JPH0522081B2 - - Google Patents

Info

Publication number
JPH0522081B2
JPH0522081B2 JP62227740A JP22774087A JPH0522081B2 JP H0522081 B2 JPH0522081 B2 JP H0522081B2 JP 62227740 A JP62227740 A JP 62227740A JP 22774087 A JP22774087 A JP 22774087A JP H0522081 B2 JPH0522081 B2 JP H0522081B2
Authority
JP
Japan
Prior art keywords
pilot
chamber
pressure
valve body
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62227740A
Other languages
Japanese (ja)
Other versions
JPS6470806A (en
Inventor
Takamichi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konan Electric Co Ltd
Original Assignee
Konan Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konan Electric Co Ltd filed Critical Konan Electric Co Ltd
Priority to JP22774087A priority Critical patent/JPS6470806A/en
Publication of JPS6470806A publication Critical patent/JPS6470806A/en
Publication of JPH0522081B2 publication Critical patent/JPH0522081B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 技術分野 本発明はノズル・フラツパー機構を備えたパイ
ロツト弁を有するパイロツト式減圧弁に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a pilot pressure reducing valve having a pilot valve equipped with a nozzle flapper mechanism.

従来技術 第3図に示すように、ノズル・フラツパー機構
を備えたパイロツト弁を有するパイロツト式減圧
弁は、例えば藤倉ゴム工業(株)製20型超精密リレー
として知られている。
BACKGROUND ART As shown in FIG. 3, a pilot type pressure reducing valve having a pilot valve equipped with a nozzle flapper mechanism is known as, for example, the 20 type ultra-precision relay manufactured by Fujikura Rubber Industries, Ltd.

この弁では、メジヤリングカプセル(調節圧
室)51の中に信号圧力がポート52a又は52
bから導入され、パイロツト弁のフラツパ52が
弁座53を開閉し、少量の空気がダイヤフラム室
54に流入しその圧力を変動する。その際、ダイ
ヤフラム室54はノズル64を介して大気に開放
している。ダイヤフラム室54の圧力が上昇する
と、パイロツトベロフラム55及びコントロール
ベロフラム56が変動し、主弁体57が開放して
流体は1次側室58から2次側室59に流れる。
2次側室59の圧力は流路61を介してコントロ
ール室(フイードバツク室)62に導入され、メ
ジヤリングカプセル(調節圧室)51の圧力との
バランスによりフラツパ52を開閉する。パイロ
ツトベロフラム55とコントロールベロフラム5
6の出力バランスが崩れることにより主弁体57
の開閉動に対してリリーフ弁60が適切に作動し
て2次側室59の流体を排出口63より排出し、
2次圧の精密な調整を行う。
In this valve, a signal pressure is applied to a port 52a or 52 in a measuring capsule (regulating pressure chamber) 51.
The flapper 52 of the pilot valve opens and closes the valve seat 53, and a small amount of air flows into the diaphragm chamber 54 and changes its pressure. At this time, the diaphragm chamber 54 is open to the atmosphere via the nozzle 64. When the pressure in the diaphragm chamber 54 increases, the pilot bellows 55 and the control bellows 56 move, the main valve body 57 opens, and the fluid flows from the primary chamber 58 to the secondary chamber 59.
The pressure in the secondary chamber 59 is introduced into a control chamber (feedback chamber) 62 via a flow path 61, and opens and closes the flapper 52 depending on the balance with the pressure in the measuring capsule (adjustment pressure chamber) 51. Pilot Velophram 55 and Control Velophram 5
6, the main valve body 57
The relief valve 60 operates appropriately in response to the opening/closing movement of the valve and discharges the fluid in the secondary chamber 59 from the discharge port 63.
Perform precise adjustment of secondary pressure.

この種の減圧弁においては、感度及び応答性を
高めるためにはパイロツト弁のノズル・フラツパ
ー部を大きくし、主弁体57を駆動するパイロツ
ト弁部の流量を大きくしてパイロツト弁部のゲイ
ンを高める必要がある。しかるにこの種の減圧弁
の高周波数域の特性をみると、主弁に連結された
ダイヤフラムに作用するダイヤフラム室内にパイ
ロツト弁の出力流を蓄積すること又はダイヤフラ
ム室から排出することにより主弁体57の開度が
変化し、パイロツト弁流量の時間積分等により主
体弁はパイロツト弁出力圧の充填、排出遅れの形
の応答をすることになる。例えば、入力によるパ
イロツト弁のフラツパ開度が正弦波状に変化する
例を考えると、ダイヤフラム室54のパイロツト
弁流量もほぼ正弦波状に変化することになる。然
も、パイロツト弁流量がダイヤフラム室54に対
し充填、排出され、その室の圧力変化に応じて主
弁体57が開閉されるので、主弁体57に対する
圧力変化はパイロツト弁流量の積分値に対応す
る。従つて主弁体57の開度変化は、単純には、
正弦波に対する積分値である余弦波状に変化する
ことになる。つまり、主弁体の開度の位相はパイ
ロツト弁のフラツパー開度の位相に対して最大90
度の遅れとなる。同様にして、主弁体57の開度
に対して、主弁の2次側室59の圧力変化、即ち
フイードバツク室62の圧力の変化は主弁体57
の開度変化に対する積分値に相当するので、主弁
の2次側室59の圧力応答は主弁体の開度の位相
に対して最大90度の遅れを生じる。パイロツト弁
のフラツパー開度変化に基づいて、主弁の開度変
化を介して主弁の2次側室59の圧力応答の変化
つまりフイードバツク圧力変化を生じるが、その
変化は結局主弁体57の開度の位相遅れと、2次
側室59の圧力変化の位相遅れとを合わせたもの
となる。
In this type of pressure reducing valve, in order to improve sensitivity and responsiveness, the nozzle/flapper section of the pilot valve is made large, and the flow rate of the pilot valve section that drives the main valve body 57 is increased to increase the gain of the pilot valve section. It is necessary to increase it. However, looking at the characteristics of this type of pressure reducing valve in a high frequency range, it is found that the output flow of the pilot valve is accumulated in the diaphragm chamber that acts on the diaphragm connected to the main valve, or is discharged from the diaphragm chamber, thereby reducing the main valve body 57. The opening degree of the main valve changes, and the main valve responds in the form of a delay in filling and discharging the pilot valve output pressure due to the time integration of the pilot valve flow rate, etc. For example, if we consider an example in which the flapper opening of the pilot valve changes in a sinusoidal manner due to input, the flow rate of the pilot valve in the diaphragm chamber 54 also changes in a substantially sinusoidal manner. However, since the pilot valve flow rate is charged into and discharged from the diaphragm chamber 54, and the main valve body 57 is opened and closed according to the pressure change in that chamber, the pressure change to the main valve body 57 is equal to the integral value of the pilot valve flow rate. handle. Therefore, the change in the opening degree of the main valve body 57 is simply as follows:
It changes in the form of a cosine wave, which is an integral value for a sine wave. In other words, the phase of the opening of the main valve body is at most 90 degrees relative to the phase of the flapper opening of the pilot valve.
There will be a degree of delay. Similarly, the pressure change in the secondary side chamber 59 of the main valve, that is, the pressure change in the feedback chamber 62, with respect to the opening degree of the main valve body 57
The pressure response of the secondary chamber 59 of the main valve is delayed by a maximum of 90 degrees with respect to the phase of the opening of the main valve body. Based on the change in the flapper opening degree of the pilot valve, a change in the pressure response of the secondary side chamber 59 of the main valve, that is, a feedback pressure change, occurs through a change in the opening degree of the main valve, but this change ultimately causes the opening of the main valve body 57 to change. This is the sum of the phase delay of degrees and the phase delay of the pressure change in the secondary side chamber 59.

このことからフラツパの開度位相に対する2次
側室の圧力の位相、すなわちフイードバツク圧力
の位相は最大で180゜の遅れとなる。この外に摩擦
等の遅れ要素を加味するとフイードバツク圧力の
位相の遅れはより180゜に近くなり、フイードバツ
ク圧力の位相が入力と同相になるので、系として
は発散状体となる。
For this reason, the phase of the pressure in the secondary side chamber, that is, the phase of the feedback pressure, is delayed by 180 degrees at most with respect to the opening degree phase of the flapper. If delay elements such as friction are added to this, the phase delay of the feedback pressure becomes closer to 180°, and the phase of the feedback pressure becomes in phase with the input, so the system becomes a divergent body.

以上のような高周波数域の特性をもつパイロツ
ト式減圧弁はパイロツト弁部のゲインが小さい場
合には応答の遅れが180゜に達する迄に振幅が十分
小さくなるので安定状態になるが、ゲインを増大
すると、外乱等が起動力となつて自己発信を続け
るハンチング状態を生ずるという問題がある。
A pilot type pressure reducing valve with characteristics in the high frequency range as described above becomes stable when the gain of the pilot valve section is small because the amplitude becomes sufficiently small until the response delay reaches 180 degrees, but when the gain is If it increases, there is a problem in that a hunting state occurs in which disturbance or the like becomes a driving force and continues self-transmission.

上記の従来の減圧弁では、フイードバツク圧が
フラツパーの変位に対して最大180゜の位相遅れを
生じることは回避出来ず、感度及び応答性を高め
るためにパイロツト弁部のゲインを高めると、外
乱等によりハンチング状態を発生する危険を回避
するこが出来ない。
In the conventional pressure reducing valve described above, it is unavoidable that the feedback pressure has a phase delay of up to 180° with respect to the displacement of the flapper. Therefore, it is impossible to avoid the risk of a hunting situation occurring.

目 的 本発明は上記の従来の問題点を解消し、発振を
起こさないパイロツト式減圧弁を提供することを
目的としている。
Purpose The present invention aims to solve the above-mentioned conventional problems and provide a pilot type pressure reducing valve that does not cause oscillation.

構 成 本発明は、上記の目的を、入力ポートと、該入
力ポートに通じる1次側室と、出口ポートと、該
出口ポートに通じる2次側室と、前記1次側室と
2次側室との間に形成される主弁座と、パイロツ
ト圧室とを備えた主弁本体と、前記主弁座に着座
可能な主弁体と、該主弁体に弁棒により連結され
前記2次側室とパイロツト圧室との間の境界をな
すように密封状かつ移動可能に配置される駆動部
材と、前記パイロツト圧室に開口するパイロツト
弁部と、前記2次側圧室を前記パイロツト弁部に
接続するフイードバツク流路とを有し、前記パイ
ロツト弁部が前記パイロツト圧室に接続されるパ
イロツト流路に設けられたノズルとフラツパーと
を有するノズル・フラツパー機構を備えるするパ
イロツト式減圧弁において、前記パイロツト弁部
が前記フラツパーとして形成されるパイロツト弁
体に連結された調節駆動部材と、該調節駆動部材
を間にして前記フイードバツク流路に接続される
フイードバツク室及び該フイードバツク室とは反
対側に設けられた調節圧室と、該調節圧室に絞り
を介して開口する調節流体入口ポートとを有し、
前記調節圧室の容積と前記絞りの面積Sとにより
定まる時定数Tc=CV/S(Cは定数)が前記フ
イードバツク室の予め求められているフイードバ
ツク圧変動周期Tfより大であるが前記容積Vが
できるだけ小になるように前記調節圧室の容積V
と前記絞りの面積Sとが設定されることを特徴と
するパイロツト式減圧弁により達成した。
Configuration The present invention achieves the above-mentioned objects by providing an input port, a primary chamber leading to the input port, an outlet port, a secondary chamber leading to the outlet port, and a space between the primary chamber and the secondary chamber. a main valve body having a main valve seat formed in the main valve seat and a pilot pressure chamber, a main valve body that can be seated on the main valve seat, and a main valve body that is connected to the main valve body by a valve stem and that is connected to the secondary side chamber and the pilot a drive member that is hermetically and movably disposed so as to form a boundary with the pressure chamber; a pilot valve portion that opens into the pilot pressure chamber; and a feedback portion that connects the secondary side pressure chamber to the pilot valve portion. A pilot pressure reducing valve comprising a nozzle/flapper mechanism having a nozzle and a flapper provided in a pilot flow passage in which the pilot valve part is connected to the pilot pressure chamber, wherein the pilot valve part an adjustment drive member connected to the pilot valve body formed as the flapper, a feedback chamber connected to the feedback passage with the adjustment drive member in between, and an adjustment provided on the opposite side of the feedback chamber. a pressure chamber; and a regulating fluid inlet port that opens into the regulating pressure chamber via a restriction;
The time constant T c =CV/S (C is a constant) determined by the volume of the adjustment pressure chamber and the area S of the aperture is larger than the predetermined feedback pressure fluctuation period T f of the feedback chamber. The volume V of the regulating pressure chamber is adjusted so that the volume V is as small as possible.
This was achieved by a pilot type pressure reducing valve characterized in that the area S of the orifice is set.

作 用 本発明により、調節圧室の容積と、調節圧室と
調節流体入口ポートとの間に設けた絞りの面積
が、調節圧室の時定数がフイードバツクによるハ
ンチング周期より大になるように設定されている
ので、パイロツト弁体に作用する圧力に変動があ
つても、絞りを通して流入、排出する流量に対す
る影響が小になる。調節圧室の容積を出来るだけ
小さくすることにより、調節流体のばね作用によ
りフイードバツク圧の変動のフラツパー変位への
影響を小さくすることが出来る。従つて、パイロ
ツト弁体の変動に対して、フイードバツク圧の変
動に約180度の位相差が生じても、ハンチング状
態への転移を回避することが可能になつた。
Effect According to the present invention, the volume of the regulating pressure chamber and the area of the restriction provided between the regulating pressure chamber and the regulating fluid inlet port are set so that the time constant of the regulating pressure chamber is larger than the hunting period due to feedback. Therefore, even if there is a fluctuation in the pressure acting on the pilot valve body, the effect on the flow rate flowing in and out through the throttle is small. By making the volume of the regulating pressure chamber as small as possible, the influence of fluctuations in feedback pressure on the flapper displacement can be reduced due to the spring action of the regulating fluid. Therefore, even if a phase difference of about 180 degrees occurs in the feedback pressure fluctuations with respect to the fluctuations in the pilot valve body, it has become possible to avoid transition to the hunting state.

実施例 本発明の構成及び作用の詳細を図に示す実施例
に基づき説明する。
Embodiments The details of the structure and operation of the present invention will be explained based on embodiments shown in the drawings.

第1図において、主弁本体1には入口ポート2
と、入口ポート2に通じる1次側室3と、出口ポ
ート4と、第口ポート4に通じる2次側室5と、
1次側室3と2次側室5との間に形成された弁座
6と、パイロツト圧室7とが設けられている。
In Fig. 1, the main valve body 1 has an inlet port 2.
, a primary side chamber 3 communicating with the inlet port 2, an outlet port 4, a secondary side chamber 5 communicating with the first port 4,
A valve seat 6 formed between the primary chamber 3 and the secondary chamber 5 and a pilot pressure chamber 7 are provided.

弁座6には主弁体8が着座可能であり、該主弁
体8には弁棒9により駆動部材10が連結され
る。
A main valve body 8 can be seated on the valve seat 6, and a driving member 10 is connected to the main valve body 8 by a valve rod 9.

駆動部材10は一例として第1図に示すように
ダイヤフラムとして形成され、その場合パイロツ
ト圧室7はダイヤフラム室を形成する。駆動部材
10は別の例ではピストンを形成されることがで
き、その場合パイロツト圧室7はピストン室とし
て形成される。
The drive element 10 is, for example, designed as a diaphragm, as shown in FIG. 1, in which case the pilot pressure chamber 7 forms a diaphragm chamber. In another example, the drive member 10 can be designed as a piston, in which case the pilot pressure chamber 7 is designed as a piston chamber.

パイロツト圧室7にはパイロツト弁11のポー
ト12が開口している。パイロツト弁11はポー
ト12に設けたパイロツト弁座13に着座可能な
パイロツト弁体14を有する。パイロツト弁体1
4は弁棒15により調節駆動部材16に連結され
る。調節駆動部材6は第1図においてはダイヤフ
ラムとして形成されるピストンとして形成するこ
ともできる。
A port 12 of a pilot valve 11 opens into the pilot pressure chamber 7. The pilot valve 11 has a pilot valve body 14 that can be seated on a pilot valve seat 13 provided in the port 12. Pilot valve body 1
4 is connected by a valve stem 15 to an adjusting drive member 16 . The adjusting drive element 6 can also be designed as a piston, which in FIG. 1 is designed as a diaphragm.

超駆動部材16はフイードバツク室18と調節
圧室19とを境界するように配置され、フイード
バツク室18はフイードバツク流路17により2
次側室5と接続されている。
The super drive member 16 is arranged so as to border a feedback chamber 18 and a regulating pressure chamber 19, and the feedback chamber 18 is
It is connected to the next side chamber 5.

調節圧室19には絞り20を介して調節流体入
力ポート21が開口している。
A regulating fluid input port 21 opens into the regulating pressure chamber 19 via a throttle 20 .

パイロツト弁11はノズル・フラツパー機構を
有し、該ノズル・フラツパー機構はポート12を
開閉するパイロツト弁体14として形成されたフ
ラツパーと、固定ノズル22とを有し、固定ノズ
ル22はパイロツト圧室7に接続されるパイロツ
ト流入路23とパイロツト流出路24とを有する
パイロツト流路に設けられる。第1図の例では固
定ノズル22はパイロツト流出路24に設けられ
る。第1図の例ではパイロツト流入路23はポー
ト12に接続され、パイロツト流出路24はノズ
ル22を介してパイロツト圧室7と接続されてい
る。
The pilot valve 11 has a nozzle flapper mechanism, and the nozzle flapper mechanism has a flapper formed as a pilot valve body 14 for opening and closing the port 12, and a fixed nozzle 22, which is connected to the pilot pressure chamber 7. The pilot flow path has a pilot inflow path 23 and a pilot outflow path 24 connected to the pilot flow path. In the example of FIG. 1, the fixed nozzle 22 is provided in the pilot outlet passage 24. In the example shown in FIG. In the example shown in FIG. 1, the pilot inlet passage 23 is connected to the port 12, and the pilot outlet passage 24 is connected to the pilot pressure chamber 7 via the nozzle 22.

以下作動について説明する。 The operation will be explained below.

2次側室5の圧力P1が所定値以下に下がると、
フイードバツク室18の圧力P3が低下し、調節
圧室19の圧力P4により調節駆動部材16が動
かされ、パイロツト弁体14がパイロツト弁座1
3から離される。
When the pressure P1 in the secondary chamber 5 drops below a predetermined value,
The pressure P 3 in the feedback chamber 18 decreases, and the adjustment drive member 16 is moved by the pressure P 4 in the adjustment pressure chamber 19, causing the pilot valve body 14 to move toward the pilot valve seat 1.
Separated from 3.

ポート12に接続する室25はパイロツト流入
路23を通して供給されるパイロツト流体が貯留
され、パイロツト弁座13の開度、すなわちフラ
ツパー(パイロツト弁体)14の開度に応じてパ
イロツト流体がパイロツト圧室7に流入する。
A chamber 25 connected to the port 12 stores pilot fluid supplied through the pilot inflow passage 23, and the pilot fluid flows into the pilot pressure chamber according to the opening degree of the pilot valve seat 13, that is, the opening degree of the flapper (pilot valve body) 14. 7.

パイロツト圧室7にはノズル22による抵抗に
よりパイロツト流体が一時貯留され、駆動部材1
0がパイロツト圧室7の圧力と2次側室5の圧力
P1との差圧に応じて動かされ、主体弁8を動か
して主弁座6を開放する。これにより流入し2次
側室5の圧力P1を上昇する。
Pilot fluid is temporarily stored in the pilot pressure chamber 7 due to resistance from the nozzle 22, and the driving member 1
0 is the pressure in the pilot pressure chamber 7 and the pressure in the secondary side chamber 5
It is moved according to the differential pressure with P 1 to move the main valve 8 and open the main valve seat 6. This causes the air to flow in and increase the pressure P1 in the secondary chamber 5.

2次側室5の圧力上昇はフイードバツク流路1
7を介してフイードバツク室18に伝達され、調
節駆動部材16に作用する。
The pressure increase in the secondary chamber 5 is caused by the feedback flow path 1.
7 to the feedback chamber 18 and acts on the adjustment drive member 16.

2次側室5が所定圧に上昇すると調節駆動部材
16が調節圧室19の圧力とのバランスに応じて
動かされ、パイロツト弁体14すなわちフラツパ
ーが動かされてポート12を閉じる。
When the pressure in the secondary chamber 5 rises to a predetermined level, the adjustment drive member 16 is moved in accordance with the balance with the pressure in the adjustment pressure chamber 19, and the pilot valve body 14, ie, the flapper, is moved to close the port 12.

パイロツト圧室7は、ポート12を閉じること
によりパイロツト流体の供給が止まるが、ノズル
22を通してパイロツト流出路24よりの流出は
続くので、次第に圧力P2が低下し、パイロツト
7と2次側室5の圧力バランスに応じて駆動部材
10が動かされ、それにともない主弁体8が動か
されて主弁座6が閉じる。
The supply of pilot fluid to the pilot pressure chamber 7 is stopped by closing the port 12, but the flow continues from the pilot outlet passage 24 through the nozzle 22, so the pressure P2 gradually decreases, and the pressure P2 between the pilot fluid 7 and the secondary chamber 5 is reduced. The drive member 10 is moved according to the pressure balance, and the main valve body 8 is moved accordingly, and the main valve seat 6 is closed.

2次側室5の圧力変動により、フイードバツク
室18も圧力変動を生じ、例えば周期Tfの圧力
波が形成される。調節駆動部材16はこの圧力波
の影響を受け、主弁体に発振動を起させることに
なる。そこでこのフイードバツク室の圧力変動を
除去する必要がある。
Due to pressure fluctuations in the secondary chamber 5, pressure fluctuations also occur in the feedback chamber 18, and, for example, a pressure wave with a period T f is formed. The adjustment drive member 16 is affected by this pressure wave, causing the main valve body to oscillate. Therefore, it is necessary to eliminate pressure fluctuations in the feedback chamber.

調節圧室19の容積をV、調節流体入口ポート
と調節圧室19の間の絞り20の面積をSとする
と、調整圧室19の時定数CV/S>Tf=CV/
Sとなる。ここでCは定数である。
When the volume of the regulating pressure chamber 19 is V, and the area of the throttle 20 between the regulating fluid inlet port and the regulating pressure chamber 19 is S, the time constant of the regulating pressure chamber 19 is CV/S>T f =CV/
It becomes S. Here C is a constant.

調節圧室19の時定数Tcがフイードバツク圧
力変動の周期Tfより大になるように設定すると、
絞り20を通つて調節流体、例えば空気が出入り
するのに対し圧力波すなわち圧力変動に応じて絞
り20を通る流量が減少する。
When the time constant T c of the regulating pressure chamber 19 is set to be larger than the period T f of feedback pressure fluctuation,
As regulating fluid, for example air, enters and exits through the restrictor 20, the flow rate through the restrictor 20 decreases in response to pressure waves or pressure fluctuations.

調節圧室19に流入する調節流体は一種のばね
作用を為すと見なすことができ、この際ばね定数
KはK=PA2/Vで示される。ここでAは調節駆
動部材16の有効面積である。
The regulating fluid flowing into the regulating pressure chamber 19 can be considered to have a kind of spring action, the spring constant K being expressed as K=PA 2 /V. Here, A is the effective area of the adjusting drive member 16.

調節圧室19の容積Vを小さくするとばね定数
を大きくすることができる。
By reducing the volume V of the regulating pressure chamber 19, the spring constant can be increased.

ばね定数が大になると、調節駆動部材16はフ
イードバツク圧P3の変動があつても変動が少な
くなる。このことはパイロツト弁対14、すなわ
ちフラツパーの矢印xに示す変動が小さくなる。
斯くしてフイードバツク圧P3の変動も小さくす
ることができる。
The larger the spring constant, the less the adjustment drive member 16 will fluctuate in response to fluctuations in the feedback pressure P3 . This reduces the fluctuation of the pilot valve pair 14, ie the flapper, as indicated by the arrow x.
In this way, fluctuations in the feedback pressure P3 can also be reduced.

従つて調節圧室19の容積Vを、絞り面積Sと
の関連において定まる調節圧室19の時定数Tc
がフイードバツク圧力変動の周期すなわちハンチ
ング周期Tf以上になり、しかも容積Vができる
だけ小さくなるように設定することにより振動を
集束し停止することができる。
Therefore, the volume V of the regulating pressure chamber 19 is determined by the time constant T c of the regulating pressure chamber 19, which is determined in relation to the throttle area S.
It is possible to focus and stop the vibration by setting so that the period of the feedback pressure fluctuation is equal to or longer than the hunting period T f and the volume V is set to be as small as possible.

ノズル・フラツパー機構は第1図の例に対して
第2図の如く変形することもできる。すなわちポ
ート12とパイロツト流出路24とを接続しポー
ト12のパイロツト流出路側にパイロツト弁座1
3を形成し、フラツパーとしてのパイロツト弁体
14をパイロツト流出路側においてパイロツト弁
座13に着座させ、ノズル22をパイロツト圧室
7とパイロツト流入路23との間に形成する。第
1図の例では調節駆動部材13の作用によりパイ
ロツト弁体14が図において下降動するとパイロ
ツト弁座13を開口し、上昇すると閉鎖するのに
対し、第2図の例では調節駆動部材16の作用に
よりパイロツト弁体14が下降するとパイロツト
弁座13を閉じ上昇すると開口する点において相
異している。しかし駆動部材10に対するパイロ
ツト流体の作用は実質的に同じであるので第1図
とは同一又は相応部材には同一符号を付して詳細
な説明は省略する。
The nozzle flapper mechanism can also be modified from the example shown in FIG. 1 as shown in FIG. 2. That is, the port 12 and the pilot outlet passage 24 are connected, and the pilot valve seat 1 is connected to the pilot outlet passage side of the port 12.
3 is formed, a pilot valve body 14 as a flapper is seated on the pilot valve seat 13 on the side of the pilot outflow passage, and a nozzle 22 is formed between the pilot pressure chamber 7 and the pilot inflow passage 23. In the example shown in FIG. 1, the pilot valve seat 13 is opened when the pilot valve body 14 moves downward in the drawing due to the action of the adjusting drive member 13, and closes when it moves upward, whereas in the example shown in FIG. The difference is that the pilot valve seat 13 closes when the pilot valve body 14 descends and opens when it rises. However, since the action of the pilot fluid on the drive member 10 is substantially the same, the same or corresponding members as in FIG. 1 will be given the same reference numerals and detailed explanations will be omitted.

効 果 本発明により調節圧室の大きさと調節流体入口
ポートの絞りの面積を選定するという簡単な構造
及び手段により主弁体のハンチングを防止するこ
とが可能となつた。特にハンチング周波数域のみ
を考慮し、その周波数に対してパイロツト部のゲ
インを下げるだけで弁の発振が防止できた。
Effects According to the present invention, hunting of the main valve body can be prevented by a simple structure and means of selecting the size of the regulating pressure chamber and the area of the restriction of the regulating fluid inlet port. In particular, by considering only the hunting frequency range and lowering the gain of the pilot section for that frequency, valve oscillation could be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るパイロツト式減圧弁の断
面図、第2図は別の実施例の断面図、第3図は従
来の減圧弁の断面図である。 1……主弁本体、2……入口ポート、3……1
次側室、4……出口ポート、5……2次側室、6
……主弁座、7……パイロツト圧室、8……主弁
体、9……弁棒、10……駆動部材、11……パ
イロツト弁、12……ポート、13……パイロツ
ト弁座、14……パイロツト弁体(フラツパー)、
16……調節駆動部材、17……フイードバツク
流路、18……フイードバツク室、19……調節
圧室、20……絞り、21……調節流体入口ポー
ト、22……ノズル、23……パイロツト流入
路、24……パイロツト流出路。
FIG. 1 is a sectional view of a pilot type pressure reducing valve according to the present invention, FIG. 2 is a sectional view of another embodiment, and FIG. 3 is a sectional view of a conventional pressure reducing valve. 1...Main valve body, 2...Inlet port, 3...1
Next side chamber, 4...Exit port, 5...Secondary side chamber, 6
... Main valve seat, 7 ... Pilot pressure chamber, 8 ... Main valve body, 9 ... Valve stem, 10 ... Drive member, 11 ... Pilot valve, 12 ... Port, 13 ... Pilot valve seat, 14...Pilot valve body (flapper),
16...Adjustment drive member, 17...Feedback channel, 18...Feedback chamber, 19...Adjustment pressure chamber, 20...Aperture, 21...Adjustment fluid inlet port, 22...Nozzle, 23...Pilot inflow Road, 24...Pilot outlet road.

Claims (1)

【特許請求の範囲】 1 入口ポート2と、該入口ポート2に通じる1
次側室3と、出口ポート4と、該出口ポート4に
通じる2次側室5と、前記1次側室3と2次側室
5との間に形成される主弁座6と、パイロツト圧
室7とを備えた主弁本体1と、前記主弁座6に着
座可能な主弁体8と、該主弁体8に弁棒9により
連結され前記2次側室5とパイロツト圧室7との
間の境界をなすように密封状かつ移動可能に配置
される駆動部材10と、前記パイロツト圧室7に
開口するパイロツト弁部11と、前記2次側圧室
5を前記パイロツト弁部11に接続するフイード
バツク流路17とを有し、前記パイロツト弁部1
1が前記パイロツト圧室7に接続されるパイロツ
ト流路23,24に設けられたノズル22とフラ
ツパー14とを有するノズル・フラツパー機構を
備えるするパイロツト式減圧弁において、 前記パイロツト弁部11が前記フラツパー14
として形成されるパイロツト弁体に連結された調
節駆動部材16と、該調節駆動部材16を間にし
て前記フイードバツク流路17に接続されるフイ
ードバツク室18及び該フイードバツク室18と
は反対側に設けられた調節圧室19と、該調節圧
室19に絞り20を介して開口する調節流体入口
ポート21とを有し、前記調節圧室19の容積V
と前記絞り20の面積Sとにより定まる時定数
Tc=CV/Sが前記フイードバツク室18の予め
求められているフイードバツク圧変動周期Tf
り大であるが前記容積Vができるだけ小になるよ
うに前記調節圧室19の容積Vと前記絞り20の
面積Sとが設定されることを特徴とするパイロツ
ト式減圧弁。
[Claims] 1. An inlet port 2, and 1 leading to the inlet port 2.
A downstream chamber 3, an outlet port 4, a secondary chamber 5 communicating with the outlet port 4, a main valve seat 6 formed between the primary chamber 3 and the secondary chamber 5, and a pilot pressure chamber 7. a main valve body 1 having a main valve body 1, a main valve body 8 which can be seated on the main valve seat 6, and a valve body 8 connected to the main valve body 8 by a valve rod 9 between the secondary side chamber 5 and the pilot pressure chamber 7. A drive member 10 that is arranged in a sealed and movable manner so as to form a boundary, a pilot valve section 11 that opens into the pilot pressure chamber 7, and a feedback flow that connects the secondary side pressure chamber 5 to the pilot valve section 11. passage 17, and the pilot valve portion 1
1 is a pilot type pressure reducing valve equipped with a nozzle flapper mechanism having a nozzle 22 and a flapper 14 provided in pilot flow passages 23 and 24 connected to the pilot pressure chamber 7, wherein the pilot valve portion 11 is connected to the flapper 14. 14
an adjustment drive member 16 connected to a pilot valve body formed as a pilot valve; a feedback chamber 18 connected to the feedback passage 17 with the adjustment drive member 16 in between; and a regulating fluid inlet port 21 that opens into the regulating pressure chamber 19 via a throttle 20, and has a volume V of the regulating pressure chamber 19.
and the area S of the aperture 20.
The volume V of the adjustment pressure chamber 19 and the aperture 20 are adjusted such that T c =CV/S is larger than the predetermined feedback pressure fluctuation cycle T f of the feedback chamber 18, but the volume V is as small as possible. A pilot type pressure reducing valve characterized in that an area S is set.
JP22774087A 1987-09-11 1987-09-11 Pilot type pressure reducing valve Granted JPS6470806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22774087A JPS6470806A (en) 1987-09-11 1987-09-11 Pilot type pressure reducing valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22774087A JPS6470806A (en) 1987-09-11 1987-09-11 Pilot type pressure reducing valve

Publications (2)

Publication Number Publication Date
JPS6470806A JPS6470806A (en) 1989-03-16
JPH0522081B2 true JPH0522081B2 (en) 1993-03-26

Family

ID=16865625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22774087A Granted JPS6470806A (en) 1987-09-11 1987-09-11 Pilot type pressure reducing valve

Country Status (1)

Country Link
JP (1) JPS6470806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036851A1 (en) * 1999-11-18 2001-05-25 Asahi Organic Chemicals Industry Co., Ltd. Constant pressure regulator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471541B2 (en) * 2001-07-18 2010-06-02 旭有機材工業株式会社 Constant pressure regulator
US7669610B2 (en) * 2006-02-09 2010-03-02 Tescom Corporation Dome-loaded pressure regulators
JP6049184B2 (en) 2012-12-04 2016-12-21 Kyb株式会社 Control valve
KR200472901Y1 (en) * 2013-04-23 2014-06-27 강성숙 The Inert Gas Blanketing Device
CN106763959B (en) * 2017-03-28 2022-12-06 扬州大学 Agricultural irrigation large-diameter anti-winding washable pressure reduction and stabilization valve and application method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143922U (en) * 1975-05-15 1976-11-19
JPS5856406Y2 (en) * 1977-09-30 1983-12-26 横河電機株式会社 pressure transducer
JPS60191165U (en) * 1984-05-28 1985-12-18 オリオン機械株式会社 vacuum regulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036851A1 (en) * 1999-11-18 2001-05-25 Asahi Organic Chemicals Industry Co., Ltd. Constant pressure regulator

Also Published As

Publication number Publication date
JPS6470806A (en) 1989-03-16

Similar Documents

Publication Publication Date Title
EP1442227B1 (en) Shock absorber with frequency-dependent damping
US6079526A (en) Damping force control type hydraulic shock absorber
US6386509B1 (en) Back pressure control valve
US3441246A (en) Electromagnetic valve
JPH0585777B2 (en)
JPH0356334B2 (en)
US6311812B1 (en) Device and application involving two parts working away from and towards each other and energy-absorbing device
JPH0522081B2 (en)
US3438389A (en) Flow metering orifice with automatic compensation for change in viscosity
JPH0451683B2 (en)
HU177219B (en) Pressure regulator of medium in motion
JPH109327A (en) Damping force regulating type hydraulic shock absorber
US5363876A (en) Flow control devices
JP3010912B2 (en) Control valve opening / closing speed and flow rate control device by air pressure control
EP0124567B1 (en) Valves
JPH08261270A (en) Damping force adjusting type hydraulic shock absorber
JPH0524523B2 (en)
JPH0781690A (en) Adjusting device with auxiliary steering device
JPH04343109A (en) Pressure control valve
JP3341198B2 (en) Pilot type back pressure valve
JP2665822B2 (en) Pressure reducing valve
SU1149227A1 (en) Pressure regulator
JPH04134971U (en) governor
JP3291024B2 (en) Adjustment method of pressure control valve
JPH09303471A (en) Damping force adjusting hydraulic shock absorber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees