JPH0522049A - Complementary multistep amplifier circuit - Google Patents

Complementary multistep amplifier circuit

Info

Publication number
JPH0522049A
JPH0522049A JP3198582A JP19858291A JPH0522049A JP H0522049 A JPH0522049 A JP H0522049A JP 3198582 A JP3198582 A JP 3198582A JP 19858291 A JP19858291 A JP 19858291A JP H0522049 A JPH0522049 A JP H0522049A
Authority
JP
Japan
Prior art keywords
transistor
stage
drive
transistors
bias current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3198582A
Other languages
Japanese (ja)
Other versions
JP3180820B2 (en
Inventor
Jun Hirai
井 順 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N F KAIRO SEKKEI BLOCK KK
Original Assignee
N F KAIRO SEKKEI BLOCK KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N F KAIRO SEKKEI BLOCK KK filed Critical N F KAIRO SEKKEI BLOCK KK
Priority to JP19858291A priority Critical patent/JP3180820B2/en
Publication of JPH0522049A publication Critical patent/JPH0522049A/en
Application granted granted Critical
Publication of JP3180820B2 publication Critical patent/JP3180820B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To always obtain the characteristic of high stability by stabilizing the bias current of a transistor in a final output step by a variable bias voltage source and stabilizing the bias current of the drive step of the other step by a DC constant current source. CONSTITUTION:A thermally coupled variable voltage source 5 is provided at transistors 1 and 2 in the output step so as to compensate the increase of the bias current with the temperature increase of the output step transistors 1 and 2. A DC constant current source 6 is connected between the emitters of drive step transistors 3 and 4, and an output current from this DC constant current source 6 is set at the suitable bias current value of the drive step transistors 3 and 4. A capacitor C is parallelly connected to this DC constant current source 6, AC impedance is lowered and an influence from the drive step to the drive ability of the output step transistors 1 and 2 is reduced. Therefore, even when the voltage of the bias voltage source is considerably changed, the bias current value of the drive step transistors 3 and 4 is fixed.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、コンプリメンタリ多段
増幅回路に関し、特にそのドライブ段のバイアス電流を
安定化したコンプリメンタリ多段増幅回路に関する。 【0002】 【従来の技術】従来のコンプリメンタリ多段エミッタフ
ォロワ増幅回路は、図3に示す如く構成されている。図
3において、最終段である出力段では、NPNトランジ
スタ1とPNPトランジスタ2のエミッタ間が出力抵抗
R1とR2を介して接続され、その接続点に負荷RLが
接続されている。また、トランジスタ1と2のコレクタ
には電圧源V1とV2から電源が供給されている。入力
信号源Sからの信号は、NPNトランジスタ3とPNP
トランジスタ4等を含むドライブ段を介して出力段のト
ランジスタ1と2のベースに供給され、エミッタを介し
て負荷RLに供給される。ドライブ段のトランジスタ3
と4のエミッタ間には抵抗R3が接続されている。 【0003】通常、各トランジスタに供給されるバイア
ス電流を一定に維持することはきわめて難しく、特にト
ランジスタの損失に起因する発熱による素子温度の上昇
は、バイアス電流を変化させる。すなわち、トランジス
タに流れる損失電流によりトランジスタ自体の温度が上
昇すると、トランジスタの順方向ベース・エミッタ間電
圧の閾値が小さくなり、その結果、トランジスタのコレ
クタ電流が増加して損失が増大する。この損失の増大に
より、更にトランジスタ自体の温度が上昇し、かかる素
子(トランジスタ)温度とコレクタ電流の間に生ずる正
帰還現象は、一般に熱暴走と称され、素子の破壊に至る
恐れもある。また、バイアス電流は、その増幅段での交
流特性にも大きく関係し、バイアス電流の変動は増幅回
路の高周波特性を悪化させる。 【0004】以上のように、トランジスタの直流バイア
ス電流値の安定化は、きわめて重要であり、従来は、図
3に示すように、最も電流が多く流れ、発熱の大きい最
終段(出力段)のバイアス電流を安定化させるため、ト
ランジスタ1と2に熱的に結合させた補正用素子によ
り、電圧源V3に接続されたバイアス電圧源5からの出
力電圧を変化させている。補正用素子としては、抵抗値
が負の温度係数をもつサーミスタ等の素子、ダイオード
のように、その順方向電圧降下の温度係数がトランジス
タの順方向ベース・エミッタ間電圧の温度係数と等しい
素子等が用いられる。 【0005】 【発明が解決しようとする課題】上述のように、従来の
多段構成のコンプリメンタリ増幅回路においては、最終
段の電流を安定化するため、最終段のトランジスタに熱
結合させた補正用素子によってバイアス電圧源を制御し
て帰還をかけている。しかしながら、最終段トランジス
タは、電流が多く発熱も大きいため、その温度変化は、
ドライブ段のトランジスタの温度変化と比較して大き
く、ベース・エミッタ間閾値電圧の低下の度合も大きく
なる。その結果、最終段トランジスタバイアス電流の増
加量はドライブ段トランジスタのバイアス電流の増加量
よりも大きくなる。バイアス電圧源5からの出力電圧
は、最終段トランジスタの温度上昇によるバイアス電流
の増加分を補償するためのものであるため、最終段トラ
ンジスタのバイアス電流の安定化には有効であるもの
の、ドライブ段のバイアス電流に対しては有効とは言え
ない。すなわち、最終段トランジスタの発熱は、ドライ
ブ段トランジスタよりも大きいから、最終段トランジス
タの温度上昇に起因するバイアス電圧源5の出力電圧の
変化は、ドライブ段トランジスタのバイアス電流を必要
以上に著しく減少させてしまうことになる。以上のよう
に従来のコンプリメンタリ多段増幅回路は、安定化する
トランジスタが最終段トランジスタに限定されているた
め、多段構成の他の各ドライブ段のバイアス電流の安定
化を図ることができず、増幅器の性能、特性の劣化が避
けられないという問題があった。 【0006】そこで、本発明の目的は、多段構成のコン
プリメンタリ増幅回路においても各段のバイアス電流の
安定化が可能なコンプリメンタリ多段増幅回路を提供す
ることにある。 【0007】 【課題を解決するための手段】前述の課題を解決するた
め、本発明によるコンプリメンタリ多段増幅回路は、一
対の正負トランジスタから構成された少なくとも1段の
ドライブ段と最終出力段から構成されたコンプリメンタ
リ多段増幅回路において、前記最終出力段のトランジス
タのバイアス電流を一定化する第1の回路と、前記ドラ
イブ段のトランジスタに対して予め定めた一定値のバイ
アス電流を供給する第2の回路と、を備えて構成され
る。 【0008】 【作用】本発明では、最終出力段のトランジスタのバイ
アス電流の安定化は、例えば当該トランジスタと熱的に
結合された補正用素子を用いた前段部の可変バイアス電
圧源で行い、一方、他段のドライブ段のバイアス電流の
安定化は独立に設けた直流定電流源によって行うことと
により、最終出力段トランジスタの発熱によるバイアス
電流の増加を補うための可変電圧源の影響を、ドライブ
段トランジスタが受けなくして安定性を向上せしめてい
る。 【0009】 【実施例】次に、本発明について図面を参照しながら説
明する。図1は、本発明によるコンプリメンタリ多段増
幅回路の一実施例を示す回路で、エミッタフォロワ増幅
回路を示す。図中、図3と同一符号が付されている回路
要素は同様な回路要素である。本実施例の基本構成は図
3に示す従来回路と同様であるが、本実施例では、出力
段のトランジスタ1と2には熱結合された可変電圧源5
が設けられ、出力段トランジスタの温度上昇に伴うバイ
アス電流の増加を補償している。ドライブ段トランジス
タ3と4のエミッタ間には直流定電流源6が接続されて
いる。この直流定電流源6からの出力電流は、ドライブ
段トランジスタ3と4の適切なバイアス電流値に設定さ
れている。直流定電流源6にはコンデンサCが並列に接
続され、交流的インピーダンスを低くして、ドライブ段
からの出力段トランジスタのドライブ能力への影響を軽
減している。 【0010】図1に示す実施例によれば、最終出力段の
トランジスタの温度上昇に起因するバイアス電圧源5の
電圧変化が大きく変化したとしても、ドライブ段トラン
ジスタのバイアス電流値は一定値である。また、この系
統はバイアス電圧源5とは独立しているから、従来のよ
うに出力段トランジスタの温度変化を直接に受けず、増
幅回路全体の特性の安定化が得られる。 【0011】図2には、本発明によるコンプリメンタリ
多段増幅回路の他の実施例が示されている。本実施例
は、図1に示す実施例における直流定電流源6を広く市
販されている、いわゆる“3端子型電圧レギュレータI
C”7を用いて構成している。3端子型レギュレータI
C7の入力端子INをトランジスタ3のエミッタに、出
力端子OUTを抵抗R4を介してトランジスタ4のエミ
ッタに接続するとともに、共通端子COMをトランジス
タ4のエミッタに接続している。図2に示す実施例によ
れば、簡単に直流定電流源が構成でき、回路規模が小さ
くできるため、高周波動作時においても直流定電流源部
と周囲の間に形成される浮遊容量も少なくなり、この浮
遊容量によって交流分ドライブ電流がバイパスして回路
の高周波動作特性を悪化させる恐れもなくなる。また、
3端子型電圧レギュレータICに内蔵されている基準信
号源は安定であるから、直流バイアス電流値を安定に制
御でき、回路個々の調整や補正も必要ない。 【0012】以上の実施例では、ドライブ段は、一つで
あるが、本発明は任意のドライブ段を有する回路に適用
できるし、トランジスタもFET等の他の種類のトラン
ジスタを用いることができる。また、直流定電流源とし
ても他の任意の種類の定電流源を用いることができるこ
とも勿論である。 【0013】 【発明の効果】以上説明したように、本発明によるコン
プリメンタリ多段増幅回路は、最終出力段のトランジス
タのバイアス電流の安定化は、例えば前段部の当該トラ
ンジスタと熱的に結合された補正用素子を用いた可変バ
イアス電圧源で行うとともに、他段のドライブ段のバイ
アス電流の安定化は独立に設けた直流定電流源によって
行っているので、従来のように最終出力段トランジスタ
の発熱によるバイアス電流の増加を補うための可変電圧
源の影響を、ドライブ段トランジスタが受けなくなり、
常時、安定度の高い特性が得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a complementary multi-stage amplifier circuit, and more particularly to a complementary multi-stage amplifier circuit in which the bias current of its drive stage is stabilized. 2. Description of the Related Art A conventional complementary multistage emitter follower amplifier circuit is constructed as shown in FIG. In the output stage which is the final stage in FIG. 3, the emitters of the NPN transistor 1 and the PNP transistor 2 are connected via output resistors R1 and R2, and the load RL is connected to the connection point. The collectors of the transistors 1 and 2 are supplied with power from voltage sources V1 and V2. The signal from the input signal source S is supplied to the NPN transistor 3 and the PNP.
It is supplied to the bases of the transistors 1 and 2 in the output stage via the drive stage including the transistor 4 and the like, and is supplied to the load RL via the emitter. Drive stage transistor 3
A resistor R3 is connected between the emitters of and. Normally, it is extremely difficult to maintain a constant bias current supplied to each transistor, and in particular, an increase in element temperature due to heat generation due to transistor loss changes the bias current. That is, when the temperature of the transistor itself rises due to the loss current flowing in the transistor, the threshold value of the forward base-emitter voltage of the transistor decreases, and as a result, the collector current of the transistor increases and the loss increases. Due to this increase in loss, the temperature of the transistor itself further rises, and the positive feedback phenomenon that occurs between the element (transistor) temperature and the collector current is generally called thermal runaway, and there is a risk of destruction of the element. Further, the bias current is also greatly related to the AC characteristic in the amplification stage, and the fluctuation of the bias current deteriorates the high frequency characteristic of the amplifier circuit. As described above, it is extremely important to stabilize the direct current bias current value of the transistor. Conventionally, as shown in FIG. 3, in the final stage (output stage) where the most current flows and the heat generation is large. In order to stabilize the bias current, the correction element thermally coupled to the transistors 1 and 2 changes the output voltage from the bias voltage source 5 connected to the voltage source V3. As the compensating element, an element such as a thermistor whose resistance value has a negative temperature coefficient, or an element such as a diode whose temperature coefficient of its forward voltage drop is equal to that of the transistor's forward base-emitter voltage. Is used. As described above, in the conventional multi-stage complementary amplifier circuit, in order to stabilize the current in the final stage, the correction element thermally coupled to the transistor in the final stage. The bias voltage source is controlled by the feedback. However, since the final stage transistor has a large current and a large amount of heat generation, its temperature change is
Compared to the temperature change of the transistor in the drive stage, the change is large, and the degree of decrease in the base-emitter threshold voltage is also large. As a result, the increase amount of the final stage transistor bias current becomes larger than the increase amount of the drive stage transistor bias current. The output voltage from the bias voltage source 5 is for compensating for the increase in the bias current due to the temperature rise of the final stage transistor, so it is effective for stabilizing the bias current of the final stage transistor, but It cannot be said to be effective for the bias current of. That is, since the heat generation of the final-stage transistor is larger than that of the drive-stage transistor, the change in the output voltage of the bias voltage source 5 caused by the temperature rise of the final-stage transistor causes the bias current of the drive-stage transistor to be reduced more than necessary. Will be lost. As described above, in the conventional complementary multi-stage amplifier circuit, since the stabilizing transistor is limited to the final stage transistor, it is not possible to stabilize the bias currents of the other drive stages in the multi-stage configuration, and the amplifier There was a problem that deterioration of performance and characteristics was unavoidable. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a complementary multi-stage amplifier circuit capable of stabilizing the bias current of each stage even in a multi-stage complementary amplifier circuit. In order to solve the above-mentioned problems, the complementary multistage amplifier circuit according to the present invention comprises at least one drive stage composed of a pair of positive and negative transistors and a final output stage. In the complementary multi-stage amplifier circuit, a first circuit that keeps the bias current of the transistor of the final output stage constant, and a second circuit that supplies a bias current of a predetermined constant value to the transistor of the drive stage. , And are configured. According to the present invention, the bias current of the transistor in the final output stage is stabilized by, for example, the variable bias voltage source in the front stage using the correction element thermally coupled to the transistor, while By stabilizing the bias currents of the other drive stages with an independent DC constant current source, the influence of the variable voltage source to compensate for the increase in bias current due to heat generation of the final output stage transistor is driven. The transistor is not affected and the stability is improved. The present invention will now be described with reference to the drawings. FIG. 1 is a circuit showing an embodiment of a complementary multistage amplifier circuit according to the present invention, showing an emitter follower amplifier circuit. In the figure, circuit elements denoted by the same reference numerals as those in FIG. 3 are similar circuit elements. Although the basic configuration of this embodiment is similar to that of the conventional circuit shown in FIG. 3, in this embodiment, the variable voltage source 5 thermally coupled to the transistors 1 and 2 in the output stage is used.
Is provided to compensate for an increase in bias current due to a rise in temperature of the output stage transistor. A DC constant current source 6 is connected between the emitters of the drive stage transistors 3 and 4. The output current from the DC constant current source 6 is set to an appropriate bias current value for the drive stage transistors 3 and 4. A capacitor C is connected in parallel to the DC constant current source 6 to lower the AC impedance and reduce the influence of the drive stage on the drive capability of the output stage transistor. According to the embodiment shown in FIG. 1, even if the voltage change of the bias voltage source 5 due to the temperature rise of the transistor of the final output stage is largely changed, the bias current value of the drive stage transistor is a constant value. . Further, since this system is independent of the bias voltage source 5, it is possible to stabilize the characteristics of the entire amplifier circuit without directly receiving the temperature change of the output stage transistor as in the conventional case. FIG. 2 shows another embodiment of the complementary multistage amplifier circuit according to the present invention. In this embodiment, the DC constant current source 6 in the embodiment shown in FIG. 1 is widely marketed, that is, a so-called "three-terminal type voltage regulator I".
It is configured by using C ″ 7. 3-terminal regulator I
The input terminal IN of C7 is connected to the emitter of the transistor 3, the output terminal OUT is connected to the emitter of the transistor 4 via the resistor R4, and the common terminal COM is connected to the emitter of the transistor 4. According to the embodiment shown in FIG. 2, since the DC constant current source can be easily constructed and the circuit scale can be reduced, the stray capacitance formed between the DC constant current source section and the surroundings is reduced even during high frequency operation. Also, there is no fear that the stray capacitance bypasses the AC drive current and deteriorates the high frequency operation characteristics of the circuit. Also,
Since the reference signal source built in the three-terminal type voltage regulator IC is stable, the DC bias current value can be controlled stably, and adjustment and correction of each circuit are not necessary. In the above embodiments, the number of drive stages is one, but the present invention can be applied to a circuit having an arbitrary drive stage, and transistors of other types such as FETs can be used as transistors. Further, it goes without saying that any other kind of constant current source can be used as the DC constant current source. As described above, in the complementary multi-stage amplifier circuit according to the present invention, the stabilization of the bias current of the transistor in the final output stage is performed by, for example, the correction that is thermally coupled to the transistor in the front stage. In addition to the variable bias voltage source that uses a device for power supply, the bias current of the other drive stage is stabilized by an independent DC constant current source. The drive stage transistor will not be affected by the variable voltage source to compensate for the increase in bias current,
Highly stable characteristics can always be obtained.

【図面の簡単な説明】 【図1】本発明によるコンプリメンタリ多段増幅回路の
一実施例を示す回路図である。 【図2】本発明によるコンプリメンタリ多段増幅回路の
他の実施例を示す回路図である。 【図3】従来のコンプリメンタリ多段増幅回路図であ
る。 【符号の説明】 1,2,3,4 トランジスタ 5 バイアス電圧源 6 定電流源 7 3端子型電圧レギュレータ
IC
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram showing an embodiment of a complementary multistage amplifier circuit according to the present invention. FIG. 2 is a circuit diagram showing another embodiment of the complementary multistage amplifier circuit according to the present invention. FIG. 3 is a diagram of a conventional complementary multistage amplifier circuit. [Description of Reference Signs] 1, 2, 3, 4 Transistor 5 Bias voltage source 6 Constant current source 7 3 terminal type voltage regulator IC

Claims (1)

【特許請求の範囲】 一対の正負トランジスタから構成された少なくとも1段
のドライブ段と最終出力段から構成されたコンプリメン
タリ多段増幅回路において、 前記最終出力段のトランジスタのバイアス電流を一定化
する第1の回路と、 前記ドライブ段のトランジスタに対して予め定めた一定
値のバイアス電流を供給する第2の回路と、 を備えて成ることを特徴とするコンプリメンタリ多段増
幅回路。
What is claimed is: 1. A complementary multi-stage amplifier circuit comprising at least one drive stage composed of a pair of positive and negative transistors and a final output stage, wherein a first bias current of a transistor of the final output stage is made constant. A complementary multi-stage amplifier circuit comprising: a circuit; and a second circuit that supplies a bias current of a predetermined constant value to the drive-stage transistor.
JP19858291A 1991-07-12 1991-07-12 Complementary multistage amplifier circuit Expired - Lifetime JP3180820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19858291A JP3180820B2 (en) 1991-07-12 1991-07-12 Complementary multistage amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19858291A JP3180820B2 (en) 1991-07-12 1991-07-12 Complementary multistage amplifier circuit

Publications (2)

Publication Number Publication Date
JPH0522049A true JPH0522049A (en) 1993-01-29
JP3180820B2 JP3180820B2 (en) 2001-06-25

Family

ID=16393578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19858291A Expired - Lifetime JP3180820B2 (en) 1991-07-12 1991-07-12 Complementary multistage amplifier circuit

Country Status (1)

Country Link
JP (1) JP3180820B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359529A (en) * 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd Power amplifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359529A (en) * 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd Power amplifier

Also Published As

Publication number Publication date
JP3180820B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
US6052032A (en) Radio frequency amplifiers
US20010038313A1 (en) Bias network for high efficiency RF linear power amplifier
KR100547236B1 (en) Bias Stabilization Circuit in Power Amplifier
JP2005512376A (en) Amplifier with bias compensation using a current mirror circuit
JPH0154929B2 (en)
US7057462B2 (en) Temperature compensated on-chip bias circuit for linear RF HBT power amplifiers
US5337012A (en) Amplifier having temperature compensated bias control
KR100712430B1 (en) Fet bias circuit
US6657496B2 (en) Amplifier circuit with regenerative biasing
JP3180820B2 (en) Complementary multistage amplifier circuit
US11418159B2 (en) Differential signal offset adjustment circuit and differential system
US5444419A (en) Power amplifier having a temperature compensation circuit
US4058775A (en) Over-current prevention circuitry for transistor amplifiers
JPH11205045A (en) Current supplying circuit and bias voltage circuit
KR100270581B1 (en) Bias stabilizing circuit
US5869989A (en) Amplifying electronic circuit with stable idling current
JP3340345B2 (en) Constant voltage generator
JP5001822B2 (en) Bias circuit, differential amplifier
US20010050595A1 (en) Single-ended push-pull amplifier circuit
US4140976A (en) Thermally stable push-pull amplifier
JP2004517540A (en) RF power amplifier with distributed bias circuit
JP2001284969A (en) Power amplifier
JPH04369907A (en) High frequency amplifier circuit
JP2623954B2 (en) Variable gain amplifier
JPH0379123A (en) Constant current source circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11