JPH0521998Y2 - - Google Patents

Info

Publication number
JPH0521998Y2
JPH0521998Y2 JP1981082278U JP8227881U JPH0521998Y2 JP H0521998 Y2 JPH0521998 Y2 JP H0521998Y2 JP 1981082278 U JP1981082278 U JP 1981082278U JP 8227881 U JP8227881 U JP 8227881U JP H0521998 Y2 JPH0521998 Y2 JP H0521998Y2
Authority
JP
Japan
Prior art keywords
drive
power transistor
capacitor
wave
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1981082278U
Other languages
Japanese (ja)
Other versions
JPS57195395U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981082278U priority Critical patent/JPH0521998Y2/ja
Publication of JPS57195395U publication Critical patent/JPS57195395U/ja
Application granted granted Critical
Publication of JPH0521998Y2 publication Critical patent/JPH0521998Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【考案の詳細な説明】 本考案は、スイツチング駆動される2相半波駆
動方式の無整流子モータ駆動回路に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a switching-driven two-phase half-wave drive type non-commutator motor drive circuit.

無整流子モータは通常、2相全波、3相半波、
3相全波、4相半波駆動が一般的であつた。コス
ト的にメリツトのある2相半波駆動が採用されな
かつたのは、回転子が1回転する間に、駆動トル
クが0になる点(いわゆるデツドポイント)が最
低2回以上あることに起因する。しかし、近年ロ
ータ側の磁石における着磁、ステータ側の巻線ヨ
ークの形状等に工夫がみられ、前記の問題点を克
服したモータが実用化されてきている。
Commutatorless motors are usually two-phase full-wave, three-phase half-wave,
Three-phase full-wave and four-phase half-wave drives were common. The reason why the cost-effective two-phase half-wave drive was not adopted is that during one rotation of the rotor, there are at least two points (so-called dead points) where the drive torque becomes zero. However, in recent years, improvements have been made to the magnetization of the magnets on the rotor side, the shape of the winding yoke on the stator side, etc., and motors that overcome the above-mentioned problems have been put into practical use.

2相半波駆動モータの一般的な駆動回路として
は、第1図に示す如く駆動巻線L1,L2に直列に
接続したパワートランジスタTr1,Tr2をホール
素子Hの出力端子に接続した検出トランジスタ
Tr3,Tr4にて切り換える方式、あるいは第2図
に示す如くホールICを用いたものが知られてい
る。
A typical drive circuit for a two-phase half-wave drive motor includes power transistors Tr 1 and Tr 2 connected in series to drive windings L 1 and L 2 and connected to the output terminal of a Hall element H, as shown in Figure 1. detected transistor
A method in which switching is performed using Tr 3 and Tr 4 , or a method using a Hall IC as shown in FIG. 2 is known.

しかし、第1図に示す駆動回路の場合、ホール
素子のリニアな出力をそのままパワートランジス
タに送ると、パワートランジスタは電力損失が大
きくなり、コストアツプの要因になる。第2図に
示す回路はこの点を配慮してスイツチングタイプ
のホールICを用い、パワートランジスタには矩
形波信号を送り交互にON−OFFしている。しか
し、矩形波による駆動の場合は、相が切替わる時
に駆動巻線にチヤージされた電磁エネルギーによ
りスパイク電圧が発生する。
However, in the case of the drive circuit shown in FIG. 1, if the linear output of the Hall element is directly sent to the power transistor, the power transistor will suffer from large power loss, which will cause an increase in cost. The circuit shown in FIG. 2 takes this point into consideration and uses a switching type Hall IC, which sends a rectangular wave signal to the power transistor to alternately turn it on and off. However, in the case of drive using a square wave, a spike voltage is generated due to electromagnetic energy charged in the drive winding when the phase is switched.

本考案はこのスパイク電圧を効果的に抑えて、
グレードの低い部品を使用可能とし、安価な駆動
回路を提供することを目的とするものである。
This invention effectively suppresses this spike voltage,
The purpose of this is to enable the use of low-grade components and provide an inexpensive drive circuit.

第3図aは前述した内容をモデル化したもので
ある。ここで、Tr1,Tr2はパワートランジスタ、
L1,L2は駆動巻線、SWは切替えスイツチ、Rは
パワートランジスタTr1,Tr2を駆動するための
ベース抵抗である。今、スイツチSWをパワート
ランジスタTr1側からパワートランジスタTr2
に切替えると、その瞬間に第3図bに示すような
スパイク電圧がt=oの点で発生する。このスパ
イク電圧はe=Ldi/dtで表わされ、モータが大き くなればなるほど大きくなる。従つて、パワート
ランジスタは電力損失は小さくてもよいが、今度
は耐電圧の高いものを使用しなければならなくな
る。
FIG. 3a is a model of the above-mentioned contents. Here, Tr 1 and Tr 2 are power transistors,
L 1 and L 2 are drive windings, SW is a changeover switch, and R is a base resistor for driving the power transistors Tr 1 and Tr 2 . Now, when the switch SW is switched from the power transistor Tr 1 side to the power transistor Tr 2 side, a spike voltage as shown in FIG. 3b is generated at the point t=o at that moment. This spike voltage is expressed as e=Ldi/dt, and increases as the motor becomes larger. Therefore, although the power transistor may have small power loss, it is necessary to use a power transistor with high withstand voltage.

通常、この対策として第4図aのようにパワー
トランジスタTr1及びパワートランジスタTr2
コレクターエミツタ間にそれぞれコンデンサC1
及びC2を接続する。電磁エネルギーの小さい場
合はこれでほとんど解決するが、電磁エネルギー
の大きい場合にこの方法を採用すると、相対的に
コンデンサ容量が小さい時はスパイク電圧が期待
する程小さくならず、(第4図b)、容量を大きく
すると、t=o以降もコンデンサを充電すること
になり、この電流分がモータに回転ブレーキをか
けると共に、消費電流の増大を招くことになる。
(第4図c) 以上述べた欠点を改善したのが本考案で、第5
図を参照して説明する。なお、第5図aは、第2
図に示す駆動回路に本考案を用いた駆動回路をモ
デル化したものである。すなわち第5図aは、第
2図に示すTr1,Tr2のベース間に双方向性コン
デンサC3を接続した駆動回路をモデル化したも
のである。第5図aにおいてTr1,Tr2はパワー
トランジスタ、L1,L2はパワートランジスタ
Tr1,Tr2のコレクタにそれぞれ接続された駆動
巻線、SWは第2図に示すスイツチングタイプの
ホールIC、トランジスタ,抵抗,ダイオードの
回路からなるスイツチ、Rはベース抵抗であり、
これらの構成は従来と同じものである。本考案の
特徴とする点はパワートランジスタTr1とTr2
ベース間に双方向性コンデンサC3を接続したこ
とである。
As a countermeasure against this, a capacitor C1 is usually placed between the collector-emitter of the power transistor Tr1 and the collector-emitter of the power transistor Tr2 as shown in Figure 4a.
and C2 . This will almost always solve the problem when the electromagnetic energy is small, but if this method is used when the electromagnetic energy is large, the spike voltage will not be as small as expected if the capacitor capacity is relatively small (Figure 4b), and if the capacity is increased, the capacitor will continue to be charged even after t = 0, and this current will brake the motor's rotation and increase current consumption.
(Fig. 4c) This invention improves the above-mentioned shortcomings.
The following description will be given with reference to the figure.
The driving circuit shown in the figure is a model of the driving circuit using the present invention. That is, Fig. 5a is a model of a driving circuit in which a bidirectional capacitor C3 is connected between the bases of Tr1 and Tr2 shown in Fig. 2. In Fig. 5a, Tr1 and Tr2 are power transistors, L1 and L2 are power transistors.
The drive windings are connected to the collectors of Tr1 and Tr2, respectively. SW is a switch consisting of a switching type Hall IC, a transistor, a resistor, and a diode circuit as shown in Figure 2. R is a base resistor.
These configurations are the same as those of the conventional device. The feature of this invention is that a bidirectional capacitor C3 is connected between the bases of the power transistors Tr1 and Tr2 .

以下、動作を説明する。 The operation will be explained below.

まず、前記スイツチSWを構成するホールICが
磁束の変化を検出してパワートランジスタTr1
ベース側からパワートランジスタTr2のベース側
に通電を切替えた瞬間t=oを考えると、双方向
性コンデンサC3を設けているのでパワートラン
ジスタTr1はすぐには遮断されない。
First, considering the moment t=o when the Hall IC that constitutes the switch SW detects a change in magnetic flux and switches the current flow from the base side of the power transistor Tr 1 to the base side of the power transistor Tr 2 , the bidirectional capacitor Since C3 is provided, the power transistor Tr1 is not cut off immediately.

すなわちパワートランジスタTr1には電源+側
(図示せず)→ベース抵抗R→スイツチSW→双
方向性コンデンサC3→パワートランジスタTr1
ベースの順にR×C3の時定数に関係する(漸減
する)電流が流れ、これに伴つて駆動巻線L1
流れる電流も漸減する。この駆動巻線L1に流れ
る電流及びかかる電圧を第5図bに示す。なお、
図中の点線は双方向性コンデンサC3を設けてい
ない従来のものの電流を示す。このようにスイツ
チSWが切替つた後もすぐにはパワートランジス
タTr1がOFFとはならず、R×C3時定数にそつた
漸減する電流が駆動巻線に流れ、この漸減(図中
の線の傾斜)によつて(di/dtを小さくできるので) スパイク電圧(e=Ldi/dt)の発生を制御するこ とができるのである。一方、従来のものは第5図
bの図中点線で示すように電流が急激に変化し
di/dtが大きくなるためスパイク電圧が大きいので ある。
In other words, power transistor Tr 1 has the power supply + side (not shown) → base resistor R → switch SW → bidirectional capacitor C 3 → base of power transistor Tr 1 , which is related to the time constant of R×C 3 (gradually decreasing). ) current flows, and the current flowing through the drive winding L1 also gradually decreases. The current flowing through this drive winding L1 and the voltage applied thereto are shown in FIG. 5b. In addition,
The dotted line in the figure shows the current of the conventional one without the bidirectional capacitor C3 . Even after the switch SW is switched in this way, the power transistor Tr 1 does not turn off immediately, and a current that gradually decreases according to the R×C 3 time constant flows through the drive winding, and this gradual decrease (the line in the figure (as di/dt can be made small), it is possible to control the generation of spike voltage (e=Ldi/dt). On the other hand, in the conventional type, the current changes rapidly as shown by the dotted line in Figure 5b.
The spike voltage is large because di/dt is large.

なお、スイツチSWが上述した動作を行なつた
瞬間からパワートランジスタTr2のベースにも電
流が供給されるため立上がり特性の遅れは発生し
ない。
Note that from the moment the switch SW performs the above-described operation, current is also supplied to the base of the power transistor Tr2 , so no delay in the rise characteristic occurs.

さらに、双方向性コンデンサC3に入力される
電流はパワートランジスタTr1,Tr2のベース電
流なので、コレクタ電流よりも小さく、双方向性
コンデンサC3の容量を小さくできるとともに、
この場合にもスパイク電圧を十分に制御できる。
したがつて小型化できる。
Furthermore, since the current input to the bidirectional capacitor C 3 is the base current of the power transistors Tr 1 and Tr 2 , it is smaller than the collector current, and the capacitance of the bidirectional capacitor C 3 can be reduced.
In this case as well, the spike voltage can be sufficiently controlled.
Therefore, it can be downsized.

また、第4図のような駆動巻線L1,L2とコン
デンサC1、C2との間での共振現象も本考案では
発生しない。
Furthermore, the resonance phenomenon between the drive windings L 1 and L 2 and the capacitors C 1 and C 2 as shown in FIG. 4 does not occur in the present invention.

以上のように、本考案においては、モータに対
しては何ら影響を与えず、パワートランジスタは
耐電圧の低いものを使用することが可能となり、
安価で効率的な回路を得ることができる。尚、双
方向性コンデンサの代わりに有極性コンデンサ
を、極性を逆にして直列接続したものを用いても
同様な結果をもたらすことはいうまでもない。
As described above, in this invention, it is possible to use a power transistor with a low withstand voltage without affecting the motor in any way.
A cheap and efficient circuit can be obtained. It goes without saying that a similar result can be obtained by using a polar capacitor connected in series with reversed polarity in place of the bidirectional capacitor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図,第2図は従来の2相半波駆動方式の無
整流子モータの駆動回路図、第3図aは第1図,
第2図をモデル化した回路図、第3図bは同回路
におけるスパイク電圧発生状態を示す図、第4図
aはスパイク電圧制御手段を有する回路図、第4
図b,cは同回路におけるスパイク電圧発生状態
を示す図、第5図aは本考案の駆動回路をモデル
化した回路図、第5図bは同回路での駆動巻線に
流れる電流及びスパイク電圧発生状態を示す図で
ある。 L1,L2……駆動巻線、Tr1,Tr2……スイツチ
ング素子(トランジスタ)、C3……コンデンサ。
Figures 1 and 2 are drive circuit diagrams of a conventional two-phase half-wave drive type non-commutator motor, Figure 3a is the drive circuit diagram of a conventional two-phase half-wave drive type non-commutator motor,
FIG. 3b is a diagram showing the state of spike voltage generation in the same circuit; FIG. 4a is a circuit diagram with spike voltage control means;
Figures b and c are diagrams showing the state of spike voltage generation in the same circuit, Figure 5a is a circuit diagram modeling the drive circuit of the present invention, and Figure 5b is the current flowing through the drive winding and spikes in the same circuit. FIG. 3 is a diagram showing a voltage generation state. L 1 , L 2 ... Drive winding, Tr 1 , Tr 2 ... Switching element (transistor), C 3 ... Capacitor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] スイツチング駆動される2相半波駆動式無整流
子モータにおいて、複数の駆動巻線と出力側が直
列に接続された複数のスイツチング素子の各入力
間に双方向性のコンデンサを接続したことを特徴
とする無整流子モータの駆動回路。
A two-phase half-wave drive non-commutator motor driven by switching is characterized in that a bidirectional capacitor is connected between each input of a plurality of switching elements whose output sides are connected in series with a plurality of drive windings. Commutatorless motor drive circuit.
JP1981082278U 1981-06-03 1981-06-03 Expired - Lifetime JPH0521998Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981082278U JPH0521998Y2 (en) 1981-06-03 1981-06-03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981082278U JPH0521998Y2 (en) 1981-06-03 1981-06-03

Publications (2)

Publication Number Publication Date
JPS57195395U JPS57195395U (en) 1982-12-10
JPH0521998Y2 true JPH0521998Y2 (en) 1993-06-04

Family

ID=29877749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981082278U Expired - Lifetime JPH0521998Y2 (en) 1981-06-03 1981-06-03

Country Status (1)

Country Link
JP (1) JPH0521998Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125098A (en) * 1979-03-20 1980-09-26 Graphtec Corp Pulse motor driving controlling device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551058Y2 (en) * 1973-12-05 1980-01-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125098A (en) * 1979-03-20 1980-09-26 Graphtec Corp Pulse motor driving controlling device

Also Published As

Publication number Publication date
JPS57195395U (en) 1982-12-10

Similar Documents

Publication Publication Date Title
US4500824A (en) Method of commutation and converter circuit for switched reluctance motors
US5166591A (en) Current chopping strategy for generating action in switched reluctance machines
US7271564B2 (en) Method, apparatus, and system for drive control, power conversion, and start-up control in an SRM or PMBDCM drive system
US6940238B2 (en) Single coil, direct current permanent magnet brushless motor with voltage boost
Liang et al. A new variable reluctance motor utilizing an auxiliary commutation winding
US5847521A (en) Method and apparatus for driving an electric motor
US5864477A (en) Converter circuit for a polyphase switched inductive load
CN100536291C (en) Variable reluctance generator
US6661206B2 (en) Soft chopping for switched reluctance generators
EP0886370A2 (en) Switching circuit for a reluctance machine
US6137256A (en) Soft turn-off controller for switched reluctance machines
CN100454748C (en) Excitation of switch magnetic resistance motor
JPH10155299A (en) Power generating device and cleaner utilizing the device
US5668450A (en) Half-wave, brushless, four-phase DC motor with bifilar windings
US5771166A (en) Asymmetrical bridge inverter circuit for driving a switched reluctance motor
Sreekala et al. Speed control of brushless DC motor with PI and fuzzy logic controller using resonantpole inverter
JP2003018890A (en) Control method for switch reluctance driving system
US6734646B2 (en) Driving circuit for electronically switched motors
JPH0521998Y2 (en)
Park et al. New series resonant converter for variable reluctance motor drive
JP2000509957A (en) Power electronic unit for synchronous motor
CN109742876A (en) A kind of six phase switch reluctance motor driven systems
CN1146659A (en) Power driving circuit for brushless motor and driving method thereof
JP4639429B2 (en) Inverter device
Savsani et al. Study on Commutation Torque Ripple Reduction Strategy for Brushless DC Motor Targeting Electric Vehicle Applications