JPH05222467A - Laminated bending member for damper - Google Patents

Laminated bending member for damper

Info

Publication number
JPH05222467A
JPH05222467A JP5893092A JP5893092A JPH05222467A JP H05222467 A JPH05222467 A JP H05222467A JP 5893092 A JP5893092 A JP 5893092A JP 5893092 A JP5893092 A JP 5893092A JP H05222467 A JPH05222467 A JP H05222467A
Authority
JP
Japan
Prior art keywords
copper alloy
damper
alloy material
resistance
bending member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5893092A
Other languages
Japanese (ja)
Inventor
Masato Asai
真人 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5893092A priority Critical patent/JPH05222467A/en
Publication of JPH05222467A publication Critical patent/JPH05222467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To improve strength, stress resistance relaxing characteristic and environment resistance characteristic by laminating aramid fibers or carbon fibers on a copper alloy material. CONSTITUTION:Aramid fibers or carbon fibers excellent in vibration fatigue resistance are laminated on a copper alloy material excellent in strength, stress resistance relaxing characteristic and environment resistance characteristic by which a laminated bending member for damper can be formed. As for the form of lamination, arbitrary form of lamination, such as form for which the fibers are laminated on one side or both sides of the copper alloy material and a form where the copper alloy material and the fibers are alternately laminated, can be adopted. It is preferable that the copper alloy material has a composition consisting of, by weight, at least one kind among 1.2-3.6% Ni, 0.3-1.0% Si, 0.2-2.5% Be, 0.2-4.5% Ti, 0.1-3.5% Sn, 0.1-2.5% Co, 0.1-5.0% Zn, and 0.05-0.5% Mg and the balance Cu with inevitable impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強度,耐応力緩和特
性,耐振動疲労特性,耐環境特性に優れたダンパ用複合
屈曲部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite bending member for a damper which is excellent in strength, stress relaxation resistance, vibration fatigue resistance and environment resistance.

【0002】[0002]

【従来の技術】ダクト等の振動を伴う配管を建屋壁部等
に固定する固定具には、振動騒音等を防止する為に振動
吸収能を有するダンパ用部材が用いられており、従来、
このダンパ用部材には金属そのものの弾塑性変形を利用
する弾塑性ダンパ用部材が実用されてきた。しかしなが
ら、この弾塑性ダンパ用部材は、用いた金属材料の材質
により、その吸収し得る振動の周波数領域が限られてし
まう為、用途に応じて種々のダンパ用部材を使い分ける
必要があり、管理上からもコスト的にも不利であった。
このようなことから、ダンパ用部材として、金属材料を
波状に成形したダンパ用屈曲部材が用いられるようにな
った。このダンパ用屈曲部材は、振動をその波状部分の
弾塑性変形により吸収するもので、振動吸収能が金属材
料の材質により左右されることがなく、従って金属材料
を広い視野にたって選択できるという利点があった。と
ころで、ダンパ用屈曲部材には、配管等を支持するに足
る強度、波形を維持し得る耐応力緩和特性、振動吸収に
耐える耐振動疲労特性、それに、ダンパ用屈曲部材は、
温度,圧力,湿度等の環境要因が厳しいもとに置かれる
為、このような腐食環境に耐える耐環境特性が要求され
ていた。
2. Description of the Related Art A member for a damper having a vibration absorbing ability is used for a fixture for fixing pipes accompanied by vibration such as a duct to a building wall portion, etc., in order to prevent vibration noise.
For this damper member, an elasto-plastic damper member utilizing the elasto-plastic deformation of metal itself has been put into practical use. However, in this elasto-plastic damper member, the frequency range of vibration that can be absorbed is limited depending on the material of the metal material used, so it is necessary to use various damper members properly according to the application, It was also disadvantageous in terms of cost.
For this reason, as the damper member, a damper bending member formed by corrugating a metal material has been used. This bending member for damper absorbs vibration by elasto-plastic deformation of its corrugated portion, and its vibration absorption ability is not influenced by the material of the metal material, and therefore the metal material can be selected from a wide field of view. was there. By the way, in the bending member for damper, strength enough to support pipes, stress relaxation resistance capable of maintaining a waveform, vibration fatigue resistance resistant to vibration absorption, and bending member for damper are
Since environmental factors such as temperature, pressure and humidity are placed under severe conditions, environmental resistance characteristics that can withstand such a corrosive environment have been required.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ダンパ
用屈曲部材として従来から用いられている普通鋼(例え
ばSS-490)や燐青銅合金は、前記特性を満足し得るもの
ではなく、新しい材料の開発が強く要求されていた。こ
のようなことから、本発明者は、種々の銅合金材料を試
作し適性を調査検討してきたが、ダンパ用屈曲部材に要
求される特性のうち、耐振動疲労特性については十分満
足すべき特性の材料が得られなかった。
However, ordinary steel (for example, SS-490) and phosphor bronze alloy that have been conventionally used as bending members for dampers do not satisfy the above characteristics, and new materials have been developed. Was strongly demanded. From this, the present inventor has made various copper alloy materials as prototypes and investigated the suitability, but among the characteristics required for the bending member for the damper, the characteristics that should sufficiently satisfy the vibration fatigue resistance. No material was obtained.

【0004】[0004]

【課題を解決する為の手段】本発明はこのような状況に
鑑み鋭意研究を行ない、銅合金材料にアラミド繊維又は
炭素繊維を複合することにより、ダンパ用屈曲部材の耐
振動疲労特性を十分高い値に向上し得ることを知見し、
更に研究を重ねて本発明を完成するに至ったものであ
る。即ち、本発明は、強度、耐応力緩和特性及び耐環境
特性に優れた銅合金材料にアラミド繊維又は/及び炭素
繊維を複合したことを特徴とするものである。
The present invention has conducted intensive studies in view of such a situation, and by combining a copper alloy material with aramid fiber or carbon fiber, the vibration bending fatigue resistance of the bending member for damper is sufficiently high. Found that the value can be improved,
After further research, the present invention has been completed. That is, the present invention is characterized in that a copper alloy material excellent in strength, stress relaxation resistance and environment resistance is combined with aramid fiber and / or carbon fiber.

【0005】本発明のダンパ用複合屈曲部材は、銅合金
材料にアラミド繊維又は/及び炭素繊維を複合したもの
で、前記銅合金材料は主に強度及び耐応力緩和特性を高
度に維持する作用を果たし、又アラミド繊維や炭素繊維
は耐振動疲労特性の向上を担い、更に前記繊維は銅合金
材料を被覆することによりその耐環境特性をレベルアッ
プするものである。而して、本発明のダンパ用複合屈曲
部材の複合形態は、図1イ〜ホに例示したように、銅合
金材料1の片面にアラミド繊維2を複合したもの(図
イ)、複数の銅合金材料1とアラミド繊維2を交互に複
合したもの(図ロ,ハ)、銅合金材料1の外周全体をア
ラミド繊維2で覆うように複合したもの(図ニ)、銅合
金材料1の両面にアラミド繊維2を複合したもの(図
ホ)等任意の複合形態が適用される。前記図ニに示した
アラミド繊維2を銅合金材料1の全周に複合したもの
は、アラミド繊維2の高耐腐食性の利点をフルに発揮し
た複合形態である。前記において、アラミド繊維の代わ
りに炭素繊維を用いても、又アラミド繊維と炭素繊維を
併用しても良い。
The composite bending member for a damper of the present invention is a composite of aramid fiber and / or carbon fiber in a copper alloy material, and the copper alloy material mainly functions to maintain high strength and stress relaxation resistance. In fact, the aramid fiber and the carbon fiber are responsible for improving the vibration fatigue resistance, and the fiber is coated with a copper alloy material to improve its environmental resistance. The composite form of the composite bending member for a damper of the present invention is, as illustrated in FIGS. 1A to 1E, a composite of the aramid fiber 2 on one surface of the copper alloy material 1 (FIG. A), a plurality of coppers. The alloy material 1 and the aramid fiber 2 are alternately compounded (Figs. B and C), the copper alloy material 1 is compounded so as to cover the entire outer periphery with the aramid fiber 2 (Fig. D), and both surfaces of the copper alloy material 1 are covered. Any composite form such as a composite of aramid fibers 2 (Fig. E) is applied. The composite of the aramid fibers 2 shown in the above-mentioned FIG. 2 along the entire circumference of the copper alloy material 1 is a composite form in which the advantage of the high corrosion resistance of the aramid fibers 2 is fully exhibited. In the above, carbon fiber may be used instead of aramid fiber, or aramid fiber and carbon fiber may be used in combination.

【0006】本発明において、銅合金材料に複合するア
ラミド繊維又は炭素繊維には、通常の市販品が適用でき
る。又その複合方法は、接着剤を用いて温間加圧接着す
る方法が高い接合強度が得られ好ましい。又前記繊維
は、多数本の繊維をそのまま銅合金材料の表面に縦,横
に並べ接着してもよいし、又前記繊維を織布した板状体
を用いても差し支えない。本発明にて用いる銅合金材料
には、Ni1.2 〜3.6 wt%,Si0.3 〜1.0 wt%,Be
0.2 〜2.5 wt%,Ti0.2 〜4.5 wt%,Sn0.1 〜3.5
wt%,Co0.1 〜2.5 wt%,Zn0.1 〜5.0 wt%,Mg
0.05〜0.5 wt%の少なくとも1種を含み、残部Cuと不
可避的不純物からなる銅合金材料が好適である。前記合
金元素は主に強度及び耐応力緩和特性を高度に維持する
作用を有し、その濃度範囲を、Ni1.2 〜3.6 wt%,S
i0.3 〜1.0 wt%,Be0.2 〜2.5 wt%,Ti0.2 〜4.
5 wt%,Sn0.1 〜3.5 wt%,Co0.1 〜2.5 wt%,Z
n0.1 〜5.0 wt%,Mg0.05〜0.5 wt%に限定した理由
は、前記各々の合金元素濃度が前記限定範囲の上限を上
回ると、前記銅合金材料を製造する過程において、鋳造
欠陥又は圧延欠陥が生じて前記銅合金材料を所定形状に
加工するのが困難になり、又耐環境特性も低下する為で
ある。又、前記各々の合金元素濃度が前記限定範囲の下
限を下回ると、十分な強度及び耐応力緩和特性が得られ
なくなる為である。更に、上記銅合金材料にV,Zr,
Cr,Y,稀土類元素(MM)を一種又は二種以上、合
計で0.005 〜0.2 wt%程度添加して結晶粒を微細化して
強度を一層向上させることができる。
In the present invention, usual commercial products can be applied to the aramid fiber or carbon fiber which is compounded with the copper alloy material. Further, as the compounding method, a method of warm pressure bonding with an adhesive is preferable because high bonding strength can be obtained. Further, as the fibers, a large number of fibers may be directly arranged on the surface of the copper alloy material in the vertical and horizontal directions and bonded, or a plate-shaped body woven of the fibers may be used. The copper alloy material used in the present invention includes Ni1.2 to 3.6 wt%, Si0.3 to 1.0 wt%, Be.
0.2-2.5 wt%, Ti0.2-4.5 wt%, Sn0.1-3.5
wt%, Co0.1 to 2.5 wt%, Zn0.1 to 5.0 wt%, Mg
A copper alloy material containing at least one of 0.05 to 0.5 wt% and the balance Cu and unavoidable impurities is preferable. The alloying element mainly has a function of maintaining strength and stress relaxation resistance to a high degree, and its concentration range is Ni1.2 to 3.6 wt%, S
i0.3-1.0 wt%, Be0.2-2.5 wt%, Ti0.2-4.
5 wt%, Sn0.1-3.5 wt%, Co0.1-2.5 wt%, Z
The reason for limiting n0.1 to 5.0 wt% and Mg0.05 to 0.5 wt% is that when the concentration of each alloying element exceeds the upper limit of the limiting range, casting defects or This is because rolling defects occur and it becomes difficult to process the copper alloy material into a predetermined shape, and the environment resistance characteristics also deteriorate. Further, if the concentration of each of the alloying elements falls below the lower limit of the limited range, sufficient strength and stress relaxation resistance cannot be obtained. Furthermore, V, Zr,
One or two or more of Cr, Y and rare earth elements (MM) may be added in a total amount of about 0.005 to 0.2 wt% to refine the crystal grains and further improve the strength.

【0007】[0007]

【作用】本発明のダンパ用複合屈曲部材は、強度と耐応
力緩和特性及び耐環境特性に優れた銅合金材料に、耐振
動疲労特性に優れたアラミド繊維又は炭素繊維を複合し
たものなので、ダンパ用屈曲部材に要求される特性全て
が満足される。
The composite bending member for a damper of the present invention is a composite of a copper alloy material excellent in strength, stress relaxation resistance and environmental resistance, and aramid fiber or carbon fiber excellent in vibration fatigue resistance. All the characteristics required for the bending member for vehicle are satisfied.

【0008】[0008]

【実施例】以下に、本発明を実施例により詳細に説明す
る。 実施例1 表1に示した合金のうち、合金NoA〜Fの合金を溶解,
鋳造して鋳塊となし、この鋳塊を 900℃で熱間圧延して
厚さ10mmの圧延材となした。次にこの圧延材を表面研削
したのち、冷間圧延により厚さ0.6mm の板材に加工し
た。然る後、この板材に 850℃×60秒の中間加熱処理を
施し、前記加熱処理温度から急冷し、これを酸洗研磨し
たのち冷間圧延して厚さ0.35mmの板材に仕上げ、更にこ
の板材に 320〜 450℃×2時間の加熱処理を施した後、
これに 0.2mmの厚さにアラミド繊維又は炭素繊維を密に
被覆して、図1イ又はロに示した形態に複合してダンパ
用複合屈曲部材を作製した。前記の銅合金板材にアラミ
ド繊維又は炭素繊維を複合するには、接着剤を用いた温
間加圧接着法により行った。又アラミド繊維には帝人
(株)製の高強力パラ系アラミド繊維テクノーラ(商品
名)を用い、炭素繊維には東レ(株)製のPAN系炭素
繊維トレカ(商品名)を用いた。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 Among the alloys shown in Table 1, alloy Nos. A to F were melted,
It was cast into an ingot, and this ingot was hot-rolled at 900 ° C to obtain a rolled material having a thickness of 10 mm. Next, after the surface of this rolled material was ground, it was processed into a plate material having a thickness of 0.6 mm by cold rolling. After that, this plate material is subjected to intermediate heat treatment at 850 ° C. for 60 seconds, rapidly cooled from the heat treatment temperature, pickled and polished, and then cold rolled to a plate material having a thickness of 0.35 mm. After the plate is heat-treated at 320-450 ℃ for 2 hours,
This was densely covered with aramid fiber or carbon fiber to a thickness of 0.2 mm, and was compounded in the form shown in FIG. The aramid fiber or the carbon fiber was compounded with the copper alloy plate material by a warm pressure bonding method using an adhesive. Also, high-strength para-aramid fiber Technora (trade name) manufactured by Teijin Ltd. was used as the aramid fiber, and PAN-based carbon fiber trading card (trade name) manufactured by Toray Co., Ltd. was used as the carbon fiber.

【0009】比較例1 実施例1にて作製した合金No.A,Dの厚さ0.35mmの銅
合金板材を、アラミド繊維又は炭素繊維を複合せずにそ
のままダンパ用屈曲部材となした。 比較例2 表1に示した合金No.G〜Hの銅合金を実施例1と同じ
方法・条件により厚さ0.35mmの銅合金板材に加工し、次
いで 320〜 450℃×2時間の加熱処理を施したのち、こ
の銅合金板材にアラミド繊維又は炭素繊維を図1イ又は
ロに示した形態にて複合してダンパ用複合屈曲部材を作
製した。 従来例1 市販の厚さ0.35mmの普通鋼(SS-490) と8%燐青銅をダ
ンパ用屈曲部材となした。
Comparative Example 1 Alloy No. 1 produced in Example 1 Copper alloy plate materials of thickness A and D having a thickness of 0.35 mm were used as they were as bending members for damper without compounding aramid fiber or carbon fiber. Comparative Example 2 Alloy No. shown in Table 1. The G to H copper alloys were processed into a 0.35 mm-thick copper alloy sheet by the same method and conditions as in Example 1, and then heat-treated at 320 to 450 ° C. for 2 hours, and then this copper alloy sheet was made of aramid. Fibers or carbon fibers were compounded in the form shown in FIG. 1A or B to fabricate a composite bending member for a damper. Conventional Example 1 Commercially available ordinary steel (SS-490) having a thickness of 0.35 mm and 8% phosphor bronze were used as the bending member for the damper.

【0010】このようにして得られた各々のダンパ用複
合屈曲部材又はダンパ用屈曲部材からサンプルを切り出
して、引張強度,耐応力緩和特性,耐振動疲労特性,耐
環境特性を調査した。結果は表2に示した。引張試験
は、JIS-Z2241 に準拠して行った。尚、引張試験に際し
ダンパ用複合屈曲部材には銅合金部材部分に微弱電流を
通電しておいて、破断時の通電有無により破断部位が銅
合金部材部分か否かを判定した。耐応力緩和特性は、供
試材から幅10mm、長さ 200mmの短冊片を切出し、この短
冊片を負荷応力が 500N/mm2 になるように撓ませた状
態で 150℃× 500時間保持し、負荷応力開放後に残存す
る撓み量を百分率で求めた。耐振動疲労特性は、供試材
から幅10mm,長さ 100mmの短冊片を切出し、その中央部
を曲率5mmで90度曲げし、一端を固定し他端に振幅30m
m,周期 0.1秒の曲げ振動を繰り返し与えて試験した。
試験時間は最大48時間とし、破断までの時間で示した。
耐環境特性は、振動疲労試験で用いたのと同じ短冊片
に、「10%NaClの塩水噴霧中に15分間保持→40℃の 100
%RH雰囲気中に30分間保持→80℃の30%RH雰囲気中
に60分間保持」の腐食サイクルを30回繰り返し施した
後、前述と同じ条件で振動疲労試験を行って評価した。
但し、試験時間は最大24時間とした。
Samples were cut out from the composite bending members for damper or the bending members for damper thus obtained, and the tensile strength, stress relaxation resistance, vibration fatigue resistance, and environment resistance were investigated. The results are shown in Table 2. The tensile test was performed according to JIS-Z2241. During the tensile test, a weak current was applied to the copper alloy member portion of the damper composite bending member, and it was determined whether or not the fracture site was the copper alloy member portion based on the presence or absence of energization at the time of fracture. For the stress relaxation resistance, a strip of 10 mm wide and 200 mm long was cut out from the test material, and this strip was bent at a load stress of 500 N / mm 2 and held at 150 ° C for 500 hours. The amount of flexure remaining after release of the load stress was calculated as a percentage. For vibration fatigue resistance, a strip with a width of 10 mm and a length of 100 mm is cut out from the test material, the center part is bent 90 degrees with a curvature of 5 mm, one end is fixed and the other end has an amplitude of 30 m.
The test was performed by repeatedly applying bending vibration with m and a period of 0.1 second.
The maximum test time was 48 hours, and the time until breakage was shown.
For environmental resistance characteristics, use the same strips used in the vibration fatigue test as "hold for 15 minutes in salt spray of 10% NaCl → 100 at 40 ° C.
% Corrosion atmosphere for 30 minutes → 80 ° C. 30% RH atmosphere for 60 minutes ”, the corrosion cycle was repeated 30 times, and a vibration fatigue test was conducted under the same conditions as described above for evaluation.
However, the maximum test time was 24 hours.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 種類:アラ→アラミド繊維,炭素→炭素繊維、形態:
図1に示した形態。破断部位:金は銅合金部材部分。
○印は48時間以上を示す。○印は24時間以上を示
す。
[Table 2] Type: Ara → Aramid fiber, Carbon → Carbon fiber, Form:
The form shown in FIG. Fracture site: Gold is the copper alloy member part.
○ indicates 48 hours or more. ○ indicates 24 hours or more.

【0013】表2より明らかなように、本発明のダンパ
用複合屈曲部材(No.1〜8)は、引張強度,耐応力緩
和特性,耐振動疲労特性,耐環境特性のすべての試験項
目において良好な成績を示した。これに対し、比較例品
のNo9,10はアラミド繊維又は炭素繊維を複合しなかっ
た為、いずれも耐振動疲労特性及び耐環境特性が低下し
た。又No.11,12は用いた銅合金材料の合金元素濃度が
低かった為、引張強度,耐応力緩和特性,耐環境特性が
低下した。又耐振動疲労特性も銅合金自体の耐振動疲労
特性が低下した為アラミド繊維や炭素繊維の複合効果が
認められなかった。又No.13,14は銅合金材料の合金元
素濃度が高すぎた為製造過程で圧延欠陥が生じて所定形
状の板材に加工することができなかった。又従来材のNo
15,16は、強度、耐応力緩和特性,耐振動疲労特性,耐
環境特性がいずれも低いものであった。尚、本発明のダ
ンパ用複合屈曲部材を工場内のダクトの支持に用いたと
ころ、騒音を発生せずに長期間安定して使用することが
できた。
As is clear from Table 2, the composite bending members for dampers (Nos. 1 to 8) of the present invention were tested in all test items of tensile strength, stress relaxation resistance, vibration fatigue resistance, and environment resistance. It showed good results. On the other hand, Comparative Examples Nos. 9 and 10 did not contain aramid fiber or carbon fiber, so that the vibration fatigue resistance and the environment resistance were deteriorated. Also No. In Nos. 11 and 12, the tensile strength, stress relaxation resistance, and environmental resistance were deteriorated because the alloy element concentration of the copper alloy material used was low. As for the vibration fatigue resistance, the composite effect of aramid fiber and carbon fiber was not recognized because the vibration fatigue resistance of the copper alloy itself deteriorated. Also No. For Nos. 13 and 14, because the alloying element concentration of the copper alloy material was too high, rolling defects occurred during the manufacturing process, and it was not possible to machine into plate materials with the prescribed shape. No. of conventional materials
In Nos. 15 and 16, strength, stress relaxation resistance, vibration fatigue resistance, and environment resistance were all low. When the damper composite bending member of the present invention was used to support a duct in a factory, it could be stably used for a long period of time without generating noise.

【0014】[0014]

【効果】以上述べたように、本発明のダンパ用複合屈曲
部材は、強度,耐応力緩和特性,耐振動疲労特性,及び
耐環境特性に優れ、工業上顕著な効果を奏する。
[Effect] As described above, the composite bending member for a damper of the present invention is excellent in strength, stress relaxation resistance, vibration fatigue resistance, and environment resistance, and has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のダンパ用複合屈曲部材の態様例を示す
断面説明図である。
FIG. 1 is an explanatory sectional view showing an example of a mode of a composite bending member for a damper of the present invention.

【符号の説明】[Explanation of symbols]

1 銅合金材料 2 アラミド繊維 1 Copper alloy material 2 Aramid fiber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 強度、耐応力緩和特性及び耐環境特性に
優れた銅合金材料にアラミド繊維又は/及び炭素繊維を
複合したことを特徴とするダンパ用複合屈曲部材。
1. A composite bending member for a damper, comprising a copper alloy material excellent in strength, stress relaxation resistance and environment resistance, and aramid fiber and / or carbon fiber being compounded.
【請求項2】 銅合金材料が、Ni1.2 〜3.6 wt%,S
i0.3 〜1.0 wt%,Be0.2 〜2.5 wt%,Ti0.2 〜4.
5 wt%,Sn0.1 〜3.5 wt%,Co0.1 〜2.5 wt%,Z
n0.1 〜5.0 wt%,Mg0.05〜0.5 wt%の少なくとも1
種を含み、残部Cuと不可避的不純物からなることを特
徴とする請求項1記載のダンパ用複合屈曲部材。
2. The copper alloy material is Ni1.2 to 3.6 wt%, S
i0.3-1.0 wt%, Be0.2-2.5 wt%, Ti0.2-4.
5 wt%, Sn0.1-3.5 wt%, Co0.1-2.5 wt%, Z
n0.1-5.0 wt%, Mg0.05-0.5 wt% at least 1
The composite bending member for a damper according to claim 1, wherein the composite bending member includes a seed and the balance is Cu and unavoidable impurities.
JP5893092A 1992-02-12 1992-02-12 Laminated bending member for damper Pending JPH05222467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5893092A JPH05222467A (en) 1992-02-12 1992-02-12 Laminated bending member for damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5893092A JPH05222467A (en) 1992-02-12 1992-02-12 Laminated bending member for damper

Publications (1)

Publication Number Publication Date
JPH05222467A true JPH05222467A (en) 1993-08-31

Family

ID=13098556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5893092A Pending JPH05222467A (en) 1992-02-12 1992-02-12 Laminated bending member for damper

Country Status (1)

Country Link
JP (1) JPH05222467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7182823B2 (en) 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7182823B2 (en) 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon
US8257515B2 (en) 2002-07-05 2012-09-04 Gbc Metals, Llc Copper alloy containing cobalt, nickel and silicon
US8430979B2 (en) 2002-07-05 2013-04-30 Gbc Metals, Llc Copper alloy containing cobalt, nickel and silicon

Similar Documents

Publication Publication Date Title
US20140356647A1 (en) Aluminum alloy clad material for forming
US8632891B2 (en) Aluminium composite sheet material
EP2429814A1 (en) Multi-layer composite sheet al-mg-si / al-mn for automotive panels
JP6418714B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
ES2220832T3 (en) MANUFACTURING PROCEDURE OF A PLUGGED ALUMINUM ALLOY BAND FOR THE MANUFACTURE OF SOLDED HEAT CHANGERS.
EP0176164A1 (en) Methon of producing a corrosion resistant vacuum brazing sheet
JPH08199278A (en) Aluminum alloy sheet excellent in press formability and baking finish hardenability and its production
US5356725A (en) Corrosion-resistant aluminum alloy brazing composite
JPH05222467A (en) Laminated bending member for damper
JP2628672B2 (en) Manufacturing method of Al alloy fin material for heat exchanger
JPH06278243A (en) Aluminum alloy clad plate with excellent molding workability, corrosive resistance and hardening property
JPS6043901B2 (en) Non-heat treatment type Al-Mg alloy
JPH0250934A (en) Brazing sheet made of aluminum for heat exchanger member
JPH09103891A (en) Clad plate of aluminum alloy and stainless steel and manufacture thereof
JP3073197B1 (en) Shock absorbing member in automobile frame structure
JPH05156392A (en) Bent member for damper
JPH07188821A (en) High formability aluminum alloy clad plate excellent in low temp. baking hardenability
JP2000280089A (en) High strength aluminum alloy clad plate and aluminum alloy brazing body
JPH05171316A (en) Flexing member for damper
JPH03199342A (en) Sheet metal for working excellent in durability in weld zone
JPH03134127A (en) Aluminum alloy-clad material for heat exchanger member
JPH05171319A (en) Flexing member for damper
JPH07228935A (en) Clad aluminum alloy plate excellent in baking hardenability at low temperature and having high formability
JPH07102336A (en) Clad aluminum alloy sheet excellent in baking hardenability at low temperature and having high formability
JPH0672285B2 (en) Shape memory alloy