbon is agitated and mixed with combustion exhaust gas rising from the surface of the fluidized bed.

【0013】燃焼排出ガスの乱流を形成するための単一
あるいは複数の縮流部材を設け、それによりフリーボー
ド部内に断面積の縮小した部分を構成することにより、
あるいは、固体炭素を含有する粒子を気流搬送するガス
供給手段をさらに備えフリーボード部壁面に開口する複
数のガス供給口に該ガス供給手段を接続し、該ガス供給
口からの固体炭素の供給により、フリーボード部内に渦
流、旋回流等の流れの乱れが発生する部分領域を形成さ
せ、また、燃焼排出ガスによって吹き上げられた未燃焼
炭素分を含む飛散粒子を補足するあるいは固体炭素を含
む粒子を添加するなどの方法により、固体炭素がフリー
ボード部内の他の領域よりも高濃度に存在する領域を構
成した。
By providing a single or a plurality of contraction members for forming a turbulent flow of the combustion exhaust gas, thereby forming a part having a reduced cross-sectional area in the freeboard part,
Alternatively, the gas supply means is further provided with a gas supply means for carrying air-borne particles containing solid carbon, and the gas supply means is connected to a plurality of gas supply openings opened on the wall surface of the freeboard portion, and the solid carbon is supplied from the gas supply opening. , Forming a partial area in the freeboard where turbulence such as swirling or swirling flow occurs, and also capturing scattered particles containing unburned carbon blown up by combustion exhaust gas or particles containing solid carbon. An area in which the solid carbon is present at a higher concentration than other areas in the freeboard portion is formed by a method such as addition.

【0014】縮流部材を、断面ほぼY字状形状の棒状体
から構成し、フリーボード部内の所定の箇所にそのY字
の脚部分を互いに向き合うように一方を他方に対して倒
立させた状態で千鳥状に複数本配置して縮流部材の間に
ガス通路を形成し、該ガス通路内において、固体炭素と
排出ガスとの攪拌混合を行わせるように構成することは
特に好ましい態様である。
A state in which the contraction member is constituted by a rod-shaped member having a substantially Y-shaped cross section, and one of them is inverted with respect to the other so that the Y-shaped leg portions face each other at a predetermined position in the freeboard portion. It is a particularly preferable embodiment that a plurality of staggered arrangements are provided to form a gas passage between the flow-contracting members, and the solid carbon and the exhaust gas are stirred and mixed in the gas passage. ..

【0015】[0015]

【作用】本発明の燃焼装置および燃焼方法では、上記の
手段により、従来の流動層燃焼器のフリーボード部内と
比して高濃度の固体炭素が存在する領域を形成し、ま
た、この領域内において燃焼排出ガスの乱流を生じさせ
ることにより燃焼排出ガスの領域内滞留時間を7〜10
倍と大きくする脱硝領域を形成する。この脱硝領域内で
は、固体炭素によるNOxの還元反応に関して、(1)
反応物質である固体炭素量の増加、(2)固体炭素とN
Oxの接触時間の増加、の効果が得られ、NOxの還元
による脱硝の効率が向上する。
In the combustion apparatus and the combustion method of the present invention, the above-mentioned means forms a region where solid carbon is present at a higher concentration than in the freeboard portion of the conventional fluidized bed combustor, and within this region. The turbulent flow of the combustion exhaust gas is caused to increase the residence time of the combustion exhaust gas in the region from 7 to 10
A denitration area that doubles in size is formed. In this denitration region, regarding the reduction reaction of NOx by solid carbon, (1)
Increasing amount of solid carbon as a reactant, (2) solid carbon and N
The effect of increasing the contact time of Ox is obtained, and the efficiency of denitration by reducing NOx is improved.

【0016】図8に、本発明の流動層燃焼装置と従来の
流動層燃焼装置における、フリーボード部内高さ方向の
NOx濃度分布を示した。流動層表面を基点(高さ0
m)とし、火炉最上部(高さ4.6m)までの範囲を示
してある。本発明の流動層燃焼装置では、流動層表面よ
り1〜1.5mの部分に、固体炭素濃度が従来型流動層
燃焼器のフリーボード部内濃度に比して平均1.5倍に
濃縮された脱硝領域が形成されている。従来型燃焼器で
は、NOx濃度の低下がほぼエクスポーネンシャル関数
曲線を描くのに対し、脱硝領域を形成した燃焼器では、
脱硝領域でのみNOx濃度の大きな低下がみられる。出
口NOx濃度は、従来型燃焼器での95ppmに対し、本
発明の燃焼器では71.2ppmと、約25%の低下が見
られ、このNOx濃度低下は、ほぼ全てが脱硝領域内で
おきている。
FIG. 8 shows the NOx concentration distribution in the height direction in the freeboard section in the fluidized bed combustion apparatus of the present invention and the conventional fluidized bed combustion apparatus. The base of the fluidized bed surface (height 0
m) and the range up to the top of the furnace (height 4.6 m) is shown. In the fluidized bed combustor of the present invention, the solid carbon concentration in the portion 1 to 1.5 m from the surface of the fluidized bed is 1.5 times as high as the average in the freeboard portion of the conventional fluidized bed combustor. A denitration area is formed. In the conventional combustor, the decrease of NOx concentration draws almost an exponential function curve, whereas in the combustor in which the denitration region is formed,
Only in the denitration region, the NOx concentration is greatly reduced. The outlet NOx concentration was 71.2 ppm in the combustor of the present invention, which was about 25% lower than 95 ppm in the conventional combustor, and this NOx concentration reduction was almost entirely in the denitration region. There is.

【0017】上記の結果に示すように、本発明の燃焼装
置および燃焼方法により、脱硝剤(アンモニア)注入量
の増加、または、流動層高増加によるNOx濃度低減と
同じ効果を得ることができ、かつ、燃焼装置の大型化、
流動層部構造の複雑化、脱硝剤注入量の増加を行わず
に、燃焼炉出口におけるNOx濃度を低減できる。
As shown in the above results, the combustion apparatus and the combustion method of the present invention can obtain the same effect as the NOx concentration reduction by increasing the denitration agent (ammonia) injection amount or increasing the fluidized bed height. And, the combustor is upsized,
The NOx concentration at the combustion furnace outlet can be reduced without complicating the structure of the fluidized bed and increasing the injection amount of the denitration agent.

【0018】[0018]

【実施例】以下、図面に従い本発明を説明する。図1
は、本発明を適用した流動層燃焼器を用いたボイラの一
実施例である。炉体6の底部には空気分散板3が設置さ
れ、空気分散板の下部にはウィンドボックス2が形成さ
れている。ウィンドボックス2には空気流入口1が開口
しており、この空気流入口1より供給された空気は、空
気分散板3を通して炉内に供給される。空気分散板3の
上部には流動室4が設けられ、流動室4の内部には熱交
換器5が配置されている。流動室4内に充填された燃料
石炭粒子および脱硫剤などの粒子は、空気分散板3を通
して供給されるガスにより流動層を形成し、石炭粒子を
燃焼させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. Figure 1
Is an example of a boiler using a fluidized bed combustor to which the present invention is applied. An air dispersion plate 3 is installed at the bottom of the furnace body 6, and a wind box 2 is formed below the air dispersion plate. An air inlet 1 is opened in the wind box 2, and the air supplied from the air inlet 1 is supplied into the furnace through an air dispersion plate 3. A flow chamber 4 is provided above the air dispersion plate 3, and a heat exchanger 5 is arranged inside the flow chamber 4. The fuel coal particles and particles such as the desulfurizing agent filled in the fluid chamber 4 form a fluidized bed by the gas supplied through the air dispersion plate 3, and burn the coal particles.

【0019】フリーボード部7には、後記する縮流部材
9がフリーボード部7を横断するように複数配置され、
縮流部材9の間に流動層より排出される燃焼排ガスが通
過するガス通路10が形成される。炉体6上部には燃焼
排ガスを炉外に放出する排出ガス出口8が開口してい
る。図2は、縮流部材および燃焼排出ガス通路の一実施
例であり、図1中の縮流部材9および燃焼排出ガス通路
10部分を拡大して示したものである。この縮流部材9
は、断面ほぼY字状の形状をしており、フリーボード部
7内の所定の箇所にそのY字の脚部分91、91が互い
に向き合うように一方を他方に対して倒立させた状態で
千鳥状に複数本配置されるとともに縮流部材の間にガス
通路10を形成するようになっている。
In the freeboard portion 7, a plurality of contracting members 9 to be described later are arranged so as to cross the freeboard portion 7,
A gas passage 10 through which combustion exhaust gas discharged from the fluidized bed passes is formed between the contracting members 9. An exhaust gas outlet 8 for discharging combustion exhaust gas to the outside of the furnace is opened in the upper part of the furnace body 6. FIG. 2 shows an example of the contracting member and the combustion exhaust gas passage, and is an enlarged view of the contracting member 9 and the combustion exhaust gas passage 10 in FIG. This contraction member 9
Has a substantially Y-shaped cross section, and is staggered in a state in which one of them is inverted with respect to the other so that the Y-shaped leg portions 91, 91 face each other at a predetermined position in the freeboard portion 7. A plurality of gas passages 10 are arranged in the shape of a gas flow path, and the gas passages 10 are formed between the flow contracting members.

【0020】すなわち、縮流部材9の該脚部分91、9
1を含む各突起部分はガス通路の通路幅を狭める突起と
しての機能、すなわち縮流部分を構成する機能を果たす
とともに、ガス通路10を通過する燃焼排ガス14は縮
流部材9の各突起で形成される空間内で渦流を形成す
る。この渦流中では、燃焼排ガス14とともに流れる飛
散粒子15が一定時間空間中に保持され、燃焼排ガスと
攪拌混合される。また、渦流が形成される空間では、縮
流部材9が障害となり飛散粒子15が捕捉されやすくな
るため、結果として該空間に浮遊する飛散粒子中に含ま
れる固体炭素の濃度が、縮流部材9を設置しない場合の
フリーボード部内での濃度に比して大きくなる。この結
果、縮流部材9設置部に形成される渦流領域では、フリ
ーボード部7内における固体炭素による脱硝反応が促進
される。
That is, the leg portions 91, 9 of the contraction member 9
Each of the protrusions including 1 has a function as a protrusion for narrowing the width of the gas passage, that is, a function of forming a contracted flow portion, and the combustion exhaust gas 14 passing through the gas passage 10 is formed by each protrusion of the contracted flow member 9. A vortex is formed in the space. In this vortex, the scattered particles 15 flowing with the combustion exhaust gas 14 are held in the space for a certain period of time, and are agitated and mixed with the combustion exhaust gas. Further, in the space where the vortex is formed, the contracting member 9 becomes an obstacle and the scattered particles 15 are easily trapped. As a result, the concentration of solid carbon contained in the scattered particles floating in the space is reduced. It is higher than the concentration in the freeboard section when not installed. As a result, in the swirl region formed in the contraction member 9 installation portion, the denitration reaction by the solid carbon in the freeboard portion 7 is promoted.

【0021】縮流部材は、還元反応空間の形成、該空間
内部の渦流等の乱流の発生、該空間内での固体炭素濃縮
の3作用を持つ構造であればよく、他に多くの形状のも
のが存在しうる。図3は縮流部材9の他の実施例を示し
ており、異なった形状である上流側(すなわち、下段)
に位置する部材9a1と下流側(すなわち、上段)に位置
する部材9a2とで縮流部材9a が構成されている。部材
9a1は脚部91a が幅広になった断面ほぼT字形状の部
材であり、部材9a2は図2に示す実施例における縮流部
材9と同一の形状の部材である。
The contraction member may have a structure having three functions of forming a reduction reaction space, generating a turbulent flow such as a vortex inside the space, and concentrating solid carbon in the space, and many other shapes. There can be things. FIG. 3 shows another embodiment of the contraction member 9, which has a different shape on the upstream side (that is, the lower stage).
The member 9a1 located on the lower side and the member 9a2 located on the downstream side (that is, the upper stage) form a contracting member 9a. The member 9a1 is a member having a substantially T-shaped cross section with widened leg portions 91a, and the member 9a2 is a member having the same shape as the contracting member 9 in the embodiment shown in FIG.

【0022】図4は縮流部材のさらに他の実施例を示し
ており、図3に示したものと同様に異なった形状を持つ
下段部材9b1と上段部材9b2とで縮流部材9b が構成さ
れている。部材9b1は図3の実施例における下方部材9
a1と同一の形状であり、部材9b2は断面はほぼT字状で
あるがその上辺部92b を水平にするとともにその上面
を下向き傾斜を持たせた形状となっている。
FIG. 4 shows still another embodiment of the contraction member, in which the contraction member 9b is composed of a lower member 9b1 and an upper member 9b2 having different shapes as shown in FIG. ing. The member 9b1 is the lower member 9 in the embodiment of FIG.
The member 9b2 has the same shape as that of a1, and the member 9b2 has a substantially T-shaped cross section, but its upper side 92b is horizontal and its upper surface is inclined downward.

【0023】図3および図4に示される縮流部材も、図
1のものと同様に、上方に位置する部材と下方り部材と
で還元反応用の空間が形成され、該空間内で渦流などの
乱流が発生するとともに固体炭素が濃縮されることは容
易に理解されよう。特に、図3に示すものにあっては、
還元反応空間の体積は減少するが、部材上部への灰等の
沈積を防ぐことができることから、より長時間の連続運
転が可能となる。
In the contracting members shown in FIGS. 3 and 4, as in the case of FIG. 1, a space for reduction reaction is formed by the member located above and the lower member, and a vortex or the like is generated in the space. It will be readily understood that solid carbon is enriched as turbulent flow occurs. Especially in the case shown in FIG.
Although the volume of the reduction reaction space is reduced, it is possible to prevent ash and the like from depositing on the upper part of the member, which allows continuous operation for a longer time.

【0024】図5は、本発明の流動層燃焼器の、他の実
施例を示している。この燃焼器では、気体を炉内フリー
ボード部7へ噴出するための開口部12をフリーボード
部7の壁面に形成し、該開口部12に気流搬送管11を
接続している。該開口部12は、図6に示すように、炉
体6断面の対角線方向に位置する隅部に2箇所配置され
ている。従って、気流搬送管11から噴出するガスによ
りフリーボード部7には旋回流が発生し、それにより、
流動室4での燃焼により生じた燃焼排出ガスは、同様に
旋回流を形成する。この旋回流により、この領域では、
先に図1から図4に示した実施例における渦流における
と同様に、浮遊する固体炭素濃度が大きくなりかつ燃焼
排出ガスの滞留時間が増加する。それにより充分な脱硝
効果をあげることができる。
FIG. 5 shows another embodiment of the fluidized bed combustor of the present invention. In this combustor, an opening 12 for ejecting gas to the freeboard portion 7 in the furnace is formed on the wall surface of the freeboard portion 7, and the airflow carrier pipe 11 is connected to the opening 12. As shown in FIG. 6, the openings 12 are arranged at two corners located diagonally in the cross section of the furnace body 6. Therefore, a swirl flow is generated in the freeboard portion 7 by the gas ejected from the airflow carrier pipe 11, and
The combustion exhaust gas generated by the combustion in the flow chamber 4 similarly forms a swirling flow. Due to this swirling flow, in this area,
Similar to the swirl in the embodiment shown in FIGS. 1 to 4, the floating solid carbon concentration is increased and the combustion exhaust gas residence time is increased. As a result, a sufficient denitration effect can be achieved.

【0025】なお、この実施例において、気流搬送管1
1に接続した開口部12の数、位置および開口方向は図
示のものに限ることはなく、要は、フリーボード内に旋
回流を発生させうるに適した状態で配置されていればよ
いものである。例えば、水平方向角度を持たせて配置し
ても良く、また、水平方向角度とともに垂直方向の角度
を炉内下向きとなるように持たせることも有効である。
さらには、ある程度上下方向に位置をずらした状態で配
置することも可能である。
In this embodiment, the air flow carrier pipe 1
The number, position and opening direction of the openings 12 connected to 1 are not limited to those shown in the figure, and the point is that they may be arranged in a state suitable for generating a swirling flow in the freeboard. is there. For example, it may be arranged with an angle in the horizontal direction, and it is also effective to have the angle in the vertical direction with the angle in the horizontal direction so as to be downward in the furnace.
Furthermore, it is also possible to dispose them in a state in which the positions are vertically shifted to some extent.

【0026】図5、図6に示す実施例の流動層燃焼器を
運転する一態様を図7により説明する。この運転態様に
おいては、気流搬送管11へは、空気または他の気体を
輸送ガス16としてを導入し、開口部12より炉内に噴
出させる。同時に、流動層内での燃焼により発生した燃
焼排ガス14は、フリーボード部、排ガス出口を通過し
て炉外へ排出されるが、この排出ガスには比較的粒径の
小さい飛散粒子が含まれていることから、この飛散粒子
をサイクロン13により集塵し、集塵した飛散粒子を気
流搬送管11を流れるガスに混入し、ガスとともに炉内
へ噴出させるようにしている。
One mode of operating the fluidized bed combustor of the embodiment shown in FIGS. 5 and 6 will be described with reference to FIG. In this operation mode, air or another gas is introduced as the transport gas 16 into the air flow carrier pipe 11 and is jetted into the furnace through the opening 12. At the same time, the combustion exhaust gas 14 generated by the combustion in the fluidized bed passes through the freeboard portion and the exhaust gas outlet and is discharged to the outside of the furnace. This exhaust gas contains scattered particles having a relatively small particle size. Therefore, the scattered particles are collected by the cyclone 13, and the collected scattered particles are mixed with the gas flowing through the airflow carrier pipe 11 and ejected into the furnace together with the gas.

【0027】このような燃焼方法をとることにより、炉
内へのガスの噴出の際の温度低下を防ぐことができるこ
とことから、炉内に形成する旋回流中での浮遊固体炭素
濃度の向上とともに脱硝効果を大きくすることがで、同
時に、燃焼効率の向上も期待できる。上記の説明はあく
までも本発明のいくつかの実施例の説明であって、他に
多くの変形例が存在する。例えば、前記したように、縮
流部材の構成は、還元反応空間の形成、該空間内部の渦
流等の乱流の発生、該空間内での固体炭素濃縮の3作用
を持つ構造であれば本発明の目的を達成しうるものであ
ることは明らかであり、図示のもの以外に多くの形態が
存在しうるものである。さらに、図5に示した形態の流
動層燃焼器の運転において、サイクロン13により集塵
した飛散粒子を気流搬送管11を流れるガスに混入する
ことは必ずしも必須のものではなく、空気などの気体を
単に流入するようにしてもよく、さらには機外から固体
炭素を気体中に供給しフリーボード内に流入させるよう
にしてもよきものである。
By adopting such a combustion method, it is possible to prevent the temperature from dropping when the gas is jetted into the furnace. Therefore, it is possible to improve the concentration of suspended solid carbon in the swirling flow formed in the furnace. The denitration effect can be increased, and at the same time, improvement in combustion efficiency can be expected. The above description is merely a description of some embodiments of the present invention, and there are many other modifications. For example, as described above, the structure of the contraction member is not limited as long as it has a three-action structure of forming a reduction reaction space, generating turbulent flow such as vortex inside the space, and concentrating solid carbon in the space. Obviously, the objects of the invention can be achieved, and there can be many forms other than those shown. Further, in the operation of the fluidized bed combustor of the form shown in FIG. 5, it is not always essential to mix the scattered particles collected by the cyclone 13 into the gas flowing through the air flow carrier pipe 11, and it is not necessary to mix gas such as air. It may be simply flowed in, or solid carbon may be supplied into the gas from outside the machine and flowed into the freeboard.

【0028】また、図1に示す縮流手段と図5に示す気
体の送入による旋回流発生手段とを同時にフリーボード
内に配置しておき、それらの手段を同時に用いて燃焼を
行うことも可能である。
It is also possible to arrange the contracting means shown in FIG. 1 and the swirling flow generating means for feeding gas shown in FIG. 5 in the freeboard at the same time, and to use these means simultaneously to perform combustion. It is possible.

【0029】[0029]

【発明の効果】以上詳細に説明したように、本発明によ
れば、流動層燃焼器燃焼炉内のフリーボード部に、固体
炭素が高濃度に存在し、燃焼排出ガスの流れの乱れが形
成される領域を形成し、燃焼炉内における脱硝反応を促
進することが可能となる。このことにより、排ガス脱硝
に要するコストを低減することができる。この際、流動
層燃焼炉内脱硝のために流動層燃焼炉の大型化、構造の
複雑化の必要が無い。また、燃焼炉内に脱硝剤を添加す
る方法と併用する場合に、添加量を増加すること無く脱
硝効率を上げることができるため、脱硝剤であるアンモ
ニアの燃焼炉外への漏れを防ぐことができる。
As described in detail above, according to the present invention, solid carbon is present at a high concentration in the freeboard portion in the fluidized bed combustor combustion furnace, and the turbulence of the flow of combustion exhaust gas is formed. It is possible to promote the denitration reaction in the combustion furnace by forming a region to be controlled. As a result, the cost required for exhaust gas denitration can be reduced. At this time, there is no need to increase the size of the fluidized bed combustion furnace and complicate the structure for denitration in the fluidized bed combustion furnace. Further, when used in combination with the method of adding the denitration agent into the combustion furnace, it is possible to improve the denitration efficiency without increasing the addition amount, so that it is possible to prevent the ammonia as the denitration agent from leaking out of the combustion furnace. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の燃焼器の一実施例を示す縦断面図。FIG. 1 is a vertical sectional view showing an embodiment of a combustor of the present invention.

【図2】 図1に示す燃焼器の縮流部材部分の拡大断面
図。
FIG. 2 is an enlarged cross-sectional view of a contracting member of the combustor shown in FIG.

【図3】 縮流部材の他の実施例を示す断面図。FIG. 3 is a cross-sectional view showing another embodiment of the contraction member.

【図4】 縮流部材のさらに他の実施例を示す断面図。FIG. 4 is a cross-sectional view showing still another embodiment of the contracting member.

【図5】 本発明の燃焼器の他の一実施例を示す縦断面
図。
FIG. 5 is a vertical cross-sectional view showing another embodiment of the combustor of the present invention.

【図6】 図5に示す燃焼器の横断面図。6 is a cross-sectional view of the combustor shown in FIG.

【図7】 図5、図6に示す燃焼器の運転方法を示す
図。
FIG. 7 is a diagram showing a method of operating the combustor shown in FIGS. 5 and 6.

【図8】 従来の流動層燃焼装置と本発明のフリーボー
ド部内NOx分布の比較。
FIG. 8 is a comparison of NOx distribution in a conventional fluidized bed combustion apparatus and in the freeboard section of the present invention.

【符号の説明】[Explanation of symbols]

1:空気流入口、2:ウィンドボックス、3:空気分散
板、4:流動室、5:熱交換器、6:炉体、7:フリー
ボード部、8:燃焼排ガス出口、9:縮流部材、10:
ガス通路、11:気流搬送管、12:気流搬送管出口、
13:サイクロン、14:燃焼排ガス、15:飛散粒
子、16:輸送ガス、17:空気
1: Air inlet, 2: Wind box, 3: Air dispersion plate, 4: Flow chamber, 5: Heat exchanger, 6: Furnace body, 7: Freeboard part, 8: Combustion exhaust gas outlet, 9: Flow reducing member 10:
Gas passage, 11: air flow carrier pipe, 12: air flow carrier pipe outlet,
13: cyclone, 14: combustion exhaust gas, 15: scattered particles, 16: transport gas, 17: air

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野村 政英 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 森原 淳 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 大内 和紀 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahide Nomura 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitate Works, Ltd., Hitachi Research Laboratory (72) Inventor Atsushi Morihara 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Nitate Works Co., Ltd. Hitachi Research Laboratory (72) Inventor Kazuki Ouchi 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 下方に空気の供給口と上方に燃焼排出ガ
スの排出口を有する燃焼炉と、該燃焼炉内の下部に設け
られた空気分散板と、該空気分散板上に形成された流動
媒体よりなる流動層と、該流動層上部のフリーボード部
を備え、該流動層中で燃焼を行う流動層燃焼装置におい
て、前記フリーボード部内に、固体炭素がフリーボード
部内の他の領域よりも高濃度に存在する領域を有すると
ともに、該領域において、該高濃度の固体炭素が流動層
表面から上昇する燃焼排出ガスと攪拌混合するようにし
たことを特徴とする、流動層燃焼装置。
1. A combustion furnace having an air supply port on the lower side and a combustion exhaust gas discharge port on the upper side, an air dispersion plate provided in the lower part of the combustion furnace, and formed on the air dispersion plate. In a fluidized bed combustor comprising a fluidized bed made of a fluidized medium and a freeboard portion above the fluidized bed, wherein solid carbon is contained in the freeboard portion more than other regions in the freeboard portion. Also has a region with a high concentration, and in this region, the high concentration of solid carbon is agitated and mixed with the combustion exhaust gas rising from the surface of the fluidized bed.
【請求項2】 該領域中には、燃焼排出ガスの乱流を形
成するための単一あるいは複数の縮流部材が設けられて
いることを特徴とする、請求項1記載の流動層燃焼装
置。
2. The fluidized bed combustion apparatus according to claim 1, wherein a single or a plurality of contraction members for forming a turbulent flow of combustion exhaust gas are provided in the region. ..
【請求項3】 縮流部材は、断面ほぼY字状形状の棒状
体であり、フリーボード部内の所定の箇所にそのY字の
脚部分を互いに向き合うように一方を他方に対して倒立
させた状態で千鳥状に複数本配置することにより該縮流
部材の間にガス通路10を形成したことを特徴とする、
請求項2記載の流動層燃焼装置。
3. The contracting member is a rod-shaped member having a substantially Y-shaped cross section, and one of them is inverted with respect to the other so that the Y-shaped leg portions face each other at a predetermined position in the freeboard portion. In the state, a plurality of staggered arrangements are provided to form the gas passages 10 between the contraction members,
The fluidized bed combustion apparatus according to claim 2.
【請求項4】 固体炭素を含有する粒子を気流搬送する
ガス供給手段をさらに備え、燃焼炉フリーボード部壁面
に開口する複数のガス供給口に該ガス供給手段を接続
し、該ガス供給口からの固体炭素の供給により、該領域
が形成されることを特徴とする、請求項1ないし3記載
のの流動層燃焼装置。
4. A gas supply means for carrying particles containing solid carbon in an air stream is further provided, and the gas supply means is connected to a plurality of gas supply openings opened on the wall surface of the freeboard part of the combustion furnace, and from the gas supply opening. 4. The fluidized bed combustion apparatus according to claim 1, wherein the region is formed by supplying the solid carbon according to claim 4.
【請求項5】 流動層燃焼装置から排出されるガスを処
理する集塵器をさらに備え、該集塵器により分離された
未燃固体炭素を含む飛散粒子を該ガス供給手段に供給す
るように構成されていることを特徴とする、請求項4記
載の流動層燃焼装置。
5. A dust collector for treating gas discharged from the fluidized bed combustor is further provided, and scattered particles containing unburned solid carbon separated by the dust collector are supplied to the gas supply means. The fluidized bed combustion apparatus according to claim 4, wherein the fluidized bed combustion apparatus is configured.
【請求項6】 燃焼炉下部に空気分散板を有し、該空気
分散板から供給される気体によって空気分散板上におい
て流動媒体を流動化させた流動層中で燃焼を行うように
した流動層燃焼装置における燃焼方法であって、フリー
ボード部内の特定領域に固体炭素が高濃度に存在する領
域をつくり、この領域内において固体炭素と流動層表面
から上昇する燃焼排出ガスを攪拌混合して燃焼させるこ
とにより、流動層内の燃焼で発生したNOxを低減させ
ることを特徴とする、流動層燃焼装置の燃焼方法。
6. A fluidized bed having an air dispersion plate in a lower portion of a combustion furnace, and performing combustion in a fluidized bed in which a fluidized medium is fluidized on the air dispersion plate by a gas supplied from the air dispersion plate. A method of combustion in a combustion device, in which a region where solid carbon is present at a high concentration is created in a specific region within the freeboard section, and in this region solid carbon and combustion exhaust gas rising from the fluidized bed surface are agitated and mixed for combustion. A combustion method for a fluidized bed combustion device, characterized in that NOx generated by combustion in the fluidized bed is reduced by performing the above.
JP2976792A 1992-02-17 1992-02-17 Fluidized layer burning apparatus and burning method therefor Pending JPH05223209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2976792A JPH05223209A (en) 1992-02-17 1992-02-17 Fluidized layer burning apparatus and burning method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2976792A JPH05223209A (en) 1992-02-17 1992-02-17 Fluidized layer burning apparatus and burning method therefor

Publications (1)

Publication Number Publication Date
JPH05223209A true JPH05223209A (en) 1993-08-31

Family

ID=12285197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2976792A Pending JPH05223209A (en) 1992-02-17 1992-02-17 Fluidized layer burning apparatus and burning method therefor

Country Status (1)

Country Link
JP (1) JPH05223209A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265312A (en) * 2004-03-18 2005-09-29 Calsonic Kansei Corp Laminate type heat-exchanger
JP2017141997A (en) * 2016-02-08 2017-08-17 三菱日立パワーシステムズ株式会社 Fluidized bed boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265312A (en) * 2004-03-18 2005-09-29 Calsonic Kansei Corp Laminate type heat-exchanger
JP2017141997A (en) * 2016-02-08 2017-08-17 三菱日立パワーシステムズ株式会社 Fluidized bed boiler

Similar Documents

Publication Publication Date Title
US4940007A (en) Fast fluidized bed reactor
US5156099A (en) Composite recycling type fluidized bed boiler
EP0740109B1 (en) Fluidized-bed combuster
JPH0618610B2 (en) NOx reduction method in flue gas
JPS5843644B2 (en) Multi-stage fluidized bed combustion method and multi-stage fluidized bed combustion furnace for carrying out the method
JPH0610526B2 (en) Fluidized bed combustion method and apparatus
JPH01210795A (en) Powder burning bed and circulating fluidized bed combustion device
EP0431163B1 (en) Composite circulation fluidized bed boiler
EP0652800A1 (en) Reducing n 2?o emissions.
CN203043834U (en) Device for removing NOx through smoke recycling and ammonia agent jetting
JP3504324B2 (en) Pressurized internal circulation type fluidized bed boiler
JPH05223209A (en) Fluidized layer burning apparatus and burning method therefor
JP3095499B2 (en) Fluidized bed combustion boiler
JPH05106807A (en) Pressurized, inside circulation type fluidized bed boiler
US5662049A (en) Combustion method and apparatus
JP3625817B2 (en) Composite fluidized bed furnace and method of operating composite fluidized bed furnace
JP3625818B2 (en) Pressurized fluidized bed furnace
JPH02195104A (en) Reducing nox in exhaust gas of internally circulating fluidized bed boiler
JPH02282601A (en) Device of heat recovery by internally circulating fluidized layer
KR100540838B1 (en) The Solid Re-circulating Apparatus of Circulating Fluidized Bed Boiler
JP2671078B2 (en) Fluidized bed combustion device
JPH06241429A (en) Garbage incinerator
JPH04177008A (en) Fluidized bed combustion boiler
JP3763656B2 (en) Circulating fluidized bed combustor
CN111780095A (en) Combustion system, control method thereof and preheating equipment