JPH0522203B2 - - Google Patents

Info

Publication number
JPH0522203B2
JPH0522203B2 JP60205414A JP20541485A JPH0522203B2 JP H0522203 B2 JPH0522203 B2 JP H0522203B2 JP 60205414 A JP60205414 A JP 60205414A JP 20541485 A JP20541485 A JP 20541485A JP H0522203 B2 JPH0522203 B2 JP H0522203B2
Authority
JP
Japan
Prior art keywords
fluorine
optical transmission
containing copolymer
copolymer
transmission fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60205414A
Other languages
Japanese (ja)
Other versions
JPS6266207A (en
Inventor
Kazuhiko Maeda
Akira Kawada
Toshio Koishi
Isao Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP60205414A priority Critical patent/JPS6266207A/en
Publication of JPS6266207A publication Critical patent/JPS6266207A/en
Publication of JPH0522203B2 publication Critical patent/JPH0522203B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は硬化可能な含フツ素共重合体をさや材
として用いた光伝送繊維に関するものであり、さ
らに詳しくはクロロトリフルオロエチレンと、脂
肪酸ビニルエステルまたは脂肪酸イソプロペニル
エステル、及びヒドロキシ基含有アリルエーテル
を必須成分とする硬化可能な含フツ素共重合体を
さや材成分とする光伝送繊維に関するものであ
る。 半導体レーザーや光学デバイスなどの進歩によ
つて光通信システムが実用化され、光技術各種の
開発が活発化している。この光通信システムの根
本は、光伝送繊維であり、石英系、多成分ガラス
系、プラスチツク系などの材料を用いて種々の光
学ケーブルが企業化されている。 (従来の技術) 石英及び多成分ガラス系光伝送繊維は、光伝送
損失が小さいことから長距離伝送用を中心として
用いられ、またプラスチツク光伝送繊維は、大口
径が可能で加工性がすぐれているため、短距離用
として企業化されている。また、最近になつて、
石英やガラスの芯に、プラスチツクのさや材を用
いた複合系光伝送繊維が中距離伝送用として期待
されている。 以上の様な光伝送繊維のさや材としては、低屈
折率化したガラス系をはじめ、シリコーン系やフ
ツ素系樹脂が多く用いられており、特にフツ素系
樹脂に関しては、低屈折率性にあわせて耐水性、
耐候性の面からも注目されている。 (発明が解決しようとする問題点) 光伝送繊維のさや成分に要求される項目は、次
のとおりである。 (1)安価であること(2)熱軟化温度が100℃以上であ
ること(3)光伝送繊維としての加工性にすぐれてい
ること(4)芯材との密着性にすぐれていること(5)不
純物が少ないこと(6)耐候性があること(7)吸収性の
低いこと(8)透明性の高いこと(9)屈折率が低いこと
などであるが、これらの項目を完全に満たすさや
材は少ない。 たとえば、特開昭49−107790、特開昭49−
108321、特開昭49−115556、特開昭49−129545、
特開昭50−156450、特開昭51−122453、特開昭52
−82250、特開昭52−148137、および特開昭59−
116701号などに開示されているフツ素系の(メ
タ)アクリル系樹脂はそれらのモノマーが高価で
あるため、樹脂自体も高価である。さらに熱軟化
温度が100℃以下のものが多く、熱的に問題があ
る。これに対して、安価に製造できる樹脂として
フツ化ビニリデン系の共重合体があげられる。た
とえば、特開昭51−52849、特開昭53−60242号な
どの開示されている樹脂は、比較的安価に製造さ
れると考えられるが、溶融温度、溶融粘度、結晶
性に難点があり、樹脂自体の透明性を悪化させる
ため、光伝送損失を低下させてしまう。 (問題点を解決するための手段) 本発明者らは、鋭意研究を重ねた結果、光伝送
繊維のさや材として、クロロトリフルオロエチエ
ン系共重合体であつて、脂肪酸ビニルエステル又
は脂肪酸イソプロペニルエステル、及びヒドロキ
シ基含有アリルエーテルを必須成分とする硬化可
能な樹脂が、前記要求項目を満たすことを見い出
し本発明を完成するに到つた。 クロロトリフルオロエチレンと脂肪酸ビニルエ
ステルの共重合体は、広い波長域にわたつて高い
透明性を示し、加温することにより、有機溶剤に
比較的容易に溶解すること等が英国特許第888014
号やW.H.Tomas等(J.Polymer Science,11
(5)、455(1953))に記載されている。しかし、
光伝送繊維としては、熱的安定性も一つの必要条
件であるため、本発明者らは硬化反応を起こすこ
との可能な官能基をもつた単量体つまりヒドロキ
シ基含有アリルエーテルを前記モノマーと共重合
させ、硬化タイプの樹脂として光伝送繊維への応
用を試みた。 以下本発明について詳細に述べる。 本発明のさや成分である含フツ素共重合体は、
クロロトリフルオロエチレンと、式
(Industrial Application Field) The present invention relates to a light transmission fiber using a curable fluorine-containing copolymer as a sheath material, and more specifically, it relates to a light transmission fiber using a curable fluorine-containing copolymer as a sheath material, and more specifically, it relates to a light transmission fiber using a curable fluorine-containing copolymer as a sheath material. The present invention relates to an optical transmission fiber whose sheath material component is a curable fluorine-containing copolymer containing a hydroxy group-containing allyl ether as an essential component. Advances in semiconductor lasers and optical devices have brought optical communication systems into practical use, and the development of various optical technologies has become active. The basis of this optical communication system is optical transmission fiber, and various optical cables have been commercialized using materials such as quartz, multicomponent glass, and plastic. (Prior art) Quartz and multicomponent glass optical transmission fibers are mainly used for long-distance transmission because of their low optical transmission loss, and plastic optical transmission fibers can be made into large diameters and have excellent workability. Because of this, it has been commercialized for short-distance use. Also, recently,
Composite optical transmission fibers with a quartz or glass core and a plastic sheath are expected to be used for medium-distance transmission. As the sheath material for the optical transmission fibers mentioned above, glass-based materials with low refractive index, silicone-based resins, and fluorine-based resins are often used. In addition, water resistance,
It is also attracting attention from the perspective of weather resistance. (Problems to be Solved by the Invention) The following items are required for the sheath component of the optical transmission fiber. (1) It is inexpensive (2) It has a heat softening temperature of 100℃ or higher (3) It has excellent processability as an optical transmission fiber (4) It has excellent adhesion to the core material ( 5) Few impurities, (6) Weather resistance, (7) Low absorption, (8) High transparency, and (9) Low refractive index, etc., and it completely satisfies these requirements. There is little pod material. For example, JP-A-49-107790, JP-A-49-
108321, JP-A-49-115556, JP-A-49-129545,
Unexamined Japanese Patent Publications 1972-156450, 1972-122453, 1972
-82250, JP-A-52-148137, and JP-A-59-
The monomers of the fluorine-based (meth)acrylic resins disclosed in No. 116701 and the like are expensive, so the resin itself is also expensive. Furthermore, many have thermal softening temperatures of 100°C or lower, which poses thermal problems. On the other hand, vinylidene fluoride copolymers are examples of resins that can be produced at low cost. For example, the resins disclosed in JP-A-51-52849 and JP-A-53-60242 are considered to be produced relatively inexpensively, but they have drawbacks in melting temperature, melt viscosity, and crystallinity. Since the transparency of the resin itself is deteriorated, optical transmission loss is reduced. (Means for Solving the Problems) As a result of extensive research, the present inventors have found that a chlorotrifluoroethene copolymer, a fatty acid vinyl ester or a fatty acid isopropenyl The present inventors have discovered that a curable resin containing an ester and a hydroxy group-containing allyl ether as essential components satisfies the above-mentioned requirements, and have completed the present invention. The copolymer of chlorotrifluoroethylene and fatty acid vinyl ester exhibits high transparency over a wide wavelength range, and is relatively easily dissolved in organic solvents by heating, as disclosed in British Patent No. 888014.
No., WHTomas, etc. (J. Polymer Science, 11
(5), 455 (1953)). but,
Since thermal stability is also a necessary condition for optical transmission fibers, the present inventors used a monomer with a functional group capable of causing a curing reaction, that is, a hydroxy group-containing allyl ether, as the monomer. We attempted to copolymerize it and apply it to optical transmission fibers as a hardening type resin. The present invention will be described in detail below. The fluorine-containing copolymer that is the sheath component of the present invention is
Chlorotrifluoroethylene and the formula

【式】(但し、R1=H又は−CH3、 R2=−CoH2o+1;n=1〜12の整数)で示される
脂肪酸ビニルエステル又は脂肪酸イソプロペニル
エステル、及び式CH2=CH−CH2−O−R3(但
し、R3=(−CH2CH2O)−nH;m=1〜6の整
数)のヒドロキシ基含有アリルエーテルを必須成
分とし、これらの含有量がそれぞれ25〜75モル
%、10〜70モル%、および3〜40モル%であり、
好ましくは、40〜70モル%、20〜50モル%、およ
び5〜30モル%の範囲である。なお、上記必須成
分以外に後述する他の共単量体0〜20モル%添加
することもできる。クロロトリフルオロエチレン
の含有量は、仕込む際の各単量体の量によつて任
意に変更が可能であるが、高すぎると共重合体は
有機溶剤への溶解性が下がり、重合の際の収率も
低下する。逆に少ない場合には、耐候性、耐薬品
性等の物性面から好ましくなく、屈折率も高くな
つてしまうことがあげられる。 前記含フツ素共重合体の製造は、通常のラジカ
ル開始剤の存在下溶液重合、乳化重合、懸濁重合
または塊状重合等いずれの方法からでも得ること
ができる。使用可能な脂肪酸ビニルエステルとし
ては、酢酸ビニル、乳酸ビニル、酪酸ビニル、イ
ソ酪酸ビニル、カプロン酸ビニル、イソカプロン
酸ビニル、ビバリツク酸ビニル、カプリル酸ビニ
ル等であるが、アルキル基の炭素数が1〜3であ
るものが好ましい。また脂肪酸イソプロペニルエ
ステルとしては、酢酸イソプロペニル、プロピオ
ン酸イソプロペニル等である。ヒドロキシ基含有
アリルエーテルとしては、エチレングリコールモ
ノアリルエーテル、ジエチレングリコールモノア
リルエーテル、トリエチレングリコールモノアリ
ルエーテル等が使用可能であるが、(−CH2CH2
)−n単位のmがm=1〜2であるものが好ましい。 また、必須成分の他にその他の単量体としてヒ
ドロキシエチル(メタ)アクリレート、メチル
(メタ)アクリレート、グリシジル(メタ)アク
リレート等のアクリル酸エステル、アクリルアミ
ド、N−メチロールアクリルアミド等のアクリル
アミド類、エチルビニルエーテル、ブチルビニル
エーテル等のビニルエーテル類、塩化ビニルある
いは含フツ素(メタ)アクリル酸エステル等が共
重合できる。以上の様にして得られた共重合体
は、分子鎖中に活性水素を有しているため、活性
水素と反応する化合物、すなわち、トリレンジイ
ソシアネート、4.4′−ジフエニルメタンジイソシ
アネート、ナフチレンジイソシアネート、トリジ
ンジイソシアネート、ヘキサメチレンジイソシア
ネート、あるいはリジンジイソシアネート等の多
価イソシアネート、メラミン、尿素樹脂、多塩基
酸あるいは、その無水物等を添加することで硬化
せしめることができる。多価イソシアネートの添
加量はポリマー中のヒドロキシ基含有アリルエー
テルn分子に対してn価の多価イソシアネート1
分子が適量であり、その他の硬化剤は溶融紡糸の
状態により適宜選定する。 本発明において、芯材として用いられる材料に
は、通常の光伝送繊維に用いられるものすべてが
可能であり、たとえば、長・中距離伝送用とし
て、石英系が用いられ、短距離伝送用として、メ
タクリル酸エステル系重合体及びスチレン系重合
体等が使用できる。 光伝送繊維は、石英やプラスチツクの芯材を溶
融紡糸した直後に、該含フツ素共重合体の有機溶
液中あるいは硬化剤を含んだ含フツ素共重合体の
有機溶液中に通し、その後、有機溶剤を蒸発さ
せ、乾燥及び硬化させることにより、さや材被覆
を施す。これによりSI型光伝送繊維を得ることが
できる。用いられる有機溶剤には、テトロヒドロ
フラン、ジオキサン等の環状エーテル、ベンゼ
ン、トルエン等の芳香族炭化水素、酢酸エチル、
酢酸ブチル等のエステル類、アセトン、メチルエ
チルケトン、メチルイソブチルケトン、シクロヘ
キサノン等のケトン類、ジメチルホルムアミド、
ジメチルアセトアミド、ピリジン等の含窒素溶
剤、1.1.1−トリクロロエタン、トリクロロエチ
レン等の含ハロゲン溶剤あるいは前記溶剤の混合
溶剤があげられる。乾燥及び硬化は常圧あるいは
減圧下で、室温から300℃程度までの範囲で行う
ことができる。なお、生産性の面からは、高温下
で行うことが望ましい。 以上の様にして得られた光伝送繊維は、ウエザ
オメータによる促進耐候性試験において3000時間
以上外観の変化がなく、伝送損失の低下もみられ
なかつた。また、熱的安定性や酸、アルカリ、水
等に対する耐性も具備するものである。また、さ
や材として用いられる含フツ素共重合体は400nm
から近赤外域の2500nmまで吸収がなく、広い波
長領域で伝送損失の小さい光伝送繊維を提供する
ことができる。 以下本発明を実施例によつて説明するが、これ
らによつて限定されるものではない。 実施例 1 電磁攪拌器付きの内容積1.4のステンレス製
オートクレーブに酢酸ビニル(VAc)38.7g、エ
チレングリコールモノアリルエーテル
(EGMAE)30.6g、水645ml、タ−シヤリイブチ
ルアルコール(trBuOH)75ml、メチルセルロー
ス(Mc)0.15g、ホウ酸ナトリウム3.0g、及び
ラジカル開始剤としてジイソプロピルパーオキシ
ジカーボネート(IPP)0.75gを仕込み、窒素ガ
スでオートクレーブ内を3回置換した。ついで、
オートクレーブを冷却し脱気後、クロロトリフル
オロエチレン(CTFE)87.5gをオートクレーブ
内に導入し(CTFE/VAc/EGMAE=50/30/
20仕込モル比)、徐々に昇温した。40℃で24時間
重合を行つた後、未反応のCTFEを除去し、オー
トクレーブを開放して水洗、乾燥して91gの共重
合体を得た。この共重合体のテトラヒドロフラン
(THF)中30℃の極限粘度は0.31dl/gであつ
た。 この共重合体40g及びジブチル錫ジラウレート
1.2×10-3gをメチルイソブチルケトン20gとト
ルエン20gに溶解させた溶液に多価イソシアネー
ト系硬化剤、コロネートEH20g(日本ポリウレ
タン工業(株)製)、メチルイソブチルケトン10g、
トルエン10gの混合溶液12gを添加した溶液を、
テフロン板の上に延展した。この後溶剤を蒸発さ
せ100℃で加熱し、膜厚100μmのフイルムを得た。
得られたフイルム(ポリマー1)の光透過率を第
1図に、その他諸特性を第1表に示す。 実施例 2 実施例1と同様の方法で仕込組成物のモノマー
をCTFE/VAc/EGMAE=50/45/5、60/
30/10、および60/20/20のモル組成にて重合
し、実施例1に従つて硬化し膜厚100μmのフイル
ムを得た。得られた樹脂フイルムをそれぞれポリ
マー2,3,4とし、これらの諸特性を第1表に
示す。フイルム作成の際、溶剤を酢酸エチル、及
び酢酸ブチルにかえてみたが、得られたフイルム
の諸特性はほとんど同程度であつた。 実施例 3 実施例1と同様にして、CTFE、カプロン酸ビ
ニル(VCa)、EGMAEを50/30/20、又CTFE、
酢酸イソプロペニル(iso−PAc)、EGMAEを
50/30/20のモル組成にて重合した。さらに実施
例1に従つて硬化し膜厚100μmのフイルムを得
た。得られた樹脂フイルムをそれぞれポリマー
5,6とし、これらの諸特性を第1表に示す。
[Formula] (However, R 1 = H or -CH 3 , R 2 = -C o H 2o+1 ; n = an integer of 1 to 12) fatty acid vinyl ester or fatty acid isopropenyl ester, and the formula CH 2 =CH- CH2 -O- R3 (however, R3 =(- CH2CH2O ) -nH ; m =an integer of 1 to 6) is an essential component of hydroxy group-containing allyl ether; amounts of 25 to 75 mol%, 10 to 70 mol%, and 3 to 40 mol%, respectively;
Preferably, the range is 40-70 mol%, 20-50 mol%, and 5-30 mol%. In addition to the above-mentioned essential components, 0 to 20 mol% of other comonomers described below may be added. The content of chlorotrifluoroethylene can be arbitrarily changed depending on the amount of each monomer added, but if it is too high, the solubility of the copolymer in organic solvents will decrease, and the copolymer will have problems during polymerization. The yield also decreases. On the other hand, if the amount is small, it is unfavorable from the viewpoint of physical properties such as weather resistance and chemical resistance, and the refractive index may also become high. The fluorine-containing copolymer can be produced by any conventional method such as solution polymerization, emulsion polymerization, suspension polymerization, or bulk polymerization in the presence of a radical initiator. Usable fatty acid vinyl esters include vinyl acetate, vinyl lactate, vinyl butyrate, vinyl isobutyrate, vinyl caproate, vinyl isocaproate, vinyl bivaricate, vinyl caprylate, etc., but the number of carbon atoms in the alkyl group is 1 to 1. 3 is preferred. Examples of fatty acid isopropenyl esters include isopropenyl acetate and isopropenyl propionate. As the hydroxy group-containing allyl ether, ethylene glycol monoallyl ether, diethylene glycol monoallyl ether, triethylene glycol monoallyl ether, etc. can be used, but (-CH 2 CH 2 O
) -n units are preferably m=1 to 2. In addition to the essential components, other monomers include acrylic acid esters such as hydroxyethyl (meth)acrylate, methyl (meth)acrylate, and glycidyl (meth)acrylate, acrylamides such as acrylamide, N-methylolacrylamide, and ethyl vinyl ether. , vinyl ethers such as butyl vinyl ether, vinyl chloride, fluorine-containing (meth)acrylic acid esters, etc. can be copolymerized. Since the copolymer obtained in the above manner has active hydrogen in its molecular chain, it can contain compounds that react with active hydrogen, such as tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and naphthylene diisocyanate. It can be hardened by adding polyvalent isocyanates such as , tolidine diisocyanate, hexamethylene diisocyanate, or lysine diisocyanate, melamine, urea resins, polybasic acids, or their anhydrides. The amount of polyvalent isocyanate added is 1 n-valent polyvalent isocyanate per n molecules of hydroxy group-containing allyl ether in the polymer.
The amount of molecules is appropriate, and other curing agents are appropriately selected depending on the state of melt spinning. In the present invention, the material used as the core material can be any material used for ordinary optical transmission fibers. For example, quartz-based material is used for long-to-medium distance transmission, and for short-distance transmission, Methacrylic acid ester polymers, styrene polymers, etc. can be used. Immediately after melt-spinning a core material of quartz or plastic, the optical transmission fiber is passed through an organic solution of the fluorine-containing copolymer or an organic solution of the fluorine-containing copolymer containing a curing agent, and then, The sheath material coating is applied by evaporating the organic solvent, drying and curing. This makes it possible to obtain an SI type optical transmission fiber. The organic solvents used include cyclic ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbons such as benzene and toluene, ethyl acetate,
Esters such as butyl acetate, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, dimethyl formamide,
Examples include nitrogen-containing solvents such as dimethylacetamide and pyridine, halogen-containing solvents such as 1.1.1-trichloroethane and trichloroethylene, and mixed solvents of the above-mentioned solvents. Drying and curing can be carried out under normal pressure or reduced pressure at a temperature ranging from room temperature to about 300°C. Note that from the viewpoint of productivity, it is desirable to carry out the process at a high temperature. The optical transmission fiber obtained as described above showed no change in appearance for more than 3000 hours in an accelerated weather resistance test using a weatherometer, and no decrease in transmission loss was observed. It also has thermal stability and resistance to acids, alkalis, water, and the like. In addition, the fluorine-containing copolymer used as the pod material has a wavelength of 400nm.
It is possible to provide an optical transmission fiber with no absorption from 2500 nm to near infrared region, and low transmission loss over a wide wavelength range. The present invention will be explained below with reference to Examples, but is not limited thereto. Example 1 38.7 g of vinyl acetate (VAc), 30.6 g of ethylene glycol monoallyl ether (EGMAE), 645 ml of water, 75 ml of tertiary butyl alcohol (trBuOH), and methyl cellulose were placed in a stainless steel autoclave with an internal volume of 1.4 and equipped with a magnetic stirrer. (Mc), 3.0 g of sodium borate, and 0.75 g of diisopropyl peroxydicarbonate (IPP) as a radical initiator were charged, and the inside of the autoclave was purged with nitrogen gas three times. Then,
After cooling and degassing the autoclave, 87.5 g of chlorotrifluoroethylene (CTFE) was introduced into the autoclave (CTFE/VAc/EGMAE=50/30/
20 molar ratio), and the temperature was gradually raised. After polymerization was carried out at 40° C. for 24 hours, unreacted CTFE was removed, the autoclave was opened, and the copolymer was washed with water and dried to obtain 91 g of a copolymer. The intrinsic viscosity of this copolymer in tetrahydrofuran (THF) at 30°C was 0.31 dl/g. 40g of this copolymer and dibutyltin dilaurate
Polyvalent isocyanate curing agent, 20 g of Coronate EH (manufactured by Nippon Polyurethane Industry Co., Ltd.) , 10 g of methyl isobutyl ketone,
A solution to which 12 g of a mixed solution of 10 g of toluene was added,
It was spread on a Teflon plate. Thereafter, the solvent was evaporated and heated at 100°C to obtain a film with a thickness of 100 μm.
The light transmittance of the obtained film (polymer 1) is shown in FIG. 1, and other properties are shown in Table 1. Example 2 In the same manner as in Example 1, the monomers of the charging composition were changed to CTFE/VAc/EGMAE=50/45/5, 60/
Polymerization was carried out at molar compositions of 30/10 and 60/20/20, and cured according to Example 1 to obtain a film with a thickness of 100 μm. The resulting resin films were designated as polymers 2, 3, and 4, respectively, and their properties are shown in Table 1. When producing the film, the solvent was changed to ethyl acetate and butyl acetate, but the properties of the films obtained were almost the same. Example 3 In the same manner as in Example 1, CTFE, vinyl caproate (VCa), and EGMAE were mixed at 50/30/20, and CTFE,
Isopropenyl acetate (iso-PAc), EGMAE
Polymerization was carried out at a molar composition of 50/30/20. Further, the film was cured according to Example 1 to obtain a film having a thickness of 100 μm. The obtained resin films were designated as Polymers 5 and 6, respectively, and their properties are shown in Table 1.

【表】 実施例 4 実施例1と同様の方法で得た、含フツ素共重合
体CTFE/VAc/EGMAE(50/30/20仕込モル
比)120g、及びジブチル錫ジラウレート3.6×
10-3gを、メチルイソブチルケトン60gとトルエ
ン60gに溶解させた溶液に、実施例1で使用した
コロネートEH50g、メチルイソブチルケトン25
g、トルエン25gの混合溶液36gを添加した溶液
を作製した。 次に、光伝送繊維の芯材として125μm外径の石
英ガラスを高周波誘導加熱炉を用いて紡糸し、そ
の直下3mのところにおいて前記含フツ素共重合
体溶液中を通し、ついで60℃の乾燥器を通した。
さらに200℃の加熱処理器を通したのち巻取を行
つた。 得られたさや材の被覆厚は平均厚14μmであつ
た。芯材とさや材はよく密着し、はがれ等の現象
は全くみられず、屈曲性もすぐれていた。また
623.8nmのHe−Neレーザーで求めた伝送損失は
40dB/Kmであつた。 実施例 5 実施例1と同様の方法で得た、含フツ素共重合
体CTFE/VAc/EGMAE(50/30/20仕込モル
比)120g、及びジブチル錫ジラウレート3.6×
10-3を、メチルイソブチルケトン55gとトルエン
55gに溶解させた溶液に実施例1で使用したコロ
ネートEH50g、メチルイソブチルケトン25g、
トルエン25gの混合溶液36gを添加した溶液を作
製した。 次に、光伝送繊維の芯材として250μm外径の石
英ガラスを高周波誘導加熱炉を用いて紡糸し、そ
の直下3mのところにおいて前記含フツ素共重合
体溶液中を通し、ついで60℃の乾燥器を通した。
さらに200℃の加熱処理器を通したのち巻取を行
つた。 得られたさや材の被覆厚は平均厚18μmであつ
た。芯材とさや材はよく密着し、はがれ等の現象
は全くみられず、屈曲性もすぐれていた。また、
623.8nmのHe−Neレーザーで求めた伝送損失は
32dB/Kmであつた。 また前記の一度さや材被覆した光伝送繊維を、
再度前記含フツ素共重合体溶液中を通し、ついで
60℃の乾燥器を通した。さらに200℃の加熱処理
器を通したのち巻取りを行つた。さや材の被覆厚
は平均厚40μmであり、623.8nmのHe−Neのレー
ザーで求めた伝送損失は31dB/Kmであつた。 実施例 6 実施例1と同様の方法で得た含フツ素共重合体
CTFE/VAc/EGMAE(60/30/10仕込モル比)
120g、及びジブチル錫ジラウレート3.6×10-3
メチルイソブチルケトン60gとトルエン60gに溶
解させた溶液に、実施例1で使用したコロネート
EH50g、メチルイソブチルケトン25g、トルエ
ン25gの混合溶液21gを添加した溶液を作製し
た。 次に、光伝送繊維の芯材として、125μm外径の
石英ガラスを高周波誘導加熱炉を用いて紡糸し、
その直下3mのところにおいて前記含フツ素共重
合体溶液中を通し、ついで60℃の乾燥器を通し
た。さらに200℃の加熱処理器を通したのち巻取
を行つた。 得られたさや材の被覆厚は平均厚14μmであつ
た。芯材とさや材はよく密着し、はがれ等の現象
は全くみられず、屈曲性もすぐれていた。また
623.8nmのHe−Neレーザーで求めた伝送損失は
38dB/Kmであつた。 実施例 7 含フツ素共重合体CTFE、カプロン酸ビニル、
EGMAEを50/30/20の仕込モル比にて重合し
た。得られた共重合体90g及びジブチル錫ジラウ
レート2.7×10-3gをメチルイソブチルケトン105
gとトルエン105gに溶解させた溶液にメチルイ
ソブチルケトン25g、トルエン25g、コロネート
EH50gの混合溶液9.5gを添加した含フツ素共重
合体溶液を作製した。 次に、光伝送繊維の芯材として、125μm外径の
石英ガラスを高周波誘導加熱炉を用いて紡糸し、
その直下3mのところにおいて前記含フツ素共重
合体溶液中を通し、ついで60℃の乾燥器を通し
た。さらに200℃の加熱処理後、巻取を行つた。 得られた、さや材の被覆厚は平均厚15μmであ
つた。また623.8nmのHe−Neレーザーで求めた
伝送損失は40dB/Kmであつた。 実施例 8 含フツ素共重合体CTFE/VAc/EGMAE
(50/30/20仕込モル比)120g及びジブチル錫ジ
ラウレート3.6×10-3gをメチルイソブチルケト
ン36g、トルエン36gに溶解させた溶液に、コロ
ネートEH50g、メチルイソブチルケトン25g、
トルエン25gの混合溶液36gを添加した含フツ素
共重合体溶液を作成した。 次に、芯材としてポリメタクリル酸メチル(三
菱レーヨン製商品名アクリペツト;メルトインデ
ツクス値4g/10min)を220℃で溶融紡糸し、
直径0.8mmのフイラメントを得た。 このフイラメントを前記含フツ素共重合体溶液
中を通し、ついで60℃の乾燥器を通した。さらに
120℃の加熱処理後、巻取を行い、プラスチツク
光伝送繊維を得た。得られたさや材の被覆厚は平
均厚26μmであつた。また623.8nmのHe−Neレー
ザーで求めた伝送損失は160dB/Kmであつた。
[Table] Example 4 120 g of fluorine-containing copolymer CTFE/VAc/EGMAE (50/30/20 charging molar ratio) obtained by the same method as Example 1, and 3.6× dibutyltin dilaurate
10 -3 g dissolved in 60 g of methyl isobutyl ketone and 60 g of toluene, 50 g of Coronate EH used in Example 1 and 25 g of methyl isobutyl ketone were added.
A solution was prepared by adding 36 g of a mixed solution of 25 g of toluene and 25 g of toluene. Next, quartz glass with an outer diameter of 125 μm is spun as the core material of the optical transmission fiber using a high-frequency induction heating furnace, passed through the fluorine-containing copolymer solution at a point 3 m directly below it, and then dried at 60°C. passed through the vessel.
The film was further passed through a heat treatment machine at 200°C and then wound up. The average coating thickness of the obtained pod material was 14 μm. The core material and the sheath material adhered well, no phenomena such as peeling were observed, and the flexibility was excellent. Also
The transmission loss found with a 623.8nm He-Ne laser is
It was 40dB/Km. Example 5 120 g of fluorine-containing copolymer CTFE/VAc/EGMAE (50/30/20 molar ratio) obtained in the same manner as in Example 1, and 3.6× dibutyltin dilaurate
10 -3 , 55g of methyl isobutyl ketone and toluene
50 g of Coronate EH used in Example 1, 25 g of methyl isobutyl ketone,
A solution was prepared by adding 36 g of a mixed solution of 25 g of toluene. Next, quartz glass with an outer diameter of 250 μm is spun as the core material of the optical transmission fiber using a high-frequency induction heating furnace, passed through the fluorine-containing copolymer solution 3 m directly below it, and then dried at 60°C. passed through the vessel.
The film was further passed through a heat treatment machine at 200°C and then wound up. The average coating thickness of the obtained sheath material was 18 μm. The core material and the sheath material adhered well, no phenomena such as peeling were observed, and the flexibility was excellent. Also,
The transmission loss found with a 623.8nm He-Ne laser is
It was 32dB/Km. In addition, the above-mentioned optical transmission fiber once coated with sheath material,
Pass it through the fluorine-containing copolymer solution again, and then
It was passed through a dryer at 60°C. The film was further passed through a heat treatment machine at 200°C and then wound up. The coating thickness of the sheath material was 40 μm on average, and the transmission loss determined by a 623.8 nm He-Ne laser was 31 dB/Km. Example 6 Fluorine-containing copolymer obtained by the same method as Example 1
CTFE/VAc/EGMAE (60/30/10 molar ratio)
Coronate used in Example 1 was added to a solution of 120 g of dibutyltin dilaurate and 3.6×10 -3 dissolved in 60 g of methyl isobutyl ketone and 60 g of toluene.
A solution was prepared by adding 21 g of a mixed solution of 50 g of EH, 25 g of methyl isobutyl ketone, and 25 g of toluene. Next, as the core material of the optical transmission fiber, quartz glass with an outer diameter of 125 μm was spun using a high-frequency induction heating furnace.
The fluorine-containing copolymer solution was passed through the solution at a point 3 m directly below it, and then passed through a dryer at 60°C. The film was further passed through a heat treatment machine at 200°C and then wound up. The average coating thickness of the obtained pod material was 14 μm. The core material and the sheath material adhered well, no phenomena such as peeling were observed, and the flexibility was excellent. Also
The transmission loss found with a 623.8nm He-Ne laser is
It was 38dB/Km. Example 7 Fluorine-containing copolymer CTFE, vinyl caproate,
EGMAE was polymerized at a charging molar ratio of 50/30/20. 90 g of the obtained copolymer and 2.7×10 -3 g of dibutyltin dilaurate were mixed with 105 g of methyl isobutyl ketone.
g and 25 g of methyl isobutyl ketone, 25 g of toluene, and coronate in a solution dissolved in 105 g of toluene.
A fluorine-containing copolymer solution was prepared by adding 9.5 g of a mixed solution of 50 g of EH. Next, as the core material of the optical transmission fiber, quartz glass with an outer diameter of 125 μm was spun using a high-frequency induction heating furnace.
The fluorine-containing copolymer solution was passed through the solution at a point 3 m directly below it, and then passed through a dryer at 60°C. After further heat treatment at 200°C, winding was performed. The average coating thickness of the obtained pod material was 15 μm. Furthermore, the transmission loss determined using a 623.8 nm He-Ne laser was 40 dB/Km. Example 8 Fluorine-containing copolymer CTFE/VAc/EGMAE
(50/30/20 charge molar ratio) 120 g and dibutyltin dilaurate 3.6 x 10 -3 g were dissolved in 36 g of methyl isobutyl ketone and 36 g of toluene, and 50 g of Coronate EH, 25 g of methyl isobutyl ketone,
A fluorine-containing copolymer solution was prepared by adding 36 g of a mixed solution of 25 g of toluene. Next, polymethyl methacrylate (trade name: Acrypet manufactured by Mitsubishi Rayon; melt index value 4 g/10 min) was melt-spun at 220°C as a core material.
A filament with a diameter of 0.8 mm was obtained. This filament was passed through the fluorine-containing copolymer solution and then passed through a dryer at 60°C. moreover
After heat treatment at 120°C, winding was performed to obtain a plastic optical transmission fiber. The average coating thickness of the obtained sheath material was 26 μm. The transmission loss determined using a 623.8nm He-Ne laser was 160dB/Km.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1におけるフイルムの光透過率
を示したものである。
FIG. 1 shows the light transmittance of the film in Example 1.

Claims (1)

【特許請求の範囲】 1 クロロトリフルオロエチレンと式
【式】(但し、R1=H又は−CH3、 R2=−CoH2o+1;n=1〜12整数)で示される脂
肪酸ビニルエステル又は脂肪酸イソプロペニルエ
ステル、及び式CH2=CH−CH2−O−R3(但し、
R3=(−CH2CH2O)−nH;m=1〜6の整数)で
示されるヒドロキシ基含有アリルエーテルを必須
成分とする含フツ素共重合体をさや材として用い
ることを特徴とする光伝送繊維。 2 含フツ素共重合体に、多価イソシアネート、
メラミン、尿素樹脂、あるいは多塩基酸等を添加
し硬化せしめた含フツ素膜を用いることを特徴と
する特許請求の範囲第1項記載の光伝送繊維。
[ Claims] 1. Chlorotrifluoroethylene and a fatty acid represented by the formula: vinyl ester or fatty acid isopropenyl ester, and the formula CH2 =CH- CH2 -O- R3 (however,
A fluorine-containing copolymer containing a hydroxy group-containing allyl ether represented by R 3 = (-CH 2 CH 2 O)- n H; m = an integer of 1 to 6 as an essential component is used as the sheath material. optical transmission fiber. 2 Polyvalent isocyanate, fluorine-containing copolymer,
The optical transmission fiber according to claim 1, characterized in that a fluorine-containing film cured by adding melamine, urea resin, polybasic acid, etc. is used.
JP60205414A 1985-09-19 1985-09-19 Light transmitting fiber Granted JPS6266207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60205414A JPS6266207A (en) 1985-09-19 1985-09-19 Light transmitting fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60205414A JPS6266207A (en) 1985-09-19 1985-09-19 Light transmitting fiber

Publications (2)

Publication Number Publication Date
JPS6266207A JPS6266207A (en) 1987-03-25
JPH0522203B2 true JPH0522203B2 (en) 1993-03-26

Family

ID=16506452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60205414A Granted JPS6266207A (en) 1985-09-19 1985-09-19 Light transmitting fiber

Country Status (1)

Country Link
JP (1) JPS6266207A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637604B2 (en) * 1988-05-17 1994-05-18 セントラル硝子株式会社 Fluorine-containing copolymer for paint

Also Published As

Publication number Publication date
JPS6266207A (en) 1987-03-25

Similar Documents

Publication Publication Date Title
US5492987A (en) Process and composition for cladding optical fibers
AU2790492A (en) Low refractive index plastics for optical fiber cladding
EP1907432B1 (en) Copolymer and polymerizable composition
JP2602242B2 (en) Sheath material for plastic optical fiber and plastic optical fiber using the same
JPS58176206A (en) Monomer composition comprising diolbis(arylcarbonate), dispersed polymer and multifunctional acrylate monomer and polymer prepared therefrom
JPS62232601A (en) Plastic clad optical transmission fiber
JP2871086B2 (en) Optical fiber cladding material
EP1258750B1 (en) Plastic optical fibers
JPS61190304A (en) Light transmitting fiber
KR910005547B1 (en) Heat resisting plastic optical fiber and method for its manufacture
JPH0522203B2 (en)
JPH01158404A (en) Plastic clad optical fiber and clad material
JPH07104133A (en) Production of large diameter plastic optical fiber
JP2908178B2 (en) Optical stretched film and optical fiber
JP3122218B2 (en) Plastic optical fiber
JP2787771B2 (en) Core-sheath plastic optical fiber
JP4520364B2 (en) Amorphous copolymers, optical components and plastic optical fibers
JP3102181B2 (en) Manufacturing method of optical fiber clad material
JPH03107105A (en) Optical fiber clad material
JPH0143283B2 (en)
JPH01158402A (en) Plastic clad optical fiber and clad material
JPH01133006A (en) Production of synthetic resin optical fiber
JPH0573201B2 (en)
JPH02216104A (en) Polymer clad silica optical fiber
JPH01105205A (en) Clad material for optical fiber