JPH05222998A - Air intake state detection device for internal combustion engine - Google Patents

Air intake state detection device for internal combustion engine

Info

Publication number
JPH05222998A
JPH05222998A JP2303092A JP2303092A JPH05222998A JP H05222998 A JPH05222998 A JP H05222998A JP 2303092 A JP2303092 A JP 2303092A JP 2303092 A JP2303092 A JP 2303092A JP H05222998 A JPH05222998 A JP H05222998A
Authority
JP
Japan
Prior art keywords
pressure
opening area
intake
valve
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2303092A
Other languages
Japanese (ja)
Inventor
Makoto Anzai
誠 安斎
Toshimi Anpo
敏巳 安保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2303092A priority Critical patent/JPH05222998A/en
Publication of JPH05222998A publication Critical patent/JPH05222998A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • F02D35/024Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To estimate cylinder pressure and air intake pipe pressure at each crank angle of an internal combustion engine changing momentarily without using a pressure sensor and others. CONSTITUTION:This device has a flow passage opening area co computing means 2, an air intake valve opening area computing means 3 and an exhaust valve opening area computing means 4 respectively searching for a flow passage opening area between the upstream and the downstream of a throttle valve at a crank angle, an opening area of an air intake valve and an opening area of an exhaust valve. Flow rates for these opening areas are searched for by an air intake pipe inflow rate computing means 5, an air intake valve flow rate computing means 6 and an exhaust valve flow rate computing means 7 respectively. It is devised so as to estimate cylinder pressure and air intake pipe pressure successively in accordance with inflow and outflow rates of gas to and from the inside of a cylinder and inflow and outflow rates of gas to and from the air intake valve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、時々刻々変化する内
燃機関の各クランク角におけるシリンダ圧力やスロット
ル弁下流側の吸気管圧力を逐次検出する吸気状態検出装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake state detecting device for sequentially detecting cylinder pressure at each crank angle of an internal combustion engine and intake pipe pressure on the downstream side of a throttle valve.

【0002】[0002]

【従来の技術】内燃機関の空燃比を精度良く制御するた
めにはシリンダ内に実際に流入した空気量を正しく計量
する必要があることは言うまでもないが、圧力センサや
エアフロメータを用いることなくシリンダ内への吸入空
気量を検出する方法として、特開平2−70957号公
報において、スロットル弁の上下圧力差を推定するとと
もに、スロットル弁開度を用いて、吸入空気量を推定す
るようにしたものが提案されている。
2. Description of the Related Art Needless to say, it is necessary to accurately measure the amount of air actually flowing into a cylinder in order to accurately control the air-fuel ratio of an internal combustion engine, but it is necessary to use a cylinder without a pressure sensor or an air flow meter. As a method for detecting the amount of intake air into the interior, Japanese Patent Laid-Open No. 2-70957 discloses a method of estimating the vertical pressure difference of the throttle valve and estimating the intake air amount using the throttle valve opening. Is proposed.

【0003】また特開昭58−23245号公報や特開
昭62−101868号公報には、機関のポンピングロ
スを低減させるために、各気筒の吸気系に、吸気遮断弁
を備えた副吸気通路と、低負荷時に吸気通路を閉塞する
閉鎖弁とを設けた構成が示されている。
Further, in JP-A-58-23245 and JP-A-62-101868, in order to reduce pumping loss of the engine, an auxiliary intake passage having an intake cutoff valve in an intake system of each cylinder is provided. And a closing valve that closes the intake passage when the load is low.

【0004】[0004]

【発明が解決しようとする課題】上記の特開平2−70
957号公報に示されている方法は、スロットル弁の通
過流量やその気体の温度等から1サイクル中にシリンダ
内に流入したであろう空気量を推定するに過ぎず、ピス
トンの行程とともに時々刻々変化するシリンダ圧力や吸
気管圧力をとらえることはできない。従って、吸気弁が
開き始めたときにシリンダ内から吸気管側に戻る所謂吹
き戻し現象の気体量は無視されてしまい、吸気管推定圧
力の誤差の増加、ひいては1サイクル中のシリンダ内の
吸入空気量の推定値の誤差が非常に大きく現れる欠点が
ある。これは、特にスロットル弁下流の吸気管容積が小
さい場合には、吹き戻し現象に伴う圧力変動が大きくな
ることから、影響が大きく、それだけ上記推定値の精度
が低くなってしまう。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method disclosed in Japanese Patent No. 957 only estimates the amount of air that may have flowed into the cylinder during one cycle from the flow rate of the throttle valve, the temperature of the gas, and the like. It is not possible to capture the changing cylinder pressure or intake pipe pressure. Therefore, when the intake valve starts to open, the gas amount of the so-called blowback phenomenon that returns from the inside of the cylinder to the intake pipe side is ignored, and the error in the estimated intake pipe pressure increases, and eventually the intake air in the cylinder during one cycle. There is the drawback that the error in the quantity estimate appears very large. Especially, when the volume of the intake pipe on the downstream side of the throttle valve is small, the pressure fluctuation due to the blowback phenomenon becomes large, so that the influence is large, and the accuracy of the estimated value becomes low accordingly.

【0005】一方、上記特開昭58−23245号公報
等に記載のようにポンピングロスを低減させる技術は種
々提案されているが、その多くのものでは、各気筒の吸
気弁上流側の圧力が当該気筒の行程に伴って変動する形
となる。そのため、特開昭62−101868号公報の
ように、各気筒毎に吸気ポートへ向けて電磁式燃料噴射
弁を設けた公知の燃料噴射装置と組み合わせるとする
と、開弁時間と実際の噴射量との比例関係が吸気管圧力
の変動により崩されることから、各気筒の燃料噴射時期
における吸気管圧力を検出し、その圧力に応じて各燃料
噴射弁の開弁時間つまりそれぞれに印加する駆動パルス
幅を補正してやる必要がある。このような補正を実現す
るために、上記公報のものでは、圧力センサにて各気筒
毎に吸気管圧力を直接に検出するようにしているが、こ
の方法では複数の圧力センサを用いるため構成が複雑と
なり、また補正の応答遅れも問題となり易い。
On the other hand, various techniques for reducing pumping loss have been proposed as described in Japanese Patent Laid-Open No. 58-23245, but in many of them, the pressure on the intake valve upstream side of each cylinder is reduced. The shape changes with the stroke of the cylinder. Therefore, when it is combined with a known fuel injection device in which an electromagnetic fuel injection valve is provided for each cylinder toward the intake port as in JP-A-62-101868, the valve opening time and the actual injection amount are Since the proportional relationship of is broken by the fluctuation of the intake pipe pressure, the intake pipe pressure at the fuel injection timing of each cylinder is detected, and the opening time of each fuel injection valve, that is, the drive pulse width applied to each, is detected according to the pressure. Need to be corrected. In order to realize such a correction, in the above publication, the pressure sensor directly detects the intake pipe pressure for each cylinder. However, this method uses a plurality of pressure sensors and therefore has a configuration. It becomes complicated and the response delay of the correction tends to be a problem.

【0006】そこで、この発明は、ピストン行程に伴っ
て時々刻々変化するシリンダ圧力や吸気管圧力を、圧力
センサによる直接的な検出によらずに精度良く推定する
ことができる吸気状態検出装置を提供しようとするもの
である。
Therefore, the present invention provides an intake state detecting device capable of accurately estimating the cylinder pressure and the intake pipe pressure, which change momentarily with the piston stroke, without directly detecting the pressure sensor. Is what you are trying to do.

【0007】[0007]

【課題を解決するための手段】この発明に係る内燃機関
の吸気状態検出装置は、図1に示すように、機関のクラ
ンク角を検出するクランク角検出手段1と、このクラン
ク角におけるスロットル弁の上流側と下流側との間の全
流路開口面積を求める流路開口面積算出手段2と、この
クランク角における吸気弁の開口面積を求める吸気弁開
口面積算出手段3および排気弁の開口面積を求める排気
弁開口面積算出手段4と、前回求めた吸気管圧力を用
い、これとスロットル弁上流側圧力と上記流路開口面積
とからスロットル弁下流に流入する流量を求める吸気管
流入量算出手段5と、前回求めたシリンダ圧力と吸気管
圧力とを用い、これと上記の吸気弁開口面積とから吸気
弁流量を求める吸気弁流量算出手段6と、前回求めたシ
リンダ圧力を燃焼圧力上昇率に基づいて補正し、これと
排気系圧力と上記の排気弁開口面積とから排気弁流量を
求める排気弁流量算出手段7と、上記クランク角に対応
したシリンダ実容積と上記吸気弁流量と上記排気弁流量
とから上記クランク角におけるシリンダ圧力を算出する
シリンダ圧力算出手段8と、上記吸気管流入量と上記吸
気弁流量とから上記クランク角における吸気管圧力を算
出する吸気管圧力算出手段9とを備えて構成されてい
る。
As shown in FIG. 1, an intake state detecting apparatus for an internal combustion engine according to the present invention includes a crank angle detecting means 1 for detecting a crank angle of an engine and a throttle valve at this crank angle. The flow passage opening area calculating means 2 for obtaining the total flow passage opening area between the upstream side and the downstream side, the intake valve opening area calculating means 3 for obtaining the opening area of the intake valve at this crank angle, and the opening area of the exhaust valve are shown. Using the exhaust valve opening area calculation means 4 to be obtained and the intake pipe pressure obtained last time, the intake pipe inflow amount calculation means 5 to obtain the flow rate flowing into the downstream side of the throttle valve from this, the throttle valve upstream side pressure and the flow passage opening area. In addition, using the cylinder pressure and the intake pipe pressure obtained last time, the intake valve flow rate calculation means 6 for obtaining the intake valve flow rate from this and the above-mentioned intake valve opening area, and the cylinder pressure obtained last time the combustion pressure. Exhaust valve flow rate calculation means 7 that corrects based on the rate of increase and calculates the exhaust valve flow rate from this, the exhaust system pressure, and the exhaust valve opening area, the actual cylinder volume corresponding to the crank angle, and the intake valve flow rate. Cylinder pressure calculating means 8 for calculating the cylinder pressure at the crank angle from the exhaust valve flow rate, and intake pipe pressure calculating means 9 for calculating the intake pipe pressure at the crank angle from the intake pipe inflow amount and the intake valve flow rate. And is configured.

【0008】[0008]

【作用】この吸気状態検出装置は、ピストン行程に伴っ
て時々刻々変化するシリンダ圧力および吸気管圧力を逐
次求めるものであって、流路開口面積算出手段2では、
スロットル弁開度等からスロットル弁上流側,下流側間
の流路開口面積が求められる。バイパス通路等がある場
合には、その流路面積をも含める必要がある。また、吸
気弁開口面積算出手段3および排気弁開口面積算出手段
4では、バルブリフト量,バルブ径等からそのときの開
口面積がそれぞれ求められる。
This intake state detecting device successively obtains the cylinder pressure and the intake pipe pressure which change momentarily along with the piston stroke.
The opening area of the flow passage between the upstream side and the downstream side of the throttle valve can be obtained from the throttle valve opening and the like. If there is a bypass passage, etc., it is necessary to include the flow passage area. Further, the intake valve opening area calculating means 3 and the exhaust valve opening area calculating means 4 respectively obtain the opening areas at that time from the valve lift amount, the valve diameter and the like.

【0009】スロットル弁下流側には、上記の流路開口
面積を介してスロットル弁上流側から気体(空気もしく
は混合気)が流入するが、その流入量は、下流側の吸気
管圧力と上流側圧力(自然吸気機関では略大気圧であ
る)と上記流路開口面積とで定まる。従って、吸気管流
入量算出手段5においては、前回求めた吸気管圧力を用
いることで、この吸気管流入量が近似的に求められる。
Gas (air or air-fuel mixture) flows into the downstream side of the throttle valve from the upstream side of the throttle valve through the above-mentioned flow passage opening area. The inflow amount is the intake pipe pressure on the downstream side and the upstream side. It is determined by the pressure (which is approximately atmospheric pressure in a naturally aspirated engine) and the flow passage opening area. Therefore, in the intake pipe inflow amount calculating means 5, the intake pipe inflow amount is approximately calculated by using the intake pipe pressure obtained last time.

【0010】また吸気弁を介してシリンダ内に流入する
気体の流量つまり吸気弁流量は、吸気弁上流側の吸気管
圧力と吸気弁下流側のシリンダ圧力と吸気弁開口面積と
で定まる。従って、吸気弁流量算出手段6においては、
前回求めたシリンダ圧力と吸気管圧力とを用いること
で、この吸気弁流量が近似的に求められる。
The flow rate of gas flowing into the cylinder through the intake valve, that is, the intake valve flow rate, is determined by the intake pipe pressure on the upstream side of the intake valve, the cylinder pressure on the downstream side of the intake valve, and the intake valve opening area. Therefore, in the intake valve flow rate calculation means 6,
By using the cylinder pressure and the intake pipe pressure obtained last time, this intake valve flow rate is approximately obtained.

【0011】同様に、排気弁を介してシリンダから流出
する気体の流量つまり排気弁流量は、排気弁上流側のシ
リンダ圧力と排気弁下流側の排気系圧力(通常は略大気
圧とみなすことができる)と排気弁開口面積とで定ま
る。従って、排気弁流量算出手段7においては、前回求
めたシリンダ圧力を用いることで、この排気弁流量が近
似的に求められる。尚、この際のシリンダ圧力は、補正
手段10において燃焼圧力上昇率に基づいて補正された
ものが用いられる。
Similarly, the flow rate of gas flowing out of the cylinder via the exhaust valve, that is, the exhaust valve flow rate, can be regarded as the cylinder pressure on the upstream side of the exhaust valve and the exhaust system pressure on the downstream side of the exhaust valve (usually about atmospheric pressure). Can be done) and the exhaust valve opening area. Therefore, in the exhaust valve flow rate calculation means 7, the exhaust valve flow rate is approximately calculated by using the cylinder pressure calculated last time. The cylinder pressure used at this time is corrected by the correction means 10 based on the combustion pressure increase rate.

【0012】上記のようにしてシリンダ内に流入する吸
気弁流量とシリンダから流出する排気弁流量とが判れ
ば、これらを積分したものがシリンダ内の気体量となる
ので、そのときのピストン位置におけるシリンダ実容積
との関係からシリンダ圧力を求めることができる。尚、
このシリンダ圧力算出手段8において求められたシリン
ダ圧力の値は、前述したように次に吸気弁流量等を算出
する際の基礎となる。
If the flow rate of the intake valve flowing into the cylinder and the flow rate of the exhaust valve flowing out of the cylinder are known as described above, the integrated amount of them becomes the gas amount in the cylinder. Therefore, at the piston position at that time, The cylinder pressure can be obtained from the relationship with the actual cylinder volume. still,
The value of the cylinder pressure obtained by the cylinder pressure calculating means 8 serves as a basis for the next calculation of the intake valve flow rate and the like, as described above.

【0013】また同様に、吸気管内に流入する吸気管流
入量と吸気管から流出する吸気弁流量とが判れば、吸気
管圧力を求めることができる。尚、この吸気管圧力算出
手段9において求められた吸気管圧力の値は、次に吸気
管流量等を算出する際の基礎となる。
Similarly, if the intake pipe inflow amount flowing into the intake pipe and the intake valve flow amount flowing out from the intake pipe are known, the intake pipe pressure can be obtained. The value of the intake pipe pressure calculated by the intake pipe pressure calculating means 9 becomes the basis for the next calculation of the intake pipe flow rate and the like.

【0014】[0014]

【実施例】以下、この発明の一実施例を図面に基づいて
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0015】図2は、この発明に係る吸気状態検出装置
を備え、かつポンピングロスの低減を図るようにした内
燃機関の構成説明図であって、内燃機関11のシリンダ
12を中心として吸気通路13と排気通路14とがクロ
スフロー形式に形成されており、各通路13,14とシ
リンダ12との間を、吸気弁15および排気弁16が開
閉している。この吸気弁15および排気弁16は、それ
ぞれカムシャフト17,18によって駆動される。また
シリンダ12内にはピストン19が嵌挿されている。
FIG. 2 is a structural explanatory view of an internal combustion engine equipped with the intake state detecting device according to the present invention and designed to reduce pumping loss. An intake passage 13 is centered around a cylinder 12 of the internal combustion engine 11. And the exhaust passage 14 are formed in a cross flow type, and an intake valve 15 and an exhaust valve 16 are opened and closed between the passages 13 and 14 and the cylinder 12. The intake valve 15 and the exhaust valve 16 are driven by cam shafts 17 and 18, respectively. A piston 19 is fitted in the cylinder 12.

【0016】上記吸気通路13には、各気筒毎にスロッ
トル弁20が介装されており、その開度を検出するため
に例えばポテンショメータからなるスロットル開度セン
サ21が設けられている。そして、このスロットル弁2
0をバイパスして吸気通路13の上流側と下流側とを連
通するように、バイパス通路22が各気筒毎に形成され
ている。このバイパス通路22は、ポンピングロス低減
のために用いられるもので、その通路中にデューティ制
御型電磁弁などからなる流量制御弁23がそれぞれ介装
されている。上記吸気通路13のスロットル弁20下流
側、詳しくは各気筒の吸気ポート近傍には、各気筒毎に
燃料供給を行う燃料噴射弁24が配設されている。この
燃料噴射弁24には、所定圧力に調圧された燃料が常時
供給されており、その開弁時間つまり駆動パルス信号の
パルス幅でもって噴射量の計量が行われるようになって
いる。
The intake passage 13 is provided with a throttle valve 20 for each cylinder, and a throttle opening sensor 21 such as a potentiometer is provided to detect the opening of the throttle valve 20. And this throttle valve 2
The bypass passage 22 is formed for each cylinder so as to bypass 0 and connect the upstream side and the downstream side of the intake passage 13 to each other. The bypass passage 22 is used for reducing pumping loss, and a flow rate control valve 23 including a duty control type electromagnetic valve or the like is provided in the bypass passage 22. A fuel injection valve 24 for supplying fuel to each cylinder is arranged downstream of the throttle valve 20 in the intake passage 13, more specifically, near the intake port of each cylinder. The fuel whose pressure is adjusted to a predetermined pressure is constantly supplied to the fuel injection valve 24, and the injection amount is measured by the valve opening time, that is, the pulse width of the drive pulse signal.

【0017】25は、上記カムシャフト17,18もし
くはクランクシャフトの回転を検出するクランク角セン
サであって、このクランク角センサ25は、各気筒のク
ランク角の基準位置、例えば爆発行程上死点前60°C
Aで出力されるパルスからなる基準信号(REF信号)
と、単位クランク角、例えば1°CA毎に出力されるパ
ルス列からなる角度信号(POS信号)とを出力するよ
うになっている。尚、上記基準信号は、気筒判別を行う
ために、気筒番号毎にパルス幅が異なっている。
Reference numeral 25 is a crank angle sensor for detecting the rotation of the camshafts 17, 18 or the crankshaft. The crank angle sensor 25 is a reference position of the crank angle of each cylinder, for example, before the top dead center of the explosion stroke. 60 ° C
Reference signal (REF signal) consisting of pulses output at A
And a angle signal (POS signal) consisting of a pulse train output for each unit crank angle, for example, every 1 ° CA. The reference signal has a different pulse width for each cylinder number in order to determine the cylinder.

【0018】上記のクランク角センサ25の検出信号や
スロットル開度センサ21の検出信号が入力されるコン
トロールユニット26は、所謂マイクロコンピュータシ
ステムを用いたもので、各種検出信号に基づき、点火時
期制御や燃料噴射量制御等を行っているとともに、バイ
パス通路22における流量制御弁23の開度制御を行っ
ている。
The control unit 26 to which the detection signal of the crank angle sensor 25 and the detection signal of the throttle opening sensor 21 are input uses a so-called microcomputer system. Based on various detection signals, ignition timing control and The fuel injection amount control and the like are performed, and the opening degree of the flow rate control valve 23 in the bypass passage 22 is controlled.

【0019】上記の構成において、流量制御弁23は、
対応する気筒の吸気行程の前後で作動する。具体的に
は、クランク角センサ25からの基準信号および角度信
号により対応気筒の吸気行程の判定を行い、吸気行程以
外の間は流量制御弁23が開かれる。これにより、吸気
行程開始時の吸気管圧力(スロットル弁20と吸気弁1
5との間の圧力)が大気圧近傍に近付き、ポンピングロ
スが低減する。そして、吸気行程中は、流量制御弁23
の開度が適宜に小さく制御され、シリンダ12へ向かう
空気量を抑制するのである。
In the above structure, the flow control valve 23 is
It operates before and after the intake stroke of the corresponding cylinder. Specifically, the intake stroke of the corresponding cylinder is determined based on the reference signal and the angle signal from the crank angle sensor 25, and the flow control valve 23 is opened during the period other than the intake stroke. As a result, the intake pipe pressure at the start of the intake stroke (throttle valve 20 and intake valve 1
(Pressure between 5) approaches the atmospheric pressure, and pumping loss is reduced. Then, during the intake stroke, the flow control valve 23
The degree of opening of is controlled appropriately to suppress the amount of air flowing toward the cylinder 12.

【0020】一方、燃料噴射量は、後述するように吸気
行程でシリンダ12内に吸入された空気量を推定し、こ
れを基本として算出される。そして、この噴射量に応じ
て駆動パルス信号のパルス幅が決定される。但し、上記
のような流量制御弁23の制御に伴い、スロットル弁2
0の開度が一定であっても、吸気管圧力が各気筒で常時
変動するものとなる。そのため、同一のパルス幅に対す
る実際の噴射量が吸気管圧力により影響を受けるので、
後述する処理によって吸気管圧力を逐次検出し、その影
響を相殺するように、パルス幅が補正される。尚、吸気
管圧力に対するパルス幅の補正量は、例えば所定のマッ
プに基づいて求められる。
On the other hand, the fuel injection amount is calculated on the basis of the estimated amount of air taken into the cylinder 12 in the intake stroke, as will be described later. Then, the pulse width of the drive pulse signal is determined according to the injection amount. However, with the control of the flow control valve 23 as described above, the throttle valve 2
Even if the opening degree of 0 is constant, the intake pipe pressure constantly fluctuates in each cylinder. Therefore, since the actual injection amount for the same pulse width is affected by the intake pipe pressure,
The intake pipe pressure is sequentially detected by the process described later, and the pulse width is corrected so as to cancel the influence. The correction amount of the pulse width with respect to the intake pipe pressure is obtained based on, for example, a predetermined map.

【0021】次に、上記吸気管圧力を逐次推定する処理
を、図3のフローチャートに基づいて説明する。尚、こ
の処理は、1°CA毎の角度信号に同期して割込処理さ
れる。つまり時々刻々変化する吸気管圧力が1°CA毎
に求められる。
Next, the process of successively estimating the intake pipe pressure will be described with reference to the flowchart of FIG. Incidentally, this processing is interrupted in synchronization with the angle signal for each 1 ° CA. That is, the intake pipe pressure that changes moment by moment is obtained for each 1 ° CA.

【0022】先ずステップ1(図ではS1等と略記す
る)では、最新の燃焼行程に際しての点火進角値と、最
新の吸気行程の終了時つまり吸気弁15が閉じた際の吸
気管圧力と、機関回転数(角度信号から求められる)と
を用いて、現在のクランク角における燃焼圧力上昇率を
所定のデータマップから求める。すなわち、燃焼に伴う
シリンダ12内の圧力変化分は図4のように近似的に示
すことができ、(イ)として示す着火遅れ期間の後に、
(ロ)のように圧力が上昇し、例えばATDC15°付
近で最大となる。尚、点火進角値はトルクが最大となる
ように設定されるため、この圧力ピーク時も略一定とな
る。上記の(イ)と(ロ)の時間は回転数によって変化
するが、クランク角として見れば点火時期からピーク時
までの間でそれぞれ略一定割合を占めるものと考えられ
る。そして、(ハ)として示す圧力上昇率の最大値は、
シリンダ12内に吸入された混合気量に略比例したもの
となり、かつその混合気量は吸気管圧力と機関回転数と
から近似的に求めることができる。また、(ニ)に示す
期間は排気行程の初期に相当するものであり、排気行程
の開始と同時に圧力が減衰し始めるが、その減衰速度は
機関回転数に比例するので、クランク角としては略一定
となる。従って、この図4の特性に基づき、所定のデー
タマップからの検索によって現在のクランク角における
燃焼圧力上昇率が求められる。尚、吸気管圧力は直接セ
ンサにて検出されるものではなく、後述するステップ1
2で逐次算出される値の記憶データが用いられる。
First, in step 1 (abbreviated as S1 etc. in the figure), the ignition advance value at the latest combustion stroke and the intake pipe pressure at the end of the latest intake stroke, that is, when the intake valve 15 is closed, Using the engine speed (obtained from the angle signal), the combustion pressure increase rate at the current crank angle is obtained from a predetermined data map. That is, the change in pressure in the cylinder 12 due to combustion can be approximately represented as shown in FIG. 4, and after the ignition delay period shown as (a),
As shown in (b), the pressure rises and reaches its maximum near ATDC 15 °, for example. Since the ignition advance value is set so that the torque becomes maximum, the ignition advance value is substantially constant even at this pressure peak. The above-mentioned times (a) and (b) change depending on the number of revolutions, but in terms of crank angle, they are considered to occupy substantially constant ratios from the ignition timing to the peak time. And the maximum value of the pressure rise rate shown as (C) is
It becomes substantially proportional to the amount of air-fuel mixture sucked into the cylinder 12, and the amount of air-fuel mixture can be approximately calculated from the intake pipe pressure and the engine speed. Further, the period shown in (d) corresponds to the beginning of the exhaust stroke, and the pressure begins to decay at the same time as the start of the exhaust stroke, but since the decay speed is proportional to the engine speed, the crank angle is approximately It will be constant. Therefore, based on the characteristics of FIG. 4, the combustion pressure increase rate at the current crank angle is obtained by searching from the predetermined data map. It should be noted that the intake pipe pressure is not directly detected by the sensor, but will be described in Step 1 below.
The stored data of the value sequentially calculated in 2 is used.

【0023】ステップ2では、現在のクランク角におけ
るピストン19の位置に対応するシリンダ12内の実容
積を例えば所定のデータマップから求める。
In step 2, the actual volume in the cylinder 12 corresponding to the position of the piston 19 at the current crank angle is obtained from, for example, a predetermined data map.

【0024】またステップ3で、現在のクランク角にお
ける排気弁16の開口面積を、例えば所定のデータマッ
プから求める。同様に、ステップ4で、吸気弁15の開
口面積を求める。
Further, in step 3, the opening area of the exhaust valve 16 at the current crank angle is obtained from, for example, a predetermined data map. Similarly, in step 4, the opening area of the intake valve 15 is obtained.

【0025】そして、ステップ5で、吸気弁15を通過
する気体の流量つまり吸気弁流量を、上記の吸気弁開口
面積と吸気管圧力とシリンダ圧力とに基づいて算出す
る。ここで、吸気管圧力およびシリンダ圧力は、それぞ
れ後述するステップ12,ステップ10において前回求
めた値を用いる。この処理の具体的な方法としては、図
5に示すような単位開口面積における圧力差と流量との
マップを予め与えておき、ここから圧力差(つまり吸気
管圧力とシリンダ圧力の差)に対する流量を補間計算に
より求め、かつこれに吸気弁開口面積を乗じて吸気弁流
量を求める。
Then, in step 5, the flow rate of the gas passing through the intake valve 15, that is, the intake valve flow rate is calculated based on the intake valve opening area, the intake pipe pressure, and the cylinder pressure. Here, as the intake pipe pressure and the cylinder pressure, the values previously obtained in step 12 and step 10 described later are used. As a specific method of this processing, a map of the pressure difference and the flow rate in the unit opening area as shown in FIG. 5 is given in advance, and the flow rate with respect to the pressure difference (that is, the difference between the intake pipe pressure and the cylinder pressure) is calculated from this map. Is obtained by interpolation calculation, and this is multiplied by the intake valve opening area to obtain the intake valve flow rate.

【0026】ステップ6では、スロットル弁20上流側
と下流側との間の全流路開口面積を求める。これは、基
本的には、スロットル開度センサ21が検出するスロッ
トル弁20の開口面積と流量制御弁23の開口面積の和
として与えられるものであり、更に、0.8程度の空気
通路係数を乗じて実際の値に近いものとする。尚、流量
制御弁23の開閉状態はコントロールユニット26の内
部信号により与えられる。また、この流路開口面積の値
には、精度向上を図るために、更に必要に応じて後述す
る補正値が乗じられる。
In step 6, the total flow passage opening area between the upstream side and the downstream side of the throttle valve 20 is obtained. This is basically given as the sum of the opening area of the throttle valve 20 detected by the throttle opening sensor 21 and the opening area of the flow control valve 23, and further, an air passage coefficient of about 0.8 is given. It should be multiplied to approximate the actual value. The open / closed state of the flow control valve 23 is given by an internal signal of the control unit 26. Further, the value of the flow passage opening area is further multiplied by a correction value described later, if necessary, in order to improve accuracy.

【0027】またステップ7では、吸気通路13におい
てスロットル弁20上流側から下流側へ流入する吸気管
流入量を求める。これは、上流側圧力と下流側の吸気管
圧力と上記ステップ6における流路開口面積とから求め
られるが、上流側圧力は大気圧とみなし、かつ吸気管圧
力はやはり前回求めた値を用いる。そして、ステップ5
と同様に、単位開口面積における圧力差と流量とのマッ
プを予め与えておき、ここから圧力差(大気圧と吸気管
圧力の差)に対する流量を補間計算により求め、かつこ
れに流路開口面積を乗じて吸気管流入量を求める。
Further, in step 7, the intake pipe inflow amount flowing from the upstream side of the throttle valve 20 to the downstream side in the intake passage 13 is obtained. This is obtained from the upstream side pressure, the downstream side intake pipe pressure, and the flow passage opening area in step 6, but the upstream side pressure is regarded as atmospheric pressure, and the intake pipe pressure is also the previously obtained value. And step 5
Similarly, a map of pressure difference and flow rate in unit opening area is given in advance, and the flow rate for pressure difference (difference between atmospheric pressure and intake pipe pressure) is obtained from this by interpolation calculation. Multiply by to obtain the intake pipe inflow.

【0028】更にステップ8で、排気弁16を通過する
気体の流量つまり排気弁流量を、上記ステップ3の排気
弁開口面積と上流側のシリンダ圧力と下流側の排気系圧
力とに基づいて算出する。ここで、シリンダ圧力として
は、後述するステップ13において前回求めた値、つま
りステップ10で求めたシリンダ圧力をステップ1の燃
焼圧力上昇率でもって補正した値を用いる。また排気系
圧力は大気圧とみなす。尚、このステップ8の具体的な
処理は、ステップ5と同様に、単位開口面積における圧
力差と流量とのマップを予め与えておき、ここから圧力
差に対する流量を補間計算により求め、かつこれに排気
弁開口面積を乗じて排気弁流量とする。
Further, in step 8, the flow rate of gas passing through the exhaust valve 16, that is, the exhaust valve flow rate is calculated based on the exhaust valve opening area, the upstream cylinder pressure, and the downstream exhaust system pressure in step 3 described above. .. Here, as the cylinder pressure, a value previously obtained in step 13 described later, that is, a value obtained by correcting the cylinder pressure obtained in step 10 with the combustion pressure increase rate in step 1 is used. The exhaust system pressure is regarded as atmospheric pressure. Note that the specific processing of step 8 is similar to step 5 in that a map of the pressure difference and the flow rate in the unit opening area is given in advance, and the flow rate for the pressure difference is obtained by interpolation calculation from this map, and Multiply the exhaust valve opening area to obtain the exhaust valve flow rate.

【0029】次に、ステップ9では、上記ステップ5の
吸気弁流量からステップ8の排気弁流量を減算し、単位
時間(あるいは単位クランク角)当たりにシリンダ12
内に流出入する気体量を算出する。
Next, at step 9, the exhaust valve flow rate at step 8 is subtracted from the intake valve flow rate at step 5, and the cylinder 12 per unit time (or unit crank angle) is subtracted.
Calculate the amount of gas flowing in and out.

【0030】ステップ10では、このシリンダ12内に
流出入する気体量を基礎に、シリンダ圧力を求める。具
体的には、上記流出入気体量を積分して求めたシリンダ
12内気体量をn、そのときのシリンダ容積とスロット
ル弁20以降の吸気管容積との和をV、ガス定数をR、
気体温度をTとすると、PV=nRTの関係からシリン
ダ圧力Pが求まる。尚、気体温度Tは、圧縮膨張により
変化するので、次式から求める。
In step 10, the cylinder pressure is obtained based on the amount of gas flowing into and out of the cylinder 12. Specifically, the gas amount in the cylinder 12 obtained by integrating the inflow and outflow gas amounts is n, the sum of the cylinder volume at that time and the intake pipe volume after the throttle valve 20 is V, the gas constant is R,
When the gas temperature is T, the cylinder pressure P can be obtained from the relationship of PV = nRT. Since the gas temperature T changes due to compression and expansion, it is obtained from the following equation.

【0031】TK=TK-1(VK-1/VKr-1 但し、TKはシリンダ内の気体温度、TK-1は前回算出し
た温度、VK-1は前回算出時のシリンダ容積、VKは算出
時のシリンダ容積、rは定圧比熱と定積比熱の比であ
る。
T K = T K-1 (V K-1 / V K ) r-1 where T K is the temperature of the gas in the cylinder, T K-1 is the temperature calculated last time, and V K-1 is the temperature calculated last time. Is the cylinder volume at the time of calculation, V K is the cylinder volume at the time of calculation, and r is the ratio of the constant pressure specific heat and the constant volume specific heat.

【0032】ステップ11では、ステップ7の吸気管流
入量からステップ5の吸気弁流量を減算し、単位時間
(あるいは単位クランク角)当たりに吸気管(スロット
ル弁20と吸気弁15との間)内に流出入する気体量を
算出する。
In step 11, the intake valve flow rate in step 5 is subtracted from the intake pipe inflow amount in step 7, and the inside of the intake pipe (between the throttle valve 20 and the intake valve 15) per unit time (or unit crank angle) is subtracted. Calculate the amount of gas flowing in and out.

【0033】ステップ12では、この吸気管内に流出入
する気体を積分して吸気管内気体量を求め、上記ステッ
プ10と同様にして吸気管圧力を算出する。
In step 12, the gas flowing into and out of the intake pipe is integrated to obtain the amount of gas in the intake pipe, and the intake pipe pressure is calculated in the same manner as in step 10.

【0034】そしてステップ13では、上記ステップ1
0で得たシリンダ圧力にステップ1の燃焼圧力上昇率を
乗算して、燃焼を考慮したシリンダ圧力を求める。この
値は、前述したように排気弁流量を算出する際に用いら
れる。
In step 13, the above step 1
The cylinder pressure obtained in 0 is multiplied by the combustion pressure increase rate in step 1 to obtain the cylinder pressure in consideration of combustion. This value is used when calculating the exhaust valve flow rate as described above.

【0035】以上のようにして各クランク角におけるシ
リンダ圧力や吸気管圧力が逐次推定され、これらに基づ
いて吸気行程でシリンダ12内に実際に吸入された空気
量や、吸気管圧力変動に伴う噴射パルス幅の補正量等が
求められる。尚、吸気行程初期の吹き戻し現象なども吸
気弁流量等に正しく反映するので、シリンダ12内の空
気量等を精度良く求めることができる。
As described above, the cylinder pressure and the intake pipe pressure at each crank angle are sequentially estimated, and based on these, the amount of air actually sucked into the cylinder 12 in the intake stroke and the injection accompanying the fluctuation of the intake pipe pressure are performed. A pulse width correction amount and the like are obtained. Incidentally, since the blowback phenomenon at the beginning of the intake stroke is also correctly reflected in the intake valve flow rate and the like, the amount of air in the cylinder 12 and the like can be accurately obtained.

【0036】ステップ14以降の処理は、上記の推定に
おける精度を更に向上させるために、実機運転状態と比
較して補正を与えるようにしたもので、先ずステップ1
4では、上記ステップ13のシリンダ圧力に基づき、そ
のときに生じているであろう機関発生トルクを推定す
る。これは全気筒の各ピストンに加わる圧力、コンロッ
ド径、クランク軸回転径から算出する。
The processing in and after step 14 is performed by giving a correction in comparison with the actual machine operating state in order to further improve the accuracy in the above estimation. First, in step 1
In step 4, the engine generated torque that may be generated at that time is estimated based on the cylinder pressure in step 13. This is calculated from the pressure applied to each piston of all cylinders, connecting rod diameter, and crankshaft rotation diameter.

【0037】またステップ15で、そのときの実際の機
関回転数に基づき、所定のマップに従って機関のフリク
ションを推定する。そして、ステップ16で、上記ステ
ップ14の推定機関発生トルクから上記フリクションを
減算し、外部へ出力されるべき出力トルクを推定する。
In step 15, the engine friction is estimated according to a predetermined map based on the actual engine speed at that time. Then, in step 16, the friction is subtracted from the estimated engine-generated torque in step 14, and the output torque to be output to the outside is estimated.

【0038】更に、ステップ17で上記推定出力トルク
に基づいて、該出力トルクにより生じるであろう機関回
転数を推定する。
Further, in step 17, based on the estimated output torque, the engine speed that will be generated by the output torque is estimated.

【0039】そして、ステップ18で上記の推定機関回
転数と実機関回転数との差を求め、ステップ19でこの
差に対応する補正値を例えばPI制御方式等により求め
る。この補正値は、ステップ6で全流路開口面積を算出
する際に用いられる。
Then, in step 18, the difference between the estimated engine speed and the actual engine speed is obtained, and in step 19, a correction value corresponding to this difference is obtained by, for example, the PI control method. This correction value is used when calculating the total flow path opening area in step 6.

【0040】すなわち、前述のようにして推定したシリ
ンダ圧力等に誤差があれば、これが推定機関回転数に反
映し、実機関回転数との間に差が生じるので、修正に必
要な補正値として全流路開口面積の算出にフィードバッ
クされる。そのため、シリンダ圧力等の推定値の精度が
一層向上する。
That is, if there is an error in the cylinder pressure or the like estimated as described above, this is reflected in the estimated engine speed, and a difference from the actual engine speed occurs, so a correction value necessary for correction is obtained. It is fed back to the calculation of the total flow passage opening area. Therefore, the accuracy of the estimated value of the cylinder pressure and the like is further improved.

【0041】図6は、上述したような一連の制御を、そ
の理解を容易にするためにブロック線図として示したも
のである。このブロック線図の各ブロックに付したS1
…等の符号は、上述した図3のフローチャートの各ステ
ップに対応するものであり、その説明は重複するので省
略する。
FIG. 6 is a block diagram showing a series of controls as described above in order to facilitate understanding. S1 attached to each block in this block diagram
Symbols such as ... Correspond to the respective steps of the flowchart of FIG. 3 described above, and the description thereof will be omitted to avoid duplication.

【0042】[0042]

【発明の効果】以上の説明で明らかなように、この発明
に係る内燃機関の吸気状態検出装置によれば、内燃機関
のシリンダ圧力や吸気管圧力を、圧力センサやエアフロ
メータ等の直接的な検出用センサを用いずに高精度に推
定することができる。特に、クランク角に伴って時々刻
々変化するシリンダ圧力や吸気管圧力を逐次検出でき、
かつ吸気の吹き戻し現象等に影響されることがないた
め、空燃比制御等に幅広く利用することができる。ま
た、現在のクランク角に対し位相をずらした状態での推
定が可能となり、ポンピングロス低減のために吸気管圧
力を変化させるような場合に、予め適切な補正を与える
ことが可能となる。
As is apparent from the above description, according to the intake state detecting device for an internal combustion engine of the present invention, the cylinder pressure and the intake pipe pressure of the internal combustion engine can be directly measured by a pressure sensor, an air flow meter or the like. The estimation can be performed with high accuracy without using the detection sensor. In particular, the cylinder pressure and intake pipe pressure that change momentarily with the crank angle can be detected sequentially,
In addition, since it is not affected by the intake air blowback phenomenon and the like, it can be widely used for air-fuel ratio control and the like. Further, it is possible to perform estimation in a state where the phase is shifted with respect to the current crank angle, and it is possible to give appropriate correction in advance when the intake pipe pressure is changed to reduce pumping loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の構成を示すクレーム対応図。FIG. 1 is a claim correspondence diagram showing a configuration of the present invention.

【図2】この発明の一実施例の機械的構成を示す構成説
明図。
FIG. 2 is a structural explanatory view showing a mechanical structure of an embodiment of the present invention.

【図3】この実施例における制御の流れを示すフローチ
ャート。
FIG. 3 is a flowchart showing a control flow in this embodiment.

【図4】燃焼に伴う圧力上昇率の特性を示す特性図。FIG. 4 is a characteristic diagram showing a characteristic of a pressure increase rate associated with combustion.

【図5】単位開口面積における圧力差と吸気弁流量との
関係を示す特性図。
FIG. 5 is a characteristic diagram showing a relationship between a pressure difference in a unit opening area and an intake valve flow rate.

【図6】この実施例の制御の内容を示すブロック線図。FIG. 6 is a block diagram showing the control contents of this embodiment.

【符号の説明】[Explanation of symbols]

1…クランク角検出手段 2…流路開口面積算出手段 3…吸気弁開口面積算出手段 4…排気弁開口面積算出手段 5…吸気管流入量算出手段 6…吸気弁流量算出手段 7…排気弁流量算出手段 8…シリンダ圧力算出手段 9…吸気管圧力算出手段 10…補正手段算出手段 DESCRIPTION OF SYMBOLS 1 ... Crank angle detecting means 2 ... Flow path opening area calculating means 3 ... Intake valve opening area calculating means 4 ... Exhaust valve opening area calculating means 5 ... Intake pipe inflow amount calculating means 6 ... Intake valve flow rate calculating means 7 ... Exhaust valve flow rate Calculation means 8 ... Cylinder pressure calculation means 9 ... Intake pipe pressure calculation means 10 ... Correction means calculation means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 機関のクランク角を検出するクランク角
検出手段と、このクランク角におけるスロットル弁の上
流側と下流側との間の全流路開口面積を求める流路開口
面積算出手段と、このクランク角における吸気弁の開口
面積を求める吸気弁開口面積算出手段および排気弁の開
口面積を求める排気弁開口面積算出手段と、前回求めた
吸気管圧力を用い、これとスロットル弁上流側圧力と上
記流路開口面積とからスロットル弁下流に流入する流量
を求める吸気管流入量算出手段と、前回求めたシリンダ
圧力と吸気管圧力とを用い、これと上記の吸気弁開口面
積とから吸気弁流量を求める吸気弁流量算出手段と、前
回求めたシリンダ圧力を燃焼圧力上昇率に基づいて補正
し、これと排気系圧力と上記の排気弁開口面積とから排
気弁流量を求める排気弁流量算出手段と、上記クランク
角に対応したシリンダ実容積と上記吸気弁流量と上記排
気弁流量とから上記クランク角におけるシリンダ圧力を
算出するシリンダ圧力算出手段と、上記吸気管流入量と
上記吸気弁流量とから上記クランク角における吸気管圧
力を算出する吸気管圧力算出手段とを備えたことを特徴
とする内燃機関の吸気状態検出装置。
1. A crank angle detecting means for detecting a crank angle of an engine, a flow passage opening area calculating means for obtaining a total flow passage opening area between an upstream side and a downstream side of a throttle valve at this crank angle, and The intake valve opening area calculating means for obtaining the opening area of the intake valve at the crank angle, the exhaust valve opening area calculating means for obtaining the opening area of the exhaust valve, and the intake pipe pressure obtained last time are used. Using the intake pipe inflow amount calculating means for obtaining the flow rate flowing into the downstream side of the throttle valve from the flow passage opening area and the cylinder pressure and the intake pipe pressure obtained last time, the intake valve flow rate is calculated from this and the above intake valve opening area. The intake valve flow rate calculation means to be calculated and the cylinder pressure previously obtained are corrected based on the combustion pressure increase rate, and the exhaust valve flow rate is calculated from this, the exhaust system pressure, and the above exhaust valve opening area. Air valve flow rate calculation means, cylinder pressure calculation means for calculating cylinder pressure at the crank angle from the cylinder actual volume corresponding to the crank angle, the intake valve flow rate, and the exhaust valve flow rate, the intake pipe inflow amount, and the An intake state detecting device for an internal combustion engine, comprising: an intake pipe pressure calculating means for calculating an intake pipe pressure at the crank angle from an intake valve flow rate.
JP2303092A 1992-02-10 1992-02-10 Air intake state detection device for internal combustion engine Pending JPH05222998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2303092A JPH05222998A (en) 1992-02-10 1992-02-10 Air intake state detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2303092A JPH05222998A (en) 1992-02-10 1992-02-10 Air intake state detection device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH05222998A true JPH05222998A (en) 1993-08-31

Family

ID=12099079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2303092A Pending JPH05222998A (en) 1992-02-10 1992-02-10 Air intake state detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH05222998A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1477651A1 (en) * 2003-05-12 2004-11-17 STMicroelectronics S.r.l. Method and device for determining the pressure in the combustion chamber of an internal combustion engine, in particular a spontaneous ignition engine, for controlling fuel injection in the engine
JP2006207538A (en) * 2005-01-31 2006-08-10 Toyota Motor Corp Ignition timing control device for internal combustion engine
US7200486B2 (en) 2001-10-15 2007-04-03 Toyota Jidosha Kabushiki Kaisha Apparatus for estimating quantity of intake air for internal combustion engine
JP2014025344A (en) * 2012-07-24 2014-02-06 Hitachi Automotive Systems Ltd Control apparatus of internal combustion engine
US9726098B2 (en) 2015-04-08 2017-08-08 Mitsubishi Electric Corporation Intake air mass estimation apparatus for motorcycle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7200486B2 (en) 2001-10-15 2007-04-03 Toyota Jidosha Kabushiki Kaisha Apparatus for estimating quantity of intake air for internal combustion engine
EP1477651A1 (en) * 2003-05-12 2004-11-17 STMicroelectronics S.r.l. Method and device for determining the pressure in the combustion chamber of an internal combustion engine, in particular a spontaneous ignition engine, for controlling fuel injection in the engine
US7171950B2 (en) 2003-05-12 2007-02-06 Stmicroelectronics S.R.L. Method and device for determining the pressure in the combustion chamber of an internal combustion engine, in particular a spontaneous ignition engine, for controlling fuel injection in the engine
JP2006207538A (en) * 2005-01-31 2006-08-10 Toyota Motor Corp Ignition timing control device for internal combustion engine
JP2014025344A (en) * 2012-07-24 2014-02-06 Hitachi Automotive Systems Ltd Control apparatus of internal combustion engine
CN103573453A (en) * 2012-07-24 2014-02-12 日立汽车系统株式会社 Apparatus and method for controlling internal-combustion engine
US9670863B2 (en) 2012-07-24 2017-06-06 Hitachi Automotive Systems, Ltd. Apparatus and method for controlling internal-combustion engine
US9726098B2 (en) 2015-04-08 2017-08-08 Mitsubishi Electric Corporation Intake air mass estimation apparatus for motorcycle

Similar Documents

Publication Publication Date Title
JP2901613B2 (en) Fuel injection control device for automotive engine
US6915788B2 (en) Engine controller
JPH05222998A (en) Air intake state detection device for internal combustion engine
US20020092506A1 (en) Fuel injection control system, fuel injection control method, and engine control unit, for internal combustion engine
JP3873608B2 (en) Internal combustion engine control device
JP2002147269A (en) Engine control device
JP2709080B2 (en) Engine intake air amount calculation device and intake air amount calculation method
JPH08128359A (en) Exhaust gas reflux rate estimating device of internal combustion engine
JP3057875B2 (en) Air-fuel ratio control device for internal combustion engine
JP4304415B2 (en) Control device for internal combustion engine
JP4185079B2 (en) Control device for internal combustion engine
JPH11223145A (en) Air-fuel ratio control device
JPH05187305A (en) Air amount calculating device of internal combustion engine
JP2847454B2 (en) Air-fuel ratio detection device for internal combustion engine
JP4023084B2 (en) Intake air amount prediction apparatus and intake pressure prediction apparatus
JP3078008B2 (en) Engine fuel control device
JP2002276451A (en) Atmospheric pressure detecting device for internal combustion engine
JP4241560B2 (en) Intake air amount estimation device for internal combustion engine
JP2645278B2 (en) Engine intake air control system
JPH08128348A (en) Control device of engine
JPH07685Y2 (en) Air amount detector for engine
JPH0681913B2 (en) Electronic control unit for internal combustion engine
JPH0686843B2 (en) Air amount detection device for internal combustion engine
JP4506608B2 (en) Engine cylinder intake air amount detection device and engine fuel injection device
JP2709081B2 (en) Engine intake air amount calculation device and intake air amount calculation method