JPH0522033A - Oscillation circuit - Google Patents

Oscillation circuit

Info

Publication number
JPH0522033A
JPH0522033A JP3174191A JP17419191A JPH0522033A JP H0522033 A JPH0522033 A JP H0522033A JP 3174191 A JP3174191 A JP 3174191A JP 17419191 A JP17419191 A JP 17419191A JP H0522033 A JPH0522033 A JP H0522033A
Authority
JP
Japan
Prior art keywords
resonator
microstrip line
oscillator
circuit
oscillation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3174191A
Other languages
Japanese (ja)
Inventor
Nobuo Shiga
信夫 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3174191A priority Critical patent/JPH0522033A/en
Priority to CA002073389A priority patent/CA2073389A1/en
Priority to EP92111792A priority patent/EP0523564A1/en
Priority to US07/913,030 priority patent/US5309119A/en
Publication of JPH0522033A publication Critical patent/JPH0522033A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the oscillation circuit for a microwave band which can reduce a loss and can be miniaturized in a height-wise direction. CONSTITUTION:A local oscillation circuit 7 is composed of a Monolithic Microwave Integrated Circuit (MMIC) oscillator 9 equipped with an FET and a resonator 10 connected for stabilizing the oscillation frequency of the oscillator. This resonator 10 is ring-shaped and adjacently arranged in a distance from several mum to dozens of mum to the prescribed position of a microstrip line 16 constituting a feedback loop connected to the FET constituting the oscillator. Further the resonator is formed in the shape of a thin film by depositing a high temperature super-conductive material, and YBCO or niobium, etc., for example, is used for this high temperature super-conductive material. Moreover, one part of the microstrip line adjacent to the resonator is formed as a circular arc- shaped part 16a having the same center as that of the resonator and the central angle of 90 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発振回路に関するもで、
より具体的にはマイクロ波帯におけるIC化された発振
回路に関するものである。
The present invention relates to an oscillator circuit,
More specifically, it relates to an oscillation circuit integrated into an IC in the microwave band.

【0002】[0002]

【従来の技術】近年情報ネットワークシステムの急速な
展開が図られる中で、衛星通信システムの需要も急増
し、周波数帯も高周波(マイクロ波)化されつつある。
それにともない高周波信号を低周波信号に変換するダウ
ンコンバータに局部発振回路として適用される発振回路
の需要も高まっている。
2. Description of the Related Art In recent years, with the rapid development of information network systems, the demand for satellite communication systems has increased rapidly, and the frequency band is becoming high frequency (microwave).
Along with this, there is an increasing demand for an oscillation circuit applied as a local oscillation circuit to a down converter that converts a high frequency signal into a low frequency signal.

【0003】そして、係る通信機器の小形化,低廉化の
要請から、上記発振回路等も誘電体基板上に形成される
伝送線路(マイクロストリップライン等)を主体とする
マイクロ波集積回路MIC(microwave integrated cir
cuit) を用いて構成されつつある。
In response to the demand for downsizing and cost reduction of such communication equipment, the above-mentioned oscillation circuit and the like also include a microwave integrated circuit MIC (microwave) mainly composed of a transmission line (microstrip line or the like) formed on a dielectric substrate. integrated cir
cuit).

【0004】ところでこの種の発振回路は用いられる半
導体単体では大きなQが得られないために、固定周波数
発振器の場合、高誘電率のセラミック等で形成された円
柱状或いは球形の誘電体共振器を、帰還回路のマイクロ
ストリップラインに近接させることにより周波数の安定
度を向上させる手法が用いられる。
By the way, in this type of oscillator circuit, a large Q cannot be obtained with a single semiconductor used. Therefore, in the case of a fixed frequency oscillator, a cylindrical or spherical dielectric resonator formed of a ceramic or the like having a high dielectric constant is used. A method of improving the frequency stability by bringing the feedback circuit close to the microstrip line is used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな誘電体共振器は、共振周波数にもよるが、だいたい
その高さ方向のサイズが数ミリ程度となっている。一
方、係る誘電体共振器以外の回路配線等のマイクロスト
リップラインは蒸着等により形成されるため、その肉厚
は非常に薄い。その結果、誘電体共振器部分のみが上方
に突出した構成となり、回路全体の小形化(特に厚さ方
向)のネックになっている。
However, such a dielectric resonator has a size in the height direction of about several millimeters, although it depends on the resonance frequency. On the other hand, since the microstrip lines other than the dielectric resonator such as circuit wiring are formed by vapor deposition or the like, the thickness thereof is very thin. As a result, only the dielectric resonator portion protrudes upward, which is a bottleneck in downsizing the entire circuit (especially in the thickness direction).

【0006】[0006]

【課題を解決するための手段】本発明はこのような背景
に鑑みてなされたもので、その目的とするところは、損
失が少なく高さ方向での小形化を図ることのできる発振
回路を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such a background, and an object thereof is to provide an oscillation circuit which has a small loss and can be miniaturized in the height direction. To do.

【0007】この目的を達成するため、本発明に係る発
振回路では、半絶縁性基板上に設けられたFETと、そ
のFETに接続された帰還回路配線のマイクロストリッ
プラインに近接配置された超電導材料からなる薄膜リン
グ状の共振器とを有し、かつ、前記マイクロストリップ
ラインの前記共振器に近接した部位をその共振器の円周
と平行な略90度の円弧状に形成した。
In order to achieve this object, in the oscillator circuit according to the present invention, the FET provided on the semi-insulating substrate and the superconducting material disposed close to the microstrip line of the feedback circuit wiring connected to the FET. And a portion of the microstrip line close to the resonator is formed in an arc shape of approximately 90 degrees parallel to the circumference of the resonator.

【0008】[0008]

【作用】発振回路から出た信号は、共振器において周波
数選択的に全反射され、これにより安定度の高い発振回
路となる。そして、共振器がリング状に形成されている
ため、放射損が小さく性能が向上する。さらに、係る共
振器が超電導体薄膜で形成されているため、表面抵抗が
常電導体よりもはるかに低く、よりQの高い急峻な特性
を持つ共振器となり、発振周波数の安定度が向上する。
さらに、薄膜で構成しているため、高さ方向のサイズも
小形化する。しかも、マイクロストリップラインの所定
位置が、共振器と平行な略90度の円弧状となっている
ため、その円弧状の長さは、共振器の円周長の4分の1
となり、共振器とマイクロストリップイラン間での共振
状況がより強く現れる。
The signal output from the oscillation circuit is totally reflected by the resonator in a frequency-selective manner, whereby an oscillation circuit with high stability is obtained. Since the resonator is formed in a ring shape, the radiation loss is small and the performance is improved. Furthermore, since such a resonator is formed of a superconductor thin film, the surface resistance is much lower than that of a normal conductor, and the resonator has a sharp characteristic with a higher Q and the stability of the oscillation frequency is improved.
Further, since it is composed of a thin film, the size in the height direction can be reduced. Moreover, since the predetermined position of the microstrip line is in an arc shape of approximately 90 degrees parallel to the resonator, the length of the arc shape is 1/4 of the circumferential length of the resonator.
Therefore, the resonance condition between the resonator and the microstrip Iran appears more strongly.

【0009】[0009]

【実施例】以下、本発明に係る発振回路の好適な実施例
を添付図面を参照にして詳述する。図1(A)は本発明
の一実施例にかかる発振回路をマイクロ波回路中に組み
込んで形成されるモノリシックMIC(MMIC)の全
体構成の一例を示している。この回路はダウンコンバー
タ回路を構成しており、同図に示すように、半絶縁性G
aAs基板1の上に各種の素子が配置されている。すな
わち、信号の入力側端にはRFアンプ2が配され、その
RFアンプ2の出力側にはミキサ3の一方の入力側に接
続され、そのミキサ3の出力側には、前置増幅器4と主
増幅器5からなる中間周波数増幅器(IFアンプ)5に
接続されている。そして、ミキサ3の他方の入力側に、
本発明に係る局部発振回路7が接続されている。尚、上
記各素子間は、マイクロストリップライン8で連結され
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of an oscillator circuit according to the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1A shows an example of the overall configuration of a monolithic MIC (MMIC) formed by incorporating an oscillator circuit according to an embodiment of the present invention into a microwave circuit. This circuit constitutes a down converter circuit, and as shown in FIG.
Various elements are arranged on the aAs substrate 1. That is, the RF amplifier 2 is arranged at the end of the signal input side, the output side of the RF amplifier 2 is connected to one input side of the mixer 3, and the output side of the mixer 3 includes the preamplifier 4 and It is connected to an intermediate frequency amplifier (IF amplifier) 5 including a main amplifier 5. Then, on the other input side of the mixer 3,
A local oscillator circuit 7 according to the present invention is connected. The above elements are connected by a microstrip line 8.

【0010】局部発振回路7は、FETを有するMMI
C発振器9と、その発振器9の発振周波数の安定化を図
るために接続された共振器10とを備えている。発振器
9は、図2にその等価回路を示すように、FET11の
ドレインをバイアス抵抗12,バイパスコンデンサ13
を介してアースに接続し、また、ソースにはバイアス抵
抗14を介して電源電圧Vccに接続されると共に、T型
の出力整合回路15に接続されている。そして、ドレイ
ン・ゲート間に上記共振器10を含む帰還回路が挿入さ
れている。この共振器10の設置位置(FETとの距
離)を適宜に設定することにより、共振周波数でのみ帰
還がかかり、安定した発振が得られる。
The local oscillation circuit 7 is an MMI having an FET.
The C oscillator 9 and a resonator 10 connected to stabilize the oscillation frequency of the oscillator 9 are provided. The oscillator 9 has a drain of the FET 11 and a bias resistor 12 and a bypass capacitor 13 as shown in the equivalent circuit of FIG.
Via the bias resistor 14 to the power supply voltage Vcc and also to the T-type output matching circuit 15. A feedback circuit including the resonator 10 is inserted between the drain and the gate. By properly setting the installation position of the resonator 10 (distance from the FET), feedback is applied only at the resonance frequency, and stable oscillation can be obtained.

【0011】そして、本例では係る共振器10がリング
状に形成されると共に、帰還ループを構成するマイクロ
ストリップライン16の所定位置に数μm〜数十μmの
距離で近接配置している。さらに、共振器10を高温超
電導材料を蒸着することにより形成している。そして、
この高温超電導材料としては、例えばイットリウム系
(YBCO)やニオブ系等が用いられる。
In this example, the resonator 10 is formed in a ring shape, and is arranged close to a predetermined position of the microstrip line 16 forming the feedback loop at a distance of several μm to several tens of μm. Further, the resonator 10 is formed by depositing a high temperature superconducting material. And
As the high temperature superconducting material, for example, yttrium-based (YBCO) or niobium-based material is used.

【0012】さらにまた、マイクロストリップライン1
6の共振器10に近接した部位を円弧状に形成してい
る。この円弧状部16aは、図1(B)に拡大して示す
ように共振器10と同一中心となり、その円弧の中心角
は90度となっている。これにより、円弧状部16a
は、共振器10の外周縁に沿って平行に配線されること
になり、しかも、その円弧状部16aの長さは、共振器
10の円周長の4分の1となる。
Furthermore, the microstrip line 1
6 is a circular arc-shaped portion close to the resonator 10. As shown in an enlarged view in FIG. 1B, the arc-shaped portion 16a has the same center as the resonator 10, and the central angle of the arc is 90 degrees. Thereby, the arc-shaped portion 16a
Will be wired in parallel along the outer peripheral edge of the resonator 10, and the length of the arcuate portion 16a will be one fourth of the circumferential length of the resonator 10.

【0013】また、上記マイクロストリップライン16
も、高温超電導材料を用いて形成するとより特性が良く
なるが、必ずしも係る材料を用いる必要はない。本例で
は、抵抗の小さな金を蒸着することより形成している。
The microstrip line 16 is also provided.
Also, the characteristics are better when formed by using a high temperature superconducting material, but such a material is not always necessary. In this example, it is formed by depositing gold having a low resistance.

【0014】なお、図1中符号17はバイアス調整用の
抵抗であり、また、図2中符号18はFET11のドレ
イン−アース間の帰還容量であり、同符号19はFET
11のソース−アース間に挿入されたバイパスコンデン
サである。
Reference numeral 17 in FIG. 1 is a bias adjusting resistor, reference numeral 18 in FIG. 2 is a feedback capacitance between the drain and ground of the FET 11, and reference numeral 19 is an FET.
11 is a bypass capacitor inserted between the source of 11 and the ground.

【0015】図3に帰還ループを構成するマイクロスト
リップライン16の無反射終端側から信号を入力した場
合の発振回路の特性結果を示している。但し、この実験
結果は、マイクロストリップライン16の形状が、上記
した如く円弧状部16aを有しておらず、図4に示すよ
うな直線状のものについて測定している。
FIG. 3 shows the characteristic results of the oscillation circuit when a signal is input from the non-reflection end side of the microstrip line 16 forming the feedback loop. However, in this experimental result, the shape of the microstrip line 16 does not have the arcuate portion 16a as described above, but is measured linearly as shown in FIG.

【0016】図3(A)は、入力信号の周波数を2GH
zから18GHzまで変えた場合における反射損失、す
なわちSパラメータの中の一つであるS11の変化を示し
ている。尚、図中縦軸は損失[dB]を示しており、1
スパンが5dBである。そして、同図から明らかなよう
に、共振周波数(10.32GHz)における損失が−
2.47dBと非常に小さい値となっている。その結
果、効率良く安定状態で発振させることができる。そし
て、この結果から判るように、マイクロストリップライ
ンの所定部位を本発明のように円弧状にすると、マイク
ロストリップラインと共振器との間の共振等の結合がよ
り強くなるため、共振周波数における損失はおよそ−
1.5〜−1.0dBくらいになり、より性能が向上す
る。
FIG. 3A shows that the frequency of the input signal is 2 GHz.
It shows the reflection loss when changing from z to 18 GHz, that is, the change of S11 which is one of the S parameters. In the figure, the vertical axis represents loss [dB], which is 1
The span is 5 dB. And, as is clear from the figure, the loss at the resonance frequency (10.32 GHz) is −
It is a very small value of 2.47 dB. As a result, it is possible to efficiently oscillate in a stable state. Then, as can be seen from this result, when the predetermined portion of the microstrip line is formed in an arc shape as in the present invention, the coupling such as resonance between the microstrip line and the resonator becomes stronger, so that the loss at the resonance frequency is reduced. Is approximately −
It becomes about 1.5 to -1.0 dB, and the performance is further improved.

【0017】また、同様に直線状のマイクロストリップ
ラインを用いて実験を行ったSパラメータの一つである
順方向伝送係数を示すS21の周波数特性を図3(B)に
示す。同図に示すように、共振周波数において急峻にさ
がっていることが判る。そして、この特性においても、
本発明のように円弧状のマイクロストリップラインを用
いれば、より急峻になることが推測できる。
Similarly, FIG. 3 (B) shows the frequency characteristic of S21 indicating the forward transmission coefficient which is one of the S parameters, which was similarly tested by using a linear microstrip line. As shown in the figure, it can be seen that the resonance frequency sharply decreases. And even in this characteristic,
It can be inferred that the steepness can be obtained by using an arcuate microstrip line as in the present invention.

【0018】なお、本発明は、ハイブリッドMICから
なる発振回路でも良く、またモノリシックMICからな
る発振回路でも良く、種々の形態のものに適用すること
ができ、しかも、上記した実施例のように局部発振回路
に限られることはなく、種々の形式の発振回路に適用す
ることができるのは言うまでもない。
The present invention may be applied to various forms of the oscillation circuit composed of a hybrid MIC or an oscillation circuit composed of a monolithic MIC, and moreover, as in the above-mentioned embodiment, it is locally applied. It is needless to say that the present invention is not limited to the oscillator circuit and can be applied to various types of oscillator circuits.

【0019】[0019]

【発明の効果】以上のように、本発明に係る発振回路で
は、帰還回路に付設した共振器としてリング状のものを
用いたため、放射損が小さく性能が向上する。しかも、
係る共振器が超電導体薄膜で形成されているため、表面
抵抗が常電導体よりもはるかに低く、よりQの高い急峻
な特性を持つ共振器となり、発振周波数の安定度の向上
を図ることができる。さらに、かかる共振器は、他のマ
イクロストリップライン等と同様に蒸着その他の手段に
より薄膜で構成しているため、高さ方向のサイズを小形
化することができる。
As described above, in the oscillation circuit according to the present invention, since the ring-shaped resonator is used as the resonator attached to the feedback circuit, the radiation loss is small and the performance is improved. Moreover,
Since such a resonator is formed of a superconductor thin film, the resonator has a surface resistance much lower than that of a normal conductor, a resonator having a high Q and steep characteristics, and the stability of the oscillation frequency can be improved. it can. Further, since the resonator is formed of a thin film by vapor deposition or other means like other microstrip lines, the size in the height direction can be reduced.

【0020】しかも、マイクロストリップラインの所定
位置が、共振器と平行な略90度の円弧状となっている
ため、その円弧状の長さは、共振器の円周長の4分の1
となり、共振器とマイクロストリップイラン間での共振
状況がより強く現れ、より損失の少ない特性の良好な発
振回路を製造することができる。
Moreover, since the predetermined position of the microstrip line is in the shape of an arc of approximately 90 degrees parallel to the resonator, the length of the arc is 1/4 of the circumferential length of the resonator.
Therefore, the resonance state between the resonator and the microstrip Iran appears more strongly, and it is possible to manufacture an oscillation circuit with less loss and good characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明に係る発振回路の好適な一実施
例を示す図である。 (B)はその共振器近傍部位を示す拡大平面図である。
FIG. 1A is a diagram showing a preferred embodiment of an oscillator circuit according to the present invention. (B) is an enlarged plan view showing a portion near the resonator.

【図2】その要部を示す等価回路図である。FIG. 2 is an equivalent circuit diagram showing a main part thereof.

【図3】本発明の効果を実証する発振回路のSパラメー
タの周波数特性を示すグラフである。
FIG. 3 is a graph showing frequency characteristics of S parameters of an oscillation circuit that demonstrates the effect of the present invention.

【図4】上記実験に用いた回路の要部を示す図である。FIG. 4 is a diagram showing a main part of a circuit used in the experiment.

【符号の説明】[Explanation of symbols]

10…共振器 11…FET 16…マイクロストリップライン 16a…円弧状部 10 ... Resonator 11 ... FET 16 ... Microstrip line 16a ... Arc-shaped portion

Claims (1)

【特許請求の範囲】 【請求項1】 半絶縁性基板上に設けられたFETと、
そのFETに接続された帰還回路配線のマイクロストリ
ップラインに近接配置された超電導材料からなる薄膜リ
ング状の共振器とを有し、かつ、前記マイクロストリッ
プラインの前記共振器に近接した部位をその共振器の円
周と平行な略90度の円弧状に形成してなることを特徴
とするする発振回路。
Claims: 1. A FET provided on a semi-insulating substrate,
A thin film ring-shaped resonator made of a superconducting material disposed in the vicinity of a microstrip line of feedback circuit wiring connected to the FET, and a portion of the microstrip line in the vicinity of the resonator is resonated. An oscillator circuit, which is formed in an arc shape of approximately 90 degrees parallel to the circumference of the container.
JP3174191A 1991-07-15 1991-07-15 Oscillation circuit Pending JPH0522033A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3174191A JPH0522033A (en) 1991-07-15 1991-07-15 Oscillation circuit
CA002073389A CA2073389A1 (en) 1991-07-15 1992-07-08 Oscillating circuit with a ring shaped resonator of superconducting material coupled thereto
EP92111792A EP0523564A1 (en) 1991-07-15 1992-07-10 An oscillating circuit with a ring shaped resonator of superconducting material coupled thereto
US07/913,030 US5309119A (en) 1991-07-15 1992-07-14 Oscillating circuit with a ring shaped resonator of superconducting material coupled thereto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3174191A JPH0522033A (en) 1991-07-15 1991-07-15 Oscillation circuit

Publications (1)

Publication Number Publication Date
JPH0522033A true JPH0522033A (en) 1993-01-29

Family

ID=15974318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3174191A Pending JPH0522033A (en) 1991-07-15 1991-07-15 Oscillation circuit

Country Status (1)

Country Link
JP (1) JPH0522033A (en)

Similar Documents

Publication Publication Date Title
CA1101085A (en) Integrated microwave oscillator
US4619001A (en) Tuning systems on dielectric substrates
US5675295A (en) Microwave oscillator, an antenna therefor and methods of manufacture
US7274263B2 (en) Microstrip stabilized quantum well resonance-tunneling generator for millimeter and submillimeter wavelength range
US6362706B1 (en) Cavity resonator for reducing phase noise of voltage controlled oscillator
US6133795A (en) Oscillator circuit
US4331940A (en) Solid-state MIC oscillator
JPH01112827A (en) Transmitter
Aitchison et al. Lumped-circuit elements at microwave frequencies
US5309119A (en) Oscillating circuit with a ring shaped resonator of superconducting material coupled thereto
US4763084A (en) Push-push dielectric resonator oscillator
US4568889A (en) Distributed diode VCO with stripline coupled output and distributed variable capacitor control
CA1115361A (en) Microwave oscillator for microwave integrated circuit applications
US5187460A (en) Microstrip line resonator with a feedback circuit
JPH0522033A (en) Oscillation circuit
EP0560497B1 (en) Conducting plane resonator stabilized oscillator
JPH0522032A (en) Oscillation circuit
US4494086A (en) Transmission line oscillator having independently adjustable Q and input resistance
US4706041A (en) Periodic negative resistance microwave structures and amplifier and oscillator embodiments thereof
JP2780462B2 (en) Variable frequency resonator
US4327339A (en) Solid state microwave source and radio equipment incorporating such a source
Popovic Review of some types of varactor tuned DROs
JP3994165B2 (en) Tuning circuit design apparatus and method using tunnel junction elements
JP4081549B2 (en) Tuning circuit using tunnel junction elements
EP0143887A2 (en) Distributed impatt structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100114

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120114

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12