JPH0522204B2 - - Google Patents

Info

Publication number
JPH0522204B2
JPH0522204B2 JP61273751A JP27375186A JPH0522204B2 JP H0522204 B2 JPH0522204 B2 JP H0522204B2 JP 61273751 A JP61273751 A JP 61273751A JP 27375186 A JP27375186 A JP 27375186A JP H0522204 B2 JPH0522204 B2 JP H0522204B2
Authority
JP
Japan
Prior art keywords
polymer
formula
group
optical fiber
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61273751A
Other languages
Japanese (ja)
Other versions
JPS63127205A (en
Inventor
Akira Oomori
Hiroshi Inukai
Masahiko Ueda
Takahiro Kitahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP61273751A priority Critical patent/JPS63127205A/en
Publication of JPS63127205A publication Critical patent/JPS63127205A/en
Publication of JPH0522204B2 publication Critical patent/JPH0522204B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、耐熱性に優れる光学繊維に関する。 〔従来の技術〕 フルオロアルキルメタクリレート重合体は、屈
折率が低いので、光学繊維鞘材として従来から利
用されている。しかし、この重合体は、耐熱性が
不足しているので、これを使用する光学繊維は、
車輌のエンジン等の発熱体の近くに設置すること
ができなかつた。これを改善する目的で、最近、
α位にフツ素を有するフルオロアルキルアクリレ
ートの重合体を鞘材として使用することが提案さ
れた(特開昭59−227908号公報参照)が、この重
合体も、まだ満足すべき耐熱性を有していない。 〔発明の目的〕 本発明者らは、耐熱性に優れた光学繊維鞘材に
ついて鋭意検討した結果、α位に塩素を有するア
クリレートの重合体が、フツ素のものより格段に
この性質に優れていることを見出し、本発明に達
したものである。 本発明の目的は、耐熱性に優れた光学繊維を提
供することである。 〔発明の構成〕 本発明は、芯および鞘から構成される光学繊維
において、鞘が式: (式中、Rは炭素数1〜30の有機基を示す。)
で表わされる単量体から本質的に構成される重合
体であることを特徴とする光学繊維である。 前記単量体は、前記式に包含されるものの混合
物であつてよい。 重合体の物理的または化学的性質を損なわない
範囲(通常50重量%以下)で他のエチレン性不飽
和単量体を重合体に含有させることができる。他
のエチレン性不飽和単量体として、例えば、メチ
ルメタクリレート、エチルメタクリレート、エチ
ルアクリレート、フツ化ビニリデン、塩化ビニ
ル、スチレン、エチレン、プロピレン、2,2,
3,3,3−ペンタフルオロプロピルメタクリレ
ート、2,2,2−トリフルオロエチル−α−フ
ルオロアクリレート、α−クロロアクリル酸等を
挙げることができるがこれらに限定されない。 本発明において、前記単量体に含有されるR基
は、重合体の屈折率を高くするものでなければ特
に制限を受けない。R基の例として、式: −CH2CH2N(R1)SO2−Rf (式中、R1は炭素数1〜4のアルキル基、Rf
は炭素数1〜9のフルオロアルキル基〔但し、パ
ーフルオロアルキル基を除く〕、−((CF2CF2n
(O)oqCF(Rf1)CF3基〔但し、mは1〜5の整
数、nは0または1、qは1〜5の整数、Rf1
フツ素または−CF3基である。〕または−CF
(CF3)O(CF2CF(CF3)O)pCF(Rf1)CF3
〔但し、pは0または1〜5の整数、Rf1は前記
と同じ。〕を示す。)、 式: −CH2CH(OZ)CH2−Rf (式中、Zは水素またはアセチル基、Rfは前
記と同じ。)、 式: −Ph−O−Rf2基 (式中、Phはフエニレン基、Rf2は炭素数6〜
12のフルオロアルキレン基を示す。) または式: −(CR1R2hRf (式中、hは1〜5の整数、R1およびR2は水
素またはメチル基、Rfは前記と同じ。)で表わさ
れる含フツ素有機基、あるいは炭素数1〜20のア
ルキル基、炭素数1〜20のジアルキルアミノアル
キル基、炭素数1〜20のグリシジルアルキル基ま
たは炭素数1〜20のヒドロキシアルキル基、シク
ロヘキシル基、フエニル基のようなフツ素を含有
しない有機基等を挙げることができる。屈折率が
低い点でフツ素を含有する基が好ましい。R基の
具体例として−CH2CF3、−CH2CF2CHF2、−CH2
CF2CF3、−CH2(CF2CF22H、−CH2CH2(CF2
CF23CF2CF3、−CH2CH2(CF2CF23CF(CF32
−C(CH32CF2CHF2、−CH2CF2CHFCF3、−C
(CH32CF2CHFCF3、−CH2CH2N(CH2CH3
SO2(CF2CF23CF2CF3、−CH2CF(CF3)OCF2
CF2CF3
[Industrial Application Field] The present invention relates to an optical fiber having excellent heat resistance. [Prior Art] Fluoroalkyl methacrylate polymers have a low refractive index and have conventionally been used as optical fiber sheath materials. However, this polymer lacks heat resistance, so optical fibers using it are
It was not possible to install it near a heat generating element such as a vehicle engine. In order to improve this, recently,
It has been proposed to use a fluoroalkyl acrylate polymer having fluorine at the α position as a sheath material (see Japanese Patent Application Laid-Open No. 59-227908), but this polymer still has satisfactory heat resistance. I haven't. [Object of the Invention] As a result of intensive studies on optical fiber sheath materials with excellent heat resistance, the present inventors found that an acrylate polymer having chlorine at the α-position is significantly superior in this property to a fluorine-containing polymer. The present invention has been developed based on the discovery that An object of the present invention is to provide an optical fiber with excellent heat resistance. [Structure of the Invention] The present invention provides an optical fiber composed of a core and a sheath, in which the sheath has the formula: (In the formula, R represents an organic group having 1 to 30 carbon atoms.)
An optical fiber characterized by being a polymer essentially composed of monomers represented by: The monomers may be a mixture of those encompassed by the above formula. Other ethylenically unsaturated monomers can be contained in the polymer within a range (usually 50% by weight or less) that does not impair the physical or chemical properties of the polymer. Examples of other ethylenically unsaturated monomers include methyl methacrylate, ethyl methacrylate, ethyl acrylate, vinylidene fluoride, vinyl chloride, styrene, ethylene, propylene, 2,2,
Examples include, but are not limited to, 3,3,3-pentafluoropropyl methacrylate, 2,2,2-trifluoroethyl-α-fluoroacrylate, and α-chloroacrylic acid. In the present invention, the R group contained in the monomer is not particularly limited as long as it does not increase the refractive index of the polymer. An example of an R group is the formula: -CH2CH2N ( R1 ) SO2 - Rf (wherein R1 is an alkyl group having 1 to 4 carbon atoms, Rf
is a fluoroalkyl group having 1 to 9 carbon atoms (excluding perfluoroalkyl groups), -((CF 2 CF 2 ) n
(O) o ) q CF (Rf 1 ) CF 3 group [However, m is an integer of 1 to 5, n is 0 or 1, q is an integer of 1 to 5, Rf 1 is fluorine or -CF 3 group be. ] or −CF
( CF3 )O( CF2CF ( CF3 )O) pCF ( Rf1 ) CF3 group [However, p is 0 or an integer of 1 to 5, and Rf1 is the same as above. ]. ), Formula: -CH2CH (OZ) CH2 -Rf (In the formula, Z is hydrogen or an acetyl group, Rf is the same as above.), Formula: -Ph-O- Rf2 group (In the formula, Ph is Phenylene group, Rf 2 has 6 or more carbon atoms
12 fluoroalkylene groups are shown. ) or a fluorine-containing organic compound represented by the formula: -(CR 1 R 2 ) h Rf (wherein, h is an integer of 1 to 5, R 1 and R 2 are hydrogen or a methyl group, and Rf is the same as above). or an alkyl group having 1 to 20 carbon atoms, a dialkylaminoalkyl group having 1 to 20 carbon atoms, a glycidyl alkyl group having 1 to 20 carbon atoms, a hydroxyalkyl group having 1 to 20 carbon atoms, a cyclohexyl group, a phenyl group, etc. Examples include organic groups that do not contain fluorine. A fluorine-containing group is preferred because it has a low refractive index. Specific examples of R groups include -CH2CF3 , -CH2CF2CHF2 , -CH2
CF 2 CF 3 , -CH 2 (CF 2 CF 2 ) 2 H, -CH 2 CH 2 (CF 2
CF 2 ) 3 CF 2 CF 3 , −CH 2 CH 2 (CF 2 CF 2 ) 3 CF (CF 3 ) 2 ,
-C ( CH3 ) 2CF2CHF2 , -CH2CF2CHFCF3 , -C
(CH 3 ) 2 CF 2 CHFCF 3 , -CH 2 CH 2 N (CH 2 CH 3 )
SO 2 (CF 2 CF 2 ) 3 CF 2 CF 3 , −CH 2 CF (CF 3 ) OCF 2
CF 2 CF 3 ,

【式】等の含フツ 素有機基、および−CH3、−CH2CH3、−CH2CH
(CH32、−(CH211CH3、−CH2CH2N(CH32、−
CH2CH2OH、
Fluorine-containing organic groups such as [Formula], and -CH 3 , -CH 2 CH 3 , -CH 2 CH
(CH 3 ) 2 , −(CH 2 ) 11 CH 3 , −CH 2 CH 2 N(CH 3 ) 2 , −
CH2CH2OH ,

【式】【formula】

【式】【formula】 〔実施例〕〔Example〕

実施例 1〜5 式:CH2=CClCOOCH2CH2C8F17で表わされ
る単量体100g、アゾビスイソブチロニトリル0.1g
およびラウリルメルカプタン0.001gからなる混合
物を60℃に24時間保ち、塊状重合を行つた。得ら
れた重合体の融点(Tm、示差走査熱量計、昇温
速度:20℃)は144℃、屈折率(nD 25、アツベ屈
折計)は1.37、固有粘度(〔η〕、溶媒:メタキシ
レンヘキサフルオライド、温度:35℃)は0.83で
あつた。 重合体の10重量%1,1,2−トリクロロ−
1,2,2−トリフルオロエタン溶液を作り、こ
の溶液に第1表に示す材料からなる直径500μmの
繊維を2cm/秒の速度で浸漬して重合体を塗布し
た後、100℃で60分間乾燥し、光学繊維を得た。
断面を走査型電子顕微鏡で観察したところ、鞘材
重合体の厚みは、いずれもほぼ30μmであつた。 光学繊維500nmあたりの波長650〜680nmでの
調製直後の光透過率と120℃で1000時間加熱後の
光透過率を測定した。結果を第1表に示す。な
お、表には参考のため芯材(重合体)のガラス転
移温度(Tg,示差走査熱量計、昇温速度:20℃)
および屈折率(nD 25)を示す。
Examples 1 to 5 100 g of monomer represented by the formula: CH 2 = CClCOOCH 2 CH 2 C 8 F 17 , 0.1 g of azobisisobutyronitrile
and 0.001 g of lauryl mercaptan was kept at 60° C. for 24 hours to carry out bulk polymerization. The resulting polymer had a melting point (Tm, differential scanning calorimeter, heating rate: 20°C) of 144°C, a refractive index (n D 25 , Atsube refractometer) of 1.37, an intrinsic viscosity ([η], solvent: meth) xylene hexafluoride, temperature: 35°C) was 0.83. 10% by weight of polymer 1,1,2-trichloro-
A 1,2,2-trifluoroethane solution was prepared, and fibers with a diameter of 500 μm made of the materials shown in Table 1 were dipped into this solution at a speed of 2 cm/sec to coat the polymer, and then heated at 100°C for 60 minutes. It was dried to obtain an optical fiber.
When the cross sections were observed with a scanning electron microscope, the thickness of the sheath material polymer was approximately 30 μm in each case. The light transmittance immediately after preparation at a wavelength of 650 to 680 nm per 500 nm optical fiber and the light transmittance after heating at 120°C for 1000 hours were measured. The results are shown in Table 1. For reference, the table shows the glass transition temperature (Tg, differential scanning calorimeter, heating rate: 20℃) of the core material (polymer).
and the refractive index (n D 25 ).

【表】 実施例 6 実施例1で使用した単量体にかえ式:CH2
CClCOOCH2CF3で表わされる単量体を使用した
他は、実施例1と同様の手順で重合体を作つた。
重合体のTgは130℃、nD 25は1.426、〔η〕は0.69
(但し、溶媒:メチルエチルケトン、温度:35℃)
であつた。 得られた重合体を重量で7対3のエチルセロソ
ルブアセテートとアセトンからなる混合溶媒に10
重量%になるように溶解し、この中に式:CD2
CFCOOCD3で表わされる単量体の重合体(数平
均分子量:30万)からなる直径300μmの繊維を1
cm/秒の速度で浸漬した後、100℃で60分間乾燥
し、光学繊維を得た。 実施例1と同様の手順で光透過率を測定したと
ころ、加熱後の光透過率は、調製直後のものと変
わりなく、75%であつた。 実施例 7〜8 鞘材として、実施例7では式:CH2
CClCOOCH2CF2CF3で表わされる単量体の重合
体、実施例8では式:CH2=CClCOOCH2CF2
CHF2で表わされる単量体と式:CH2
CClCOOCH3で表わされる単量体の共重合体(共
重合比は、重量で7対3)、芯材として、実施例
7および8とも実施例4で使用した重合体を使用
し、調製直後の光透過率と120℃で1000時間加熱
後の光透過率を測定した。 第2表に鞘材重合体のTg、nD 25および〔η〕
ならびに調製直後と加熱後の光透過率を示す。
[Table] Example 6 Replace the monomer used in Example 1 with formula: CH 2 =
A polymer was prepared in the same manner as in Example 1, except that a monomer represented by CClCOOCH 2 CF 3 was used.
The Tg of the polymer is 130℃, n D 25 is 1.426, [η] is 0.69
(However, solvent: methyl ethyl ketone, temperature: 35℃)
It was hot. The obtained polymer was added to a mixed solvent consisting of ethyl cellosolve acetate and acetone in a ratio of 7:3 by weight for 10 minutes.
The formula: CD 2 =
1 fiber with a diameter of 300 μm made of a monomer polymer (number average molecular weight: 300,000) represented by CFCOOCD 3
After dipping at a speed of cm/sec, it was dried at 100°C for 60 minutes to obtain an optical fiber. When the light transmittance was measured using the same procedure as in Example 1, the light transmittance after heating was 75%, which was the same as that immediately after preparation. Examples 7-8 As the sheath material, in Example 7, the formula: CH 2 =
A polymer of monomers represented by CClCOOCH 2 CF 2 CF 3 , in Example 8 the formula: CH 2 =CClCOOCH 2 CF 2
Monomer and formula represented by CHF 2 : CH 2 =
A copolymer of monomers represented by CClCOOCH 3 (copolymerization ratio: 7:3 by weight) was used as the core material in both Examples 7 and 8, and the polymer used in Example 4 was used immediately after preparation. The light transmittance and the light transmittance after heating at 120°C for 1000 hours were measured. Table 2 shows the Tg, n D 25 and [η] of the sheath material polymer.
Also, the light transmittance immediately after preparation and after heating is shown.

〔発明の効果〕〔Effect of the invention〕

本発明の光学繊維は、従来のものに比べ耐熱性
に優れているので、車輌のエンジンルーム等に設
置することができる。 また、本発明の光学繊維は、可撓性がよく、芯
材と鞘材の接着性もよい。
The optical fiber of the present invention has better heat resistance than conventional optical fibers, so it can be installed in the engine compartment of a vehicle. Further, the optical fiber of the present invention has good flexibility and good adhesion between the core material and the sheath material.

Claims (1)

【特許請求の範囲】 1 芯および鞘から構成される光学繊維におい
て、鞘が式: (式中、Rは炭素数1〜30の有機基を示す。)
で表わされる単量体から本質的に構成される重合
体であることを特徴とする光学繊維。
[Claims] 1. In an optical fiber composed of a core and a sheath, the sheath has the formula: (In the formula, R represents an organic group having 1 to 30 carbon atoms.)
An optical fiber characterized by being a polymer essentially consisting of a monomer represented by:
JP61273751A 1986-11-17 1986-11-17 Optical fiber Granted JPS63127205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61273751A JPS63127205A (en) 1986-11-17 1986-11-17 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61273751A JPS63127205A (en) 1986-11-17 1986-11-17 Optical fiber

Publications (2)

Publication Number Publication Date
JPS63127205A JPS63127205A (en) 1988-05-31
JPH0522204B2 true JPH0522204B2 (en) 1993-03-26

Family

ID=17532066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61273751A Granted JPS63127205A (en) 1986-11-17 1986-11-17 Optical fiber

Country Status (1)

Country Link
JP (1) JPS63127205A (en)

Also Published As

Publication number Publication date
JPS63127205A (en) 1988-05-31

Similar Documents

Publication Publication Date Title
JP3231770B2 (en) Low refractive index plastic for optical fiber cladding
EP0128516B1 (en) Optical fibre
JPH0251483B2 (en)
JPH0215041B2 (en)
JPH0220081B2 (en)
EP0597887B1 (en) Fluorine-containing plastic optical fiber cores
EP0357354A2 (en) Polymer composition and optical fiber having cladding composed of that composition
JPH0610683B2 (en) Plastic fiber optic fiber
JPS63100405A (en) Manufacture of optical fiber
JP2871086B2 (en) Optical fiber cladding material
JPH0522204B2 (en)
JPS61114208A (en) Plastic optical fiber
JPH0711605B2 (en) Optical fiber sheath material polymer
JP3559423B2 (en) Plastic optical fiber
JP3130165B2 (en) Transparent resin composition
JPH0638127B2 (en) Optical fiber of plastic
JPS60199007A (en) Optical material
JPS6035641B2 (en) optical transmission fiber
JPH03107105A (en) Optical fiber clad material
JP3991453B2 (en) Amorphous fluoropolymer having fluoroalkyl group crystallizable in side chain and process for producing the same
JP3840733B2 (en) Method for producing fluorine-containing copolymer
JPH0451207A (en) Heat resistant plastic optical fiber
JPH03111411A (en) Fluororesin composition
JP2844258B2 (en) Plastic optical fiber
JPH04264504A (en) Plastic optical fiber made of heat resistant fluorine