JPH0522069A - Piezoelectric resonator - Google Patents

Piezoelectric resonator

Info

Publication number
JPH0522069A
JPH0522069A JP16968891A JP16968891A JPH0522069A JP H0522069 A JPH0522069 A JP H0522069A JP 16968891 A JP16968891 A JP 16968891A JP 16968891 A JP16968891 A JP 16968891A JP H0522069 A JPH0522069 A JP H0522069A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric plate
polarized
square
vibration mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16968891A
Other languages
Japanese (ja)
Inventor
Kiyoshi Hase
喜代司 長谷
Toshihiko Kikko
敏彦 橘高
Toshiaki Kachi
敏晃 加地
Akira Ando
陽 安藤
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP16968891A priority Critical patent/JPH0522069A/en
Publication of JPH0522069A publication Critical patent/JPH0522069A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the piezoelectric resonator, which is miniaturized and hardly affected by unnecessitated sprious signals, by providing a piezoelectric plate polarized in a thickness-wise direction so as to fix a polarizing direction and a pair of resonant electrodes. CONSTITUTION:A piezoelectric plate A having a square-shaped plane is polarized so that the polarizing directions of four areas 7-10 divided by two diagonals 6a and 6b of the square can be reverse to the thickness-wise direction between the adjacent areas, and a piezoelectric resonator 15 is constituted by forming a pair of resonant electrodes 13 and 14 on both the entire main faces of the piezoelectric plate A. Namely, the areas 7 and 9 are polarized from up to down in the thickness-wise direction of the piezoelectric plate A, and the areas 8 and 10 are polarized from down to up on the piezoelectric plate A. By impressing AC electric fields from the resonant electrodes 13 and 14, the polarized piezoelectric plate A has a resonant point on the side of a frequency lower than a spread vibration mode, and the vibration mode whose apexes is vibrated is excited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、平面形状が正方形の圧
電板を用いかつ拡がり振動モードよりも低周波の振動モ
ードを利用した圧電共振子に関し、例えば、KHz帯の
発振子やフィルタを構成するのに適した圧電共振子に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric resonator using a piezoelectric plate having a square planar shape and utilizing a vibration mode having a lower frequency than a spreading vibration mode, for example, a KHz band oscillator or filter. The present invention relates to a piezoelectric resonator suitable for

【0002】[0002]

【従来の技術】KHz帯の共振子としては、平面形状が
正方形の圧電板の拡がり振動モードを利用したものが多
用されている。このような拡がり振動モードを利用した
圧電共振子は、平面形状が正方形の圧電板の両主面に共
振電極を形成した構造を有する。
2. Description of the Related Art As a resonator in the KHz band, a resonator utilizing a spreading vibration mode of a piezoelectric plate having a square planar shape is widely used. A piezoelectric resonator using such a spreading vibration mode has a structure in which resonant electrodes are formed on both main surfaces of a piezoelectric plate having a square planar shape.

【0003】[0003]

【発明が解決しようとする課題】拡がり振動モードの共
振周波数は圧電板の外径寸法で決定される。そのため、
例えば共振周波数が455KHzの共振子を構成した場
合、圧電板の寸法が4.5mm×4.5mm程度とかな
り大きなものとならざるを得なかった。近年、他の電子
部品と同様に、圧電共振子においても素子の小型化が強
く求められているが、上記のように拡がり振動モードを
利用した圧電共振子では、共振周波数が外径寸法で決定
されるため素子の小型化に充分に対応できないという問
題があった。
The resonance frequency of the spreading vibration mode is determined by the outer diameter of the piezoelectric plate. for that reason,
For example, when a resonator having a resonance frequency of 455 KHz is configured, the size of the piezoelectric plate is inevitably as large as about 4.5 mm × 4.5 mm. In recent years, similar to other electronic components, there is a strong demand for miniaturization of elements in piezoelectric resonators, but in piezoelectric resonators that use the spreading vibration mode as described above, the resonance frequency is determined by the outer diameter dimension. Therefore, there is a problem that it is not possible to sufficiently cope with the miniaturization of the element.

【0004】また、拡がり振動モードを利用した圧電共
振子では、共振周波数よりもすぐ上の周波数域に輪郭振
動がかなりの強度で発生し、該輪郭振動に基づく不要ス
プリアス振動が無視できないという問題もあった。本発
明の目的は、より小型で、かつ不要スプリアス振動の影
響を受け難い圧電共振子を提供することにある。
Further, in the piezoelectric resonator utilizing the spreading vibration mode, there is a problem that the contour vibration is generated with a considerable intensity in the frequency range immediately above the resonance frequency, and the unnecessary spurious vibration due to the contour vibration cannot be ignored. there were. An object of the present invention is to provide a piezoelectric resonator that is smaller and less susceptible to the influence of unwanted spurious vibrations.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の発明の
圧電共振子は、平面形状が正方形であり、該正方形の2
本の対角線で区切られた4つの領域において、隣合う領
域間で分極方向が逆方向となるように厚み方向に分極処
理された圧電板と、前記圧電板の両主面の全面に形成さ
れた一対の共振電極とを備える圧電共振子である。
The piezoelectric resonator of the invention described in claim 1 has a square planar shape, and the piezoelectric resonator has a square shape.
In four areas divided by diagonal lines of the book, piezoelectric plates polarized in the thickness direction so that the polarization directions are opposite to each other between adjacent areas, and formed on the entire surfaces of both main surfaces of the piezoelectric plate. It is a piezoelectric resonator provided with a pair of resonance electrodes.

【0006】請求項2に記載の圧電共振子は、平面形状
が正方形であり、該正方形の2本の対角線で区切られた
4つの領域が、隣合う領域間で分極方向が逆方向となる
ように厚み方向に分極処理された圧電板と、前記圧電板
の両主面に形成された一対の共振電極とを備え、前記正
方形の中心点近傍において圧電板に未分極領域が形成さ
れていること、あるいは前記正方形の中心点近傍におい
て前記共振電極が欠落している電極欠落部分が設けられ
ていることを特徴とする圧電共振子である。すなわち、
本願の請求項1,2に記載の発明は、平面形状が正方形
であり、該正方形の2本の対角線で区切られた4つの領
域において隣合う領域間で分極方向が逆方向となるよう
に厚み方向に分極処理された圧電板を用いることにおい
て共通する。
In the piezoelectric resonator according to a second aspect of the present invention, the planar shape is a square, and the four regions separated by two diagonal lines of the square have polarization directions opposite to each other between adjacent regions. A piezoelectric plate polarized in the thickness direction and a pair of resonance electrodes formed on both main surfaces of the piezoelectric plate, and an unpolarized region is formed on the piezoelectric plate near the center point of the square. Alternatively, the piezoelectric resonator is characterized in that an electrode missing portion, in which the resonance electrode is missing, is provided in the vicinity of the center point of the square. That is,
The invention according to claims 1 and 2 of the present application is such that the planar shape is a square, and the polarization directions are opposite to each other between adjacent regions in four regions divided by two diagonal lines of the square. It is common to use a piezoelectric plate polarized in the direction.

【0007】[0007]

【作用】請求項1,2に記載の本発明の圧電共振子で
は、圧電板の上記4つの領域において隣合う領域間で分
極方向が逆方向となるように厚み方向に分極処理されて
いるため、一対の共振電極から交流電界を印加すること
により、正方形の頂点が振動する後述の振動モードが励
振される。この振動モードは、拡がり振動モードよりも
低周波域で振動するものであるため、それによって圧電
共振子の小型化及び不要スプリアス振動の影響の低減を
図ることができる。すなわち、本発明は、拡がり振動モ
ードを利用した圧電共振子では小型化に限界があること
に鑑み、拡がり振動モードと異なる上記振動モードを利
用したことに特徴を有する。
In the piezoelectric resonator according to the present invention as set forth in claims 1 and 2, the piezoelectric plate is polarized in the thickness direction so that the polarization directions are opposite to each other in the four adjacent regions of the piezoelectric plate. By applying an AC electric field from the pair of resonance electrodes, a vibration mode described below in which the vertices of a square vibrate is excited. Since this vibration mode vibrates in a lower frequency range than the spread vibration mode, it is possible to reduce the size of the piezoelectric resonator and reduce the influence of unnecessary spurious vibration. That is, the present invention is characterized in that the above-mentioned vibration mode different from the expansion vibration mode is used in view of the limitation of downsizing in the piezoelectric resonator using the expansion vibration mode.

【0008】[0008]

【実施例の説明】本発明で利用される振動モード 図2は、本発明において利用する振動モードを説明する
ための模式的平面図である。本発明では、一点鎖線Aで
示す平面形状が正方形の圧電板の頂点1〜4が図示の矢
印方向に振動する振動モードを利用する。この場合、振
動は、図示の実線で示した状態と、各頂点1〜4が一点
鎖線で示されている元の位置を挟んで反対側の相当の位
置にある状態とを繰り返すように発生する。このように
頂点1〜4が図示の矢印方向に振動する振動モードは、
後述の実施例から明らかなように、拡がり振動モードよ
り低周波数域で振動を発生させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Vibration Mode Used in the Present Invention FIG. 2 is a schematic plan view for explaining the vibration mode used in the present invention. In the present invention, the vibration mode in which the vertices 1 to 4 of the piezoelectric plate having a square planar shape indicated by the one-dot chain line A vibrates in the direction of the arrow shown in the figure is used. In this case, the vibration is generated by repeating the state shown by the solid line in the figure and the state in which each of the vertices 1 to 4 is at a considerable position on the opposite side with the original position shown by the one-dot chain line in between. . In this way, the vibration mode in which the vertices 1-4 vibrate in the direction of the arrow shown in the figure is
As is clear from the examples described below, vibration is generated in a lower frequency range than the spreading vibration mode.

【0009】図2のように圧電板を振動させた場合の発
生電荷分布を図3に示す。図3から明らかなように、上
記振動を励起する場合、正方形5を2本の対角線で区切
ることにより構成された4つの領域において、隣接する
領域が逆極性となるように電荷集中が生じる。そこで、
本発明では、図4に示すように、平面形状が正方形の圧
電板Aの該正方形の2本の対角線6a,6bで区切るこ
とにより構成された第1〜第4の領域7〜10を、以下
の様に分極することにより、上記振動を励起することを
可能としている。
FIG. 3 shows the generated charge distribution when the piezoelectric plate is vibrated as shown in FIG. As is clear from FIG. 3, when the above vibration is excited, charge concentration occurs so that adjacent regions have opposite polarities in the four regions formed by dividing the square 5 by two diagonal lines. Therefore,
In the present invention, as shown in FIG. 4, the first to fourth regions 7 to 10 formed by dividing the two square lines 6a and 6b of the piezoelectric plate A having a square planar shape into It is possible to excite the vibration by polarization as described above.

【0010】すなわち、領域7,9は、図示の下向きの
矢印で示すよう、圧電板Aの厚み方向において上面から
下面方向に分極処理されており、逆に、領域8,10
は、上向きの矢印で示すように、圧電板Aの下面から上
面側に向かう方向に分極処理されている。言い換えれ
ば、領域7〜10は、隣合う領域が厚み方向において逆
方向に分極処理されている。
That is, the regions 7 and 9 are polarized from the upper surface to the lower surface in the thickness direction of the piezoelectric plate A as indicated by the downward arrows in the figure, and conversely, the regions 8 and 10 are processed.
Is polarized in a direction from the lower surface of the piezoelectric plate A toward the upper surface thereof, as indicated by an upward arrow. In other words, in the regions 7 to 10, the adjacent regions are polarized in the opposite direction in the thickness direction.

【0011】本発明では、上記のように分極処理された
圧電板が用いられるが、上記分極処理は、例えば図5に
示す過程を経て行われる。まず、圧電板Aの両主面の全
面に分極用電極11,12を形成し、電圧を印加するこ
とにより、圧電板Aを厚み方向に分極処理する。次に、
図5に示すように、2本の対角線で区切られた領域のう
ち領域7,9において圧電板Aの両主面の分極用電極を
除去し、領域8,10についてのみ最初の分極処理とは
逆方向に電圧を印加して分極処理する。このようにし
て、領域8,10と、領域7,9との分極方向が逆方向
とされた圧電板Aを得ることができる。
In the present invention, the piezoelectric plate that has been polarized as described above is used, but the polarization is performed through the process shown in FIG. 5, for example. First, the polarization electrodes 11 and 12 are formed on the entire surfaces of both main surfaces of the piezoelectric plate A, and the piezoelectric plate A is polarized in the thickness direction by applying a voltage. next,
As shown in FIG. 5, the polarization electrodes on both main surfaces of the piezoelectric plate A are removed in regions 7 and 9 of the regions divided by two diagonal lines, and the first polarization treatment is performed only in regions 8 and 10. A polarization is applied by applying a voltage in the opposite direction. In this way, the piezoelectric plate A in which the polarization directions of the regions 8 and 10 and the regions 7 and 9 are opposite to each other can be obtained.

【0012】第1の実施例 図1は、本発明の第1の実施例の圧電共振子を示す斜視
図である。平面形状が正方形の圧電板Aは、図5に示し
た方法で分極処理されている。すなわち、圧電板Aの正
方形を2本の対角線6a,6bで区切ることにより構成
された4つの領域は、図示の矢印P1 〜P4 で示すよう
に、隣接する領域間で分極方向が逆方向となるように厚
み方向に分極処理されている。そして、圧電板Aの両主
面には、一対の共振電極13,14が全面電極の形態に
形成されている。
First Embodiment FIG. 1 is a perspective view showing a piezoelectric resonator according to a first embodiment of the present invention. The piezoelectric plate A having a square planar shape is polarized by the method shown in FIG. That is, four regions that are configured by separating a square piezoelectric plate A with two diagonal lines 6a, 6b, as shown by the arrow P 1 to P 4 shown, reverse the polarization direction between adjacent regions Is polarized in the thickness direction so that A pair of resonance electrodes 13 and 14 are formed on both main surfaces of the piezoelectric plate A in the form of full-scale electrodes.

【0013】本実施例の圧電共振子15を駆動するに際
しては、上記共振電極13,14から交流電界を印加す
ればよく、従って、拡がり振動モードを利用した従来の
圧電共振子と同様に使用することができる。しかしなが
ら、本実施例の圧電共振子15では、圧電板Aが上記の
ように分極処理されているため、前述した拡がり振動モ
ードよりも低周波数域で振動する前述の振動モードが励
起される。よって、拡がり振動モードを利用した圧電共
振子に比べて、より小型の圧電共振子を得ることができ
る。
When driving the piezoelectric resonator 15 of the present embodiment, it is sufficient to apply an AC electric field from the resonance electrodes 13 and 14, and therefore, it is used in the same manner as a conventional piezoelectric resonator utilizing the spreading vibration mode. be able to. However, in the piezoelectric resonator 15 of the present embodiment, since the piezoelectric plate A is polarized as described above, the above-mentioned vibration mode that vibrates in a lower frequency range than the above-described spread vibration mode is excited. Therefore, it is possible to obtain a smaller piezoelectric resonator as compared with the piezoelectric resonator using the spreading vibration mode.

【0014】次に、具体的な実験例を説明することによ
り、本実施例の効果を明らかにする。圧電板Aとして、
Pb(Zr0.52Ti048 )O3 に対してCr2 3
0.3重量%の割合で配合してなる圧電材料を主体とす
る圧電板であって、15mm×15mm×厚み5mmの
大きさのものを用意し、前述した図5に示した方法に従
って分極処理を行い、しかる後、両主面の全面に共振電
極を形成した。上記のようにして得られた圧電共振子の
インピーダンス−周波数特性を図6に実線で示す。比較
のために、圧電板の分極方向が厚み方向に一様であるこ
とを除いては上記と同様にして作製した拡がり振動モー
ドを利用した従来の圧電共振子を得、そのインピーダン
ス−周波数特性を測定した。従来例の圧電共振子のイン
ピーダンス−周波数特性を図6に破線で示す。
Next, the effect of this embodiment will be clarified by explaining a concrete experimental example. As the piezoelectric plate A,
A piezoelectric plate mainly composed of a piezoelectric material containing Pb (Zr 0.52 Ti 048 ) O 3 in a proportion of 0.3% by weight of Cr 2 O 3, and having a size of 15 mm × 15 mm × thickness 5 mm. Was prepared and polarized according to the method shown in FIG. 5 described above, and thereafter, a resonance electrode was formed on the entire surfaces of both main surfaces. The impedance-frequency characteristic of the piezoelectric resonator obtained as described above is shown by the solid line in FIG. For comparison, a conventional piezoelectric resonator utilizing a spreading vibration mode produced in the same manner as above except that the polarization direction of the piezoelectric plate is uniform in the thickness direction was obtained, and its impedance-frequency characteristic was measured. It was measured. The impedance-frequency characteristic of the conventional piezoelectric resonator is shown by the broken line in FIG.

【0015】図6から明らかなように、実施例の圧電共
振子では、従来例(拡がり振動モードを利用したもの)
よりも低周波数側に上述した振動モードが励起されてお
り、かつ拡がり振動及び輪郭振動がほとんど励振されな
いことがわかる。また、上述した実施例の圧電共振子及
び従来例の圧電共振子について、電気的な特性を測定し
た。結果を表1に示す。なお、表1において、各記号の
意味は下記の通りである。Fr…共振周波数、Zr…共
振周波数におけるインピーダンス値、Fa…反共振周波
数、Za…反共振周波数におけるインピーダンス値、K
…電気機械結合係数。
As is apparent from FIG. 6, in the piezoelectric resonator of the embodiment, the conventional example (using the spreading vibration mode)
It can be seen that the above-mentioned vibration mode is excited on the lower frequency side, and the spreading vibration and the contour vibration are hardly excited. In addition, the electrical characteristics of the piezoelectric resonator of the above-described example and the piezoelectric resonator of the conventional example were measured. The results are shown in Table 1. In Table 1, the meaning of each symbol is as follows. Fr ... Resonance frequency, Zr ... Impedance value at resonance frequency, Fa ... Anti-resonance frequency, Za ... Impedance value at anti-resonance frequency, K
… Electromechanical coupling coefficient.

【0016】[0016]

【表1】 [Table 1]

【0017】表1から明らかなように、実施例の圧電共
振子において、拡がり振動モードを利用した従来の圧電
共振子と同一の共振周波数を得ようとした場合、圧電板
の外径は、15mm×15mm(拡がり振動の場合)か
ら12.7mm×12.7mm(実施例の場合)とすれ
ばよい。よって、本実施例によれば、15%程度、圧電
共振子の小型化を図り得ることがわかる。また、図6か
ら明らかなように、実施例の圧電共振子では、共振周波
数と不要スプリアス振動周波数との差が、従来例に比べ
て約2倍に広がっており、従ってスプリアス振動の影響
を受け難いこともわかる。
As is apparent from Table 1, in the piezoelectric resonator of the embodiment, when it is attempted to obtain the same resonance frequency as that of the conventional piezoelectric resonator using the spreading vibration mode, the outer diameter of the piezoelectric plate is 15 mm. It may be set to x15 mm (in the case of spreading vibration) to 12.7 mm x 12.7 mm (in the example). Therefore, according to this example, it is understood that the piezoelectric resonator can be downsized by about 15%. Further, as is clear from FIG. 6, in the piezoelectric resonator of the embodiment, the difference between the resonance frequency and the unnecessary spurious vibration frequency is about twice as wide as that of the conventional example, and therefore the spurious vibration is affected. I know that it is difficult.

【0018】第2の実施例 図6に示したように、第1の実施例では、インピーダン
ス−周波数特性において上述した頂点が移動する振動モ
ード以外の拡がり振動や輪郭振動に基づく不要スプリア
ス振動が発生し難いことがわかった。しかしながら、第
1の実施例の圧電共振子を多数製作した場合、場合によ
っては、図7に示すように、頂点が移動する振動モード
よりも高周波数側に拡がり振動モードに基づくと思われ
るスプリアス振動Xが発生することがあった。
Second Embodiment As shown in FIG. 6, in the first embodiment, unnecessary spurious vibrations due to spreading vibration and contour vibration other than the vibration mode in which the apex moves in the impedance-frequency characteristics are generated. I found it difficult to do. However, when a large number of piezoelectric resonators of the first embodiment are manufactured, spurious vibration that is considered to be based on a vibration mode that spreads to a higher frequency side than the vibration mode in which the apex moves in some cases, as shown in FIG. X sometimes occurred.

【0019】そこで、さらに検討を加えたところ、この
ような拡がり振動モードに基づくスプリアス振動は、圧
電板の4つの領域を完全に対称に分極できなかった場合
に発生することがわかった。すなわち、図4に示したよ
うに4つの領域において確実に隣接する領域が互いに逆
方向となるように圧電板が対称に分極されれば、図6に
示したように拡がり振動に基づくスプリアス振動はほと
んど発生しない。これに対して、分極状態が完全に対称
ではない場合には、図7に示したように不要スプリアス
振動Xが発生することがわかった。
Then, as a result of further study, it was found that such spurious vibrations based on the spreading vibration mode occur when the four regions of the piezoelectric plate cannot be polarized completely symmetrically. That is, as shown in FIG. 4, if the piezoelectric plates are symmetrically polarized so that adjacent regions in the four regions are surely in opposite directions, spurious vibrations due to spreading vibrations as shown in FIG. It rarely happens. On the other hand, when the polarization state is not completely symmetrical, it was found that the unwanted spurious vibration X occurs as shown in FIG.

【0020】前述した拡がり振動モードよりも低周波数
側で励起される、頂点が移動する振動モードでは、図3
の電荷分布から明らかなように、正方形の中心点近傍の
領域では電荷はほとんど発生していない。他方、拡がり
振動モードの場合に圧電板に発生する電荷分布は、図8
に示す通りとなる。すなわち、正方形の中心領域におい
て電荷が最も強く集中する。従って、この正方形の中心
点近傍において振動を抑制すれば、前述した頂点が移動
する振動を弱めることなく、拡がり振動の励振を効果的
に抑制し得ることがわかる。
In the vibration mode in which the apex moves, which is excited on the lower frequency side than the above-described spread vibration mode, FIG.
As is clear from the charge distribution of, almost no charge is generated in the region near the center of the square. On the other hand, the charge distribution generated in the piezoelectric plate in the spreading vibration mode is shown in FIG.
It becomes as shown in. That is, the charges are concentrated most strongly in the central region of the square. Therefore, it is understood that if the vibration is suppressed in the vicinity of the center point of the square, the excitation of the spread vibration can be effectively suppressed without weakening the above-described vibration in which the apex moves.

【0021】よって、第2の実施例では、図3の発生電
荷の等高線に沿うように、図9に示す分極電極21〜2
4を形成し、分極処理が施される。すなわち、圧電板A
の一方主面に分極電極21〜24を形成し、他方主面に
も、分極電極21〜24と圧電板Aを介して表裏対向す
るように分極電極を形成する。そして、主面上で隣接す
る分極電極間に逆極性の電圧を印加することにより、圧
電板Aの対角線で区切られた4つの領域において、隣接
する領域が厚み方向に逆方向に分極処理されるように分
極処理する。
Therefore, in the second embodiment, the polarized electrodes 21 to 2 shown in FIG. 9 are arranged along the contour lines of the generated charges in FIG.
4 is formed and a polarization process is performed. That is, the piezoelectric plate A
The polarized electrodes 21 to 24 are formed on one main surface, and the polarized electrodes are formed on the other main surface so as to face the polarized electrodes 21 to 24 with the piezoelectric plate A in between. Then, by applying a voltage of opposite polarity between the adjacent polarization electrodes on the main surface, in the four areas of the piezoelectric plate A divided by diagonal lines, the adjacent areas are polarized in the opposite direction in the thickness direction. Polarization process.

【0022】次に、上述のようにして分極処理された圧
電板Aの両主面の全面に、共振電極を形成することによ
り、図10に示す第2の共振子25を得ることができ
る。なお、図10において、破線B〜Eと圧電板Aの周
縁とで囲まれた領域が分極処理されている領域である。
第2の実施例の圧電共振子25では、圧電板Aの中心点
近傍の領域Fには分極が施されていない。よって、一対
の共振電極26,27から交流電界を印加した場合、圧
電板Aの中心点近傍の領域Fが駆動されないことになる
ため、拡がり振動を抑制しつつ、前述した頂点が移動す
る振動を励起することができる。
Next, the second resonator 25 shown in FIG. 10 can be obtained by forming a resonance electrode on the entire both main surfaces of the piezoelectric plate A polarized as described above. In FIG. 10, the region surrounded by the broken lines B to E and the peripheral edge of the piezoelectric plate A is the region that has been polarized.
In the piezoelectric resonator 25 of the second embodiment, the region F near the center point of the piezoelectric plate A is not polarized. Therefore, when an AC electric field is applied from the pair of resonance electrodes 26 and 27, the region F in the vicinity of the center point of the piezoelectric plate A is not driven, so that the above-described vibration in which the apex moves while suppressing the spreading vibration. Can be excited.

【0023】第2の実施例の具体的な実験例につき説明
する。実施例1と同一の圧電板を用い、図9に示したよ
うに分極電極を形成して分極処理を施し、第2の実施例
の圧電共振子を得、そのインピーダンス−周波数特性を
測定した。結果を、図11に示す。図11から明らかな
ように、本実施例では、中心点近傍の領域が分極されて
いないため、拡がり振動に基づくスプリアスが効果的に
抑制されていることがわかる。なお、第2の実施例で
は、圧電板Aの中心点近傍の領域に分極を施さないこと
により、中心点近傍の領域を駆動しないように構成して
いたが、これに対して第1の実施例と同様に分極処理を
施した後、図12に示すように、圧電板Aの中心点近傍
の領域に電極欠落部分28が設けられている共振電極2
9を両主面に形成すれば、同様に拡がり振動によるスプ
リアスを効果的に抑制することができる。
A specific experimental example of the second embodiment will be described. Using the same piezoelectric plate as in Example 1, polarization electrodes were formed as shown in FIG. 9 and subjected to polarization treatment to obtain a piezoelectric resonator of the second example, and its impedance-frequency characteristics were measured. The results are shown in Fig. 11. As is clear from FIG. 11, in this embodiment, since the region near the center point is not polarized, it can be seen that spurious due to spreading vibration is effectively suppressed. In the second embodiment, the region near the center point of the piezoelectric plate A is not polarized, so that the region near the center point is not driven. However, the first embodiment After performing the polarization process in the same manner as the example, as shown in FIG. 12, the resonance electrode 2 having the electrode missing portion 28 in the region near the center point of the piezoelectric plate A is provided.
If 9 is formed on both main surfaces, spurious due to spreading vibration can be effectively suppressed.

【0024】[0024]

【発明の効果】本発明では、平面形状が正方形の圧電板
において2本の対角線で区切られた4つの領域において
隣接する領域間が厚み方向において異なる方向に分極処
理されているため、両主面に形成された共振電極から交
流電界を印加することにより、圧電板の頂点が移動する
振動が励振される。この圧電板の頂点が移動する振動
は、拡がり振動よりも低周波数側に発生する。よって、
従来の拡がり振動モードを利用した圧電共振子に比べ
て、より小型であり、かつ輪郭振動等の不要スプリアス
振動の影響を受け難い圧電共振子を提供することが可能
となる。
According to the present invention, in the piezoelectric plate having a square planar shape, the four adjacent areas separated by two diagonal lines are polarized in different directions in the thickness direction. By applying an AC electric field from the resonance electrode formed on the substrate, the vibration that the apex of the piezoelectric plate moves is excited. The vibration in which the apex of the piezoelectric plate moves is generated on the lower frequency side than the spreading vibration. Therefore,
It is possible to provide a piezoelectric resonator that is smaller in size and less susceptible to the influence of unnecessary spurious vibrations such as contour vibrations, as compared with a conventional piezoelectric resonator that uses a spreading vibration mode.

【0025】また、請求項2に記載の発明のように、圧
電板の中心点近傍の領域を駆動しないように構成した場
合には、拡がり振動をより一層効果的に抑制することが
できるため、一層スプリアス振動の影響を受け難い圧電
共振子を構成することが可能となる。
Further, when the region near the center point of the piezoelectric plate is not driven as in the second aspect of the invention, the spreading vibration can be suppressed more effectively. It is possible to configure a piezoelectric resonator that is even less susceptible to spurious vibrations.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の圧電共振子を示す斜視図。FIG. 1 is a perspective view showing a piezoelectric resonator according to an embodiment of the present invention.

【図2】本発明で用いられる振動モードを説明するため
の模式的平面図。
FIG. 2 is a schematic plan view for explaining a vibration mode used in the present invention.

【図3】本発明で利用される振動モードで圧電板を励振
させた場合の電荷分布を説明するための模式的平面図。
FIG. 3 is a schematic plan view for explaining a charge distribution when a piezoelectric plate is excited in a vibration mode used in the present invention.

【図4】本発明で用いられる圧電板の分極方向を説明す
るための模式的平面図。
FIG. 4 is a schematic plan view for explaining the polarization direction of the piezoelectric plate used in the present invention.

【図5】分極方法の一例を説明するための斜視図。FIG. 5 is a perspective view for explaining an example of a polarization method.

【図6】第1の実施例の圧電共振子及び従来例の圧電共
振子のインピーダンス−周波数特性を示す図。
FIG. 6 is a diagram showing impedance-frequency characteristics of the piezoelectric resonator of the first embodiment and the piezoelectric resonator of the conventional example.

【図7】拡がり振動によるスプリアスが発生している例
を示すインピーダンス−周波数特性を示す図。
FIG. 7 is a diagram showing impedance-frequency characteristics showing an example in which spurious due to spreading vibration is generated.

【図8】拡がり振動モードを励振させた場合の圧電板に
発生する電荷分布を説明するための模式的平面図。
FIG. 8 is a schematic plan view for explaining a charge distribution generated in a piezoelectric plate when a spreading vibration mode is excited.

【図9】第2の実施例における分極方法を説明するため
の模式的平面図。
FIG. 9 is a schematic plan view for explaining the polarization method in the second embodiment.

【図10】第2の実施例の圧電共振子の斜視図。FIG. 10 is a perspective view of a piezoelectric resonator according to a second embodiment.

【図11】第2の実施例の圧電共振子のインピーダンス
−周波数特性を示す図。
FIG. 11 is a diagram showing impedance-frequency characteristics of the piezoelectric resonator of the second embodiment.

【図12】本発明の第3の実施例の圧電共振子を示す斜
視図。
FIG. 12 is a perspective view showing a piezoelectric resonator according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A…圧電板 5,6…対角線 7〜10…領域 13,14…共振電極 15…圧電共振子 A ... Piezoelectric plate 5, 6 ... Diagonal line 7-10 ... area 13, 14 ... Resonant electrodes 15 ... Piezoelectric resonator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 陽 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 (72)発明者 坂部 行雄 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yo Ando             2-10-10 Tenjin, Nagaokakyo, Kyoto Stock             Murata Manufacturing Co., Ltd. (72) Inventor Yukio Sakabe             2-10-10 Tenjin, Nagaokakyo, Kyoto Stock             Murata Manufacturing Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平面形状が正方形であり、該正方形の2
本の対角線で区切られた4つの領域において、隣合う領
域間で分極方向が逆方向となるように厚み方向に分極処
理された圧電板と、 前記圧電板の両主面の全面に形成された一対の共振電極
とを備えることを特徴とする、圧電共振子。
1. The plane shape is a square, and the square shape has two
Piezoelectric plates that are polarized in the thickness direction so that the polarization directions are opposite to each other in the four regions separated by diagonal lines of the book, and are formed on the entire both main surfaces of the piezoelectric plate. A piezoelectric resonator comprising a pair of resonance electrodes.
【請求項2】 平面形状が正方形であり、該正方形の2
本の対角線で区切られた4つの領域において、隣合う領
域間で分極方向が逆方向となるように厚み方向に分極処
理された圧電板と、 前記圧電板の両主面に形成された一対の共振電極とを備
え、 前記正方形の中心点近傍において圧電板に分極されてい
ない未分極領域が成形されていること、あるいは前記正
方形の中心点近傍において前記共振電極が欠落している
電極欠落部分が設けられていることを特徴とする圧電共
振子。
2. The planar shape is a square, and the square has
In four regions divided by a diagonal line of the book, a piezoelectric plate polarized in the thickness direction so that the polarization directions are opposite to each other between adjacent regions, and a pair of piezoelectric plates formed on both main surfaces of the piezoelectric plate. A resonance electrode is provided, and an unpolarized region that is not polarized in the piezoelectric plate is formed in the vicinity of the center point of the square, or an electrode missing portion where the resonance electrode is missing in the vicinity of the center point of the square. A piezoelectric resonator characterized by being provided.
JP16968891A 1991-07-10 1991-07-10 Piezoelectric resonator Pending JPH0522069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16968891A JPH0522069A (en) 1991-07-10 1991-07-10 Piezoelectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16968891A JPH0522069A (en) 1991-07-10 1991-07-10 Piezoelectric resonator

Publications (1)

Publication Number Publication Date
JPH0522069A true JPH0522069A (en) 1993-01-29

Family

ID=15891056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16968891A Pending JPH0522069A (en) 1991-07-10 1991-07-10 Piezoelectric resonator

Country Status (1)

Country Link
JP (1) JPH0522069A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148879B2 (en) 2008-05-29 2012-04-03 Murata Manufacturing Co., Ltd. Sheet-type vibrator and acoustic apparatus
US8363863B2 (en) 2008-05-29 2013-01-29 Murata Manufacturing Co., Ltd. Piezoelectric speaker, speaker apparatus, and tactile feedback apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148879B2 (en) 2008-05-29 2012-04-03 Murata Manufacturing Co., Ltd. Sheet-type vibrator and acoustic apparatus
US8363863B2 (en) 2008-05-29 2013-01-29 Murata Manufacturing Co., Ltd. Piezoelectric speaker, speaker apparatus, and tactile feedback apparatus

Similar Documents

Publication Publication Date Title
US6362561B1 (en) Piezoelectric vibration device and piezoelectric resonance component
JPS6340491B2 (en)
JPH06252688A (en) Piezoelectric resonator
JPH11308070A (en) Piezoelectric body element
JP2001211052A (en) Piezoelectric resonator
JPH114133A (en) Thickness vertical piezoelectric resonator
JPH114135A (en) Energy continement-type thickness vertical piezoelectric resonators
JPH0522069A (en) Piezoelectric resonator
JP3262076B2 (en) Piezoelectric resonator, method for adjusting frequency of piezoelectric resonator, and communication device
JPH0522068A (en) Piezoelectric resonator
JPH0567939A (en) Piezoelectric resonator and its production
JPH10215140A (en) Piezoelectric resonator and electronic component using the resonator
JPS59172825A (en) Piezoelectric bending vibrator and piezoelectric filter
CN1355604A (en) Three-terminal filter using area warping vibration mode
JPH09181556A (en) Piezoelectric vibrator
JP2001108441A (en) Energy enclosure type piezoelectric vibrator and piezoelectric vibration gyro
JPS60196005A (en) Single piezoelectric flexural resonator and piezoelectric filter
JPH05243889A (en) Thickness-shear piezoelectric oscillator
JPS63182904A (en) Energy confinement type piezoelectric vibrator component
JPH08186459A (en) Manufacture of chip type piezoelectric filter
JPS58173912A (en) Piezoelectric element bending oscillator and piezoelectric filter
JP3485114B2 (en) Thickness vertical piezoelectric resonator and piezoelectric resonant component
JP4070169B2 (en) Piezoelectric resonator
JPH07147526A (en) Vibrator utilizing width spread mode, resonator and resonator component
JPS6218105A (en) Piezoelectric resonator