JPH05220128A - Mri用受信プローブ - Google Patents

Mri用受信プローブ

Info

Publication number
JPH05220128A
JPH05220128A JP4028320A JP2832092A JPH05220128A JP H05220128 A JPH05220128 A JP H05220128A JP 4028320 A JP4028320 A JP 4028320A JP 2832092 A JP2832092 A JP 2832092A JP H05220128 A JPH05220128 A JP H05220128A
Authority
JP
Japan
Prior art keywords
coaxial cable
length
wavelength
distributed constant
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4028320A
Other languages
English (en)
Other versions
JP3198140B2 (ja
Inventor
Kazuto Nakabayashi
和人 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP02832092A priority Critical patent/JP3198140B2/ja
Priority to US08/016,684 priority patent/US5349298A/en
Publication of JPH05220128A publication Critical patent/JPH05220128A/ja
Application granted granted Critical
Publication of JP3198140B2 publication Critical patent/JP3198140B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3628Tuning/matching of the transmit/receive coil

Abstract

(57)【要約】 【目的】分布定数伝送線路のインピーダンス変換効果を
利用して、受信プローブを自動的にデカップリングする
と共に、操作性、取扱い、及びS/N比に優れたMRI
用受信プローブを提供する。 【構成】受信アンテナ部11とチューニング・スイッチ
部14との間に、λ/4波長の長さ(λはMR信号の波
長)の分布定数伝送線路を実質的に形成する同軸ケーブ
ル12及び集中定数回路13を直列に接続する。受信ア
ンテナ部11はループコイルとする。同軸ケーブル12
は例えば、λ/8波長の長さに設定する。集中定数回路
13はλ/8波長の分布定数回路長さを等価的に有する
集中素子定数とする。チューニング・スイッチ部14の
入力段には、クロスダイオードをスイッチ回路として挿
入する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、MRI(磁気共鳴イ
メージング)用受信プローブに係り、とくに、直腸など
の体腔に挿入され、その管壁のMR信号を受信する受信
専用のプローブに関する。
【0002】
【従来の技術】従来、MRI装置の一つとして、直腸な
どの体腔に直接、受信用のプローブを挿入し、別の全身
用RFコイルで原子核スピンを励起したことに拠るMR
信号を、その体腔内の専用プローブで受信し、管壁や内
部のMR画像を再構成する装置がある。
【0003】このMRI装置の受信専用のプローブは、
例えば「"A Disposable ProstateProbe and Interface
System For High Field", George J. Misic et al, SMR
M8th Annual Meeting 1989, Page 179 」に示すよう
に、図4記載の構成のものが知られている。この図4記
載のプローブは、単一のループコイルから成る受信アン
テナ部1と、この受信アンテナ部1に接続された、分布
定数伝送線路としての同軸ケーブル2と、この同軸ケー
ブル2及び受信処理装置間に接続されたチューニング・
スイッチ部3とを備えている。受信アンテナ部1には受
信時の共振コンデンサ1aが挿入されている。チューニ
ング・スイッチ部3は、同軸ケーブル2側から順に、ク
ロスダイオード回路、チューニングコンデンサ、及びプ
リアンプを備えている。同軸ケーブル部2には高周波信
号のとき定在波が生じるから、いわゆる「λ/4波長の
インピーダンス変換効果」を利用すべく、その長さをM
R信号の波長λに対して「λ/4」に設定している。
【0004】このため、受信アンテナ部1からみた同軸
ケーブル2側の入力インピーダンスをZin1 、チューニ
ング・スイッチ部3の入力インピーダンスをZin2 とし
たとき、励起用磁場印加時にチューニング・スイッチ部
3に内蔵されたクロスダイオード回路が瞬間的にキック
オンされ、Zin2 =ほぼ0(零)且つZin1 =ほぼ∞
(無限大)となって、受信アンテナ部1を送信コイルか
らデカップリングすることができ、送信コイルが形成す
る励起用の高周波磁場には受信アンテナ部1に因る磁場
の乱れが生じない。MR信号受信時には、受信アンテナ
部1はそのインダクタンスL及び共振コンデンサ1aの
容量Cによる直列回路にほぼ等価の状態になる。これに
より、受信アンテナ部1に共振電流が流れて、今度はZ
in2 =ほぼ無限大且つZin1 =ほぼ零になると共に、ク
ロスダイオードはオフとなり、MR信号が受信できる。
このように、同軸ケーブル2のインピーダンス変換効果
を利用し、外部からコントロールすること無く、受信プ
ローブの送信モード及び受信モードの切り換えを行って
いる。
【0005】
【発明が解決しようとする課題】しかしながら、上述し
た図4記載のMRI用受信プローブにおいて、一般に用
いられる同軸ケーブルの波長短縮率は0.68程度であ
るから、例えば0.5テスラ(例えば対象とするプロト
ンの共鳴周波数は21.3MHzとなる)の磁場では、
λ/4=2.4m程度となり、非常に長い。しかも、磁
場がこれよりも低い場合には、ラーモア周波数も低くな
るから、必要な「λ/4」分の長さもさらに長くなって
しまう。このように同軸ケーブルが長いと以下のような
種々の不都合がある。第1に、プローブを準備したり、
患者の体腔内に挿入したりする際、プローブ全体の取り
扱いが煩わしく、操作時間も長くなることから、操作性
に難があり、検査能率が低下する。同時に保管面でも好
ましくない。第2に、同軸ケーブルが長くなる分、信号
のロスも大きくなるから、S/N比が低下する可能性は
大きい。さらに、第3に、体腔内用なので衛生面を考
え、受信アンテナ部1及び同軸ケーブル2を使い捨てに
する必要があるが、この使い捨て部分の製造コストが高
いから、一回当たりの検査費用も割高になるという不都
合がある。
【0006】この発明は、このような従来の問題に鑑み
なされたもので、とくに、分布定数伝送線路のインピー
ダンス変換効果により、送信モード、受信モードを自動
的に切り換えることができる一方、たとえラーモア周波
数が低くても、その分布定数伝送線路を必要最小限の長
さに抑え、操作性、S/N比共に良好で、且つ、一回当
たりの検査費用も抑制可能なMRI用受信プローブを提
供することを、目的とする。
【0007】
【課題を解決するための手段】上記目的を達成するた
め、この発明のMRI用受信プローブは、MR信号を受
信する受信アンテナ部と、この受信アンテナ部に接続さ
れ且つMR信号の波長をλとしたとき、「n・(λ/
4)」波長(n=1以上の奇数)の長さより短い分布定
数形線路と、この分布定数形線路に直列に接続され且つ
その分布定数形線路と共働して、「n・(λ/4)」波
長(n=1以上の奇数)の長さを等価的に有する分布定
数伝送線路を形成する集中定数形線路と、この集中定数
形線路に接続され且つ上記受信アンテナ部への励起磁場
の有無に応じて、その集中定数形線路の出力端を開放又
は短絡可能なスイッチ回路とを備えた。例えば、前記分
布定数形線路は同軸ケーブルであり、前記スイッチ回路
は2個のダイオードをクロスして接続した構成にでき
る。
【0008】
【作用】この発明のMRI用受信プローブを使用する場
合、受信アンテナ部と同軸ケーブルなどの、必要な長さ
を有して形成される分布定数形線路の部分が、例えば直
腸などの体腔に挿入される。この受信プローブの内、体
腔内に全体又は一部が挿入された状態となる分布定数形
線路と体腔に挿入されない集中定数形線路とが直列に接
続されて、等価的に「n・(λ/4)」波長(n=1、
3、5、…)の長さの分布定数伝送線路が形成される。
このため、MR共鳴周波数のRFパルスを、別に装備し
た送信用RFコイルに加えると、その送信用RFコイル
が形成する励起磁場に付勢されて、受信プローブのスイ
ッチ回路を形成する、例えばクロスダイオードがキック
オン(即ち短絡状態)となる。これにより、いわゆる
「λ/4波長によるインピーダンス変換効果」によっ
て、受信アンテナ部からみた分布定数伝送線路側の入力
インピーダンスがほぼ無限大となり、受信アンテナ部は
励起磁場からほぼ完全にデカップリングされる。一方、
受信時には、受信アンテナ部がMR信号に共振して共振
電流が流れる。このとき、上記インピーダンス変換効果
に拠って、集中定数形線路、換言すれば分布定数伝送線
路全体の出力端からスイッチ回路側をみた入力インピー
ダンスがほぼ無限大になると共に、スイッチ回路はオフ
のままである。これによりMR信号を受信できる。
【0009】このように、分布定数形線路を必要に応じ
て「λ/4」波長よりも短くしても、従来のプローブと
同様にスイッチ回路が送信、受信モードに応じて自動的
に切り換わる。このため、その分布定数形線路を短くし
た分だけ、操作性及びS/N比が良くなり、また体内用
であるという特殊事情(受信アンテナ部及び分布定数形
線路の部分は使い捨て)に起因した検査費用も抑制され
る。
【0010】
【実施例】以下、この発明の一実施例を図1〜図3に基
づき説明する。
【0011】図1に示すMRI用受信プローブは、単一
のループコイルから成る受信アンテナ部11と、この受
信アンテナ部11に接続された、分布定数形線路として
の一本の同軸ケーブル12と、この同軸ケーブル12に
接続された、集中定数形線路としての集中定数回路13
と、この集中定数回路13及び図示しない受信処理装置
の間に直列に接続されチューニング・スイッチ部14と
を備えている。受信アンテナ部11には受信時の共振コ
ンデンサ11aが挿入されている。チューニング・スイ
ッチ部14は、同軸ケーブル部12側から順に、クロス
ダイオード回路14a、チューニングコンデンサ14b
及びプリアンプ14cを図示の如く備えている。また、
同軸ケーブル12は着脱可能形の端子を介して集中定数
回路13に接続され、受信アンテナ部11及び同軸ケー
ブル12部分の使い捨てに対処可能になっている。
【0012】また、同軸ケーブル12と集中定数回路1
3は共働して、この発明の分布定数伝送線路を形成す
る。同軸ケーブル12の長さは、MR信号の波長をλと
したとき、この実施例では「λ/8」の長さに設定され
ており、従来のインピーダンス変換効果を生じさせる
「λ/4」の長さのものよりも短く設定されている。な
お、一本の同軸ケーブル12の長さは、「λ/8」に限
定されるものでは無く、使用態様などに合わせて「λ/
4」よりも短かい、必要最小限の長さとする。
【0013】集中定数回路13は、同軸ケーブル12を
短くしたことに拠る、分布定数伝送線路としての不足分
の長さを等価的に補う4端子回路網で形成されている。
つまり、従来の構成と同様にインピーダンス変換効果を
得るため、「λ/4」の長さから同軸ケーブル12が担
う「λ/8」の長さを差し引いた残りの「λ/8」の長
さを、その集中定数回路13が補償する。なお、このよ
うに同軸ケーブル12及び集中定数回路13の分担比率
は、必ずしも「1:1」である必要は無く、上述したよ
うに同軸ケーブル12の長さが例えば「λ/16」のと
きは、集中定数回路13の分担する長さは「3λ/1
6」になり、トータルで「λ/4」に相当する長さが確
保できればよい。
【0014】ここで、集中定数回路13の具体的な設計
手法を説明する。
【0015】図2に示すような、特性インピーダンスZ
、伝搬定数γ、長さDの分布定数回路の受電端電圧、
電流をE、Iとすると、送電端電圧、電流E、I
は下記式で表される。
【0016】
【数1】E=E・coshγD+Z・I・sinhγD
【数2】 I=(E・sinhγD)/Z+I・coshγD これは、下記式1のように、直接、4端子回路網の型で
表される。
【0017】
【数3】
【0018】例えば、図3の4端子回路網の伝送行列
[F]は、
【数4】 である。そこで、上記式1、2よりインピーダンス素子
、Zを、
【数5】Z=Z・tanh(γD/2) …式3
【数6】Z=Z/sinhγD …式4 の値に設定すれば、補償する残りの任意波長Dに対応し
た分布定数回路を集中定数回路に置き換えることができ
る。
【0019】例えば、図1に示した伝送線路構成の場合
には、補償する長さが「λ/8」であるから、減衰定数
をα、位相定数をβとして、γD=(α+jβ)D、α
=0、β=2π/λ、D=λ/8、及び同軸ケーブル1
2の特性インピーダンスZを上記式3、4に代入し、
図3中のインピーダンス素子Z、Zの値が求められ
る。これにより、「λ/8」の長さの分布定数回路と等
価な集中定数回路を簡単に形成できることが分かる。
【0020】以上のようにして形成されたMRI用受信
プローブは、その受信アンテナ部11が患者の例えば直
腸の患部付近まで到達するように挿入される。このと
き、同軸ケーブル12の部分は必要最小限の長さで済む
ので、従来のように操作的には余分な長さに煩わされる
ことなく、短時間のセッティングができるし、保管が容
易になることとも合わせて、全体の操作性が良くなり、
検査能率も向上する。また、当然にオペレータの労力負
担も軽減される。
【0021】この受信プローブは、実際の同軸ケーブル
部分が「λ/4」よりも短くても、前記図4に記載した
従来のプローブと同等のインピーダンス変換効果を得る
ことができる。これを簡単に説明する。いま、受信アン
テナ部11の出力端から同軸ケーブル12側をみたとき
の入力インピーダンスをZin1 、また集中定数回路13
の出力端からチューニング・スイッチ部14側をみたと
きの入力インピーダンスをZin2 とする。そして、図示
しない送信コイルからRFパルスを送信すると、クロス
ダイオード14aが瞬間的にキックオンし、同軸ケーブ
ル12及び集中定数回路13が直列に結合された、等価
的に「λ/4」の長さの回路により、一方の入力インピ
ーダンスZin1 がほぼ無限大になるから、受信アンテナ
部11は励起磁場から良好にデカップリングされる。反
対に、MR信号の受信時には、受信アンテナ部11がM
R信号に共振して共振電流が流れるから、今度は他方の
入力インピーダンスZin2 がほぼ無限大になるととも
に、クロスダイオード14aはオフであり、プリアンプ
14c側でMR信号を受信できる。このようにして、チ
ューニング・スイッチ部14のクロスダイオード14a
をリモート操作で受動的にオン、オフさせ、送信モード
及び受信モードに対する自動的な切換えがなされる。
【0022】このとき、実際の分布定数形線路、即ち同
軸ケーブル12は従来よりも短いため、受信信号のロス
が少なくなり、S/N比も良くなる。
【0023】さらに、体腔内用であることの衛生面から
して、受信アンテナ部11及び同軸ケーブル12の部分
を使い捨てにする必要があるが、この場合、使い捨てに
する部分の部品コストが、短縮化に拠って減少するた
め、結局、一回当たりの検査費用が抑制される。
【0024】なお、分布定数伝送線路を形成する集中定
数回路13もチューニング・スイッチ部14に対して着
脱自在に構成し、取り換える受信アンテナ部11及び同
軸ケーブル12部分の内の同軸ケーブル12が担う分布
定数長さに応じて、それを「λ/4」の長さに補償する
集中定数回路13を各種取り揃えておくとしてもよい。
これにより、受信アンテナ部11及び同軸ケーブル12
を自在に取り換えて使用できる。また、主磁場の強度を
下げて診断を行う場合など、その強度が異なり、MR共
鳴周波数が違ってくる場合でも、必要最小限の長さの同
軸ケーブル12とこれを補完する集中定数回路13を自
在に選択できる。このため、低磁場においても、従来の
ように「λ/4」が更に大きな値になり、その不都合を
助長するということもなく、上記実施例と同等の作用効
果を享受できる。
【0025】また、この発明における分布定数伝送線路
は、必ずしも「λ/4」の長さに設定する必要は無く、
診断対象、部位の相違などに応じて、「3λ/4」及び
「5λ/4」の長さに設定してもよい。その場合、同軸
ケーブルなどの本来の分布定数形線路の長さは例えば、
夫々、「3λ/4」未満及び「5λ/4」未満であれば
よい。
【0026】さらに、分布定数形線路は同軸ケーブルの
みに限定されることなく、テレビジョン受像機に接続す
るフィーダ線の如く、平行2線式のものでもよい。
【0027】
【発明の効果】以上説明したように、この発明のMRI
用受信プローブは、インピーダンス変換用の分布定数伝
送線路を、同軸ケーブルなど、本来の分布定数形線路と
等価的に分布定数形の信号伝送を行う集中定数形線路と
を直列に接続して形成したため、分布定数形線路を「n
・(λ/4)」波長(λ=MR信号の波長、n=1以上
の奇数)よりも短い長さに形成でき、「λ/4」に満た
ない分を集中定数形線路で補償することによって、実際
に「λ/4」の長さである同軸ケーブルの場合と同様
に、インピーダンス変換効果を利用できる。つまり、R
Fパルス送信時には受信アンテナ部を励起磁場から自動
的にデカップリングでき、また、受信時にはMR信号を
良好に受信でき、励起磁場の有無に付勢された遠隔操作
によりスイッチ回路を切り換えて、送信モード、受信モ
ードに自動的に対処できる。
【0028】このとき、受信アンテナ部と伴に実際に体
腔内に挿入される、同軸ケーブルなどの分布定数形線路
の長さは、必要最小限に止められるから、操作性に優
れ、また取扱いも簡単になって、検査能率も良くなり、
保管も容易になる。また、実際の分布定数形線路が短縮
される分、S/N比も良くなるし、体腔内用ということ
で使い捨て方式となるが、その使い捨てる部分の製造コ
ストが下がるから、1回の検査に要する費用も抑制され
るという効果がある。
【図面の簡単な説明】
【図1】この発明の一実施例に係るMRI用受信プロー
ブの構成図。
【図2】分布定数伝送線路を解析するための説明図。
【図3】分布定数回路の代替として使用される集中定数
回路の一例を示す回路図。
【図4】従来例に係るMRI用受信プローブの構成図。
【符号の説明】
11 受信アンテナ部 12 同軸ケーブル 13 集中定数回路 14a クロスダイオード

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 MR信号を受信する受信アンテナ部と、
    この受信アンテナ部に接続され且つMR信号の波長をλ
    としたとき、「n・(λ/4)」波長(n=1以上の奇
    数)の長さより短い分布定数形線路と、この分布定数形
    線路に直列に接続され且つその分布定数形線路と共働し
    て、「n・(λ/4)」波長(n=1以上の奇数)の長
    さを等価的に有する分布定数伝送線路を形成する集中定
    数形線路と、この集中定数形線路に接続され且つ上記受
    信アンテナ部への励起磁場の有無に応じて、その集中定
    数形線路の出力端を開放又は短絡可能なスイッチ回路と
    を備えたことを特徴とするMRI用受信プローブ。
  2. 【請求項2】 前記分布定数形線路は同軸ケーブルであ
    り、前記スイッチ回路は2個のダイオードをクロスして
    接続した構成である請求項1記載のMRI用受信プロー
    ブ。
JP02832092A 1992-02-14 1992-02-14 Mri用受信プローブ Expired - Lifetime JP3198140B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP02832092A JP3198140B2 (ja) 1992-02-14 1992-02-14 Mri用受信プローブ
US08/016,684 US5349298A (en) 1992-02-14 1993-02-11 RF coil system for MRI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02832092A JP3198140B2 (ja) 1992-02-14 1992-02-14 Mri用受信プローブ

Publications (2)

Publication Number Publication Date
JPH05220128A true JPH05220128A (ja) 1993-08-31
JP3198140B2 JP3198140B2 (ja) 2001-08-13

Family

ID=12245325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02832092A Expired - Lifetime JP3198140B2 (ja) 1992-02-14 1992-02-14 Mri用受信プローブ

Country Status (2)

Country Link
US (1) US5349298A (ja)
JP (1) JP3198140B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11225984A (ja) * 1998-02-16 1999-08-24 Toshiba Corp Mri用プローブ
US7560931B2 (en) 2005-04-22 2009-07-14 Ge Medical Systems Global Technology Company, Llc Switching device compatible with RF coil and magnetic resonance imaging system
JP2019017167A (ja) * 2017-07-05 2019-01-31 株式会社ダイヘン 送電システム及び非接触給電システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3485923B2 (ja) * 1992-11-18 2004-01-13 オックスフォード インストルメンツ パブリック リミテッド カンパニー 振動磁界発生アセンブリ
WO1997018482A1 (en) * 1995-11-14 1997-05-22 Philips Electronics N.V. Coaxial cable for use in magnetic resonance apparatus
US6980000B2 (en) * 2003-04-29 2005-12-27 Varian, Inc. Coils for high frequency MRI
US7388248B2 (en) * 2004-09-01 2008-06-17 Micron Technology, Inc. Dielectric relaxation memory
US7683619B2 (en) * 2005-09-09 2010-03-23 The State of Oregen Acting by and through the State Board of Higher Education on Behalf of the University of Oregon High impedance differential input preamplifier and antenna for MRI
WO2010025516A1 (en) * 2008-09-05 2010-03-11 Magellan Technology Pty Ltd. Impedance compensation in an rf signal system
EP3544499A4 (en) * 2016-11-23 2020-11-25 General Electric Company SYSTEMS FOR A RADIO FREQUENCY COIL FOR RM IMAGING
WO2019091872A1 (en) * 2017-11-09 2019-05-16 Koninklijke Philips N.V. Disposable prostate coil for mri with hybrid quarter wave transformer detune circuit and wireless power
US11555875B2 (en) * 2021-03-24 2023-01-17 Coilone, LLC RF receive coil circuit for MRI systems

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460879A (en) * 1980-12-12 1984-07-17 Takeda Riken Kogyo Kabushiki Kaisha Variable tuning device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11225984A (ja) * 1998-02-16 1999-08-24 Toshiba Corp Mri用プローブ
US7560931B2 (en) 2005-04-22 2009-07-14 Ge Medical Systems Global Technology Company, Llc Switching device compatible with RF coil and magnetic resonance imaging system
JP2019017167A (ja) * 2017-07-05 2019-01-31 株式会社ダイヘン 送電システム及び非接触給電システム

Also Published As

Publication number Publication date
JP3198140B2 (ja) 2001-08-13
US5349298A (en) 1994-09-20

Similar Documents

Publication Publication Date Title
EP2807497B1 (en) Multi-resonant t/r antenna for mr image generation
US4859950A (en) Balun circuit for radio frequency coils in magnetic resonance systems
US6639406B1 (en) Method and apparatus for decoupling quadrature phased array coils
US4782298A (en) MRI QD RF coil having diode switched detuning circuit producing reduced artifact
JP2812983B2 (ja) 対称な高周波アンテナの作動装置
US5294886A (en) Antenna system for a magnetic resonance imaging tomography apparatus
US7012429B1 (en) Magnetic resonance imaging system using coils having distributed transmission line elements with outer and inner conductors
JP3198140B2 (ja) Mri用受信プローブ
US5317266A (en) Local antenna with homogeneous sensitivity for a nuclear magnetic resonance imaging apparatus
US6750652B2 (en) Integrated quadrature splitter-combiner and balun
US20080191699A1 (en) Rf Traps for Radio Frequency Coils Used in Mri
US10838025B2 (en) Radio-frequency system for a magnetic resonance apparatus
JPH07204177A (ja) Mriフロントエンド装置およびその動作方法
US10557900B2 (en) Body coil having a pre-amplification unit configured to provide a detuning effect
US4835472A (en) Local coil for detecting nuclear magnetic resonance signals from an examination subject
EP0231249B1 (en) Interface system for nmr spectrometer and quadrature probe
US20010050554A1 (en) Double-resonance mri coil
JP2904858B2 (ja) 核磁気共鳴断層撮影装置
EP1004886B1 (en) RF Interface circuit for use in magnetic resonance imaging
Sank et al. A quadrature coil for the adult human head
US20080061783A1 (en) Passively damped magnetic resonance (MR) detection configuration
US4792760A (en) Reception antenna for optical image formation device using nuclear magnetic resonance
US20040266362A1 (en) Transmit/receive switch
CN110988762A (zh) 射频功率放大器和磁共振成像系统的射频信号激发电路
US8358131B2 (en) RF stripline antenna with impedance adaptation for MR imaging

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11