JPH0521898A - Surface emitting type laser - Google Patents

Surface emitting type laser

Info

Publication number
JPH0521898A
JPH0521898A JP19832891A JP19832891A JPH0521898A JP H0521898 A JPH0521898 A JP H0521898A JP 19832891 A JP19832891 A JP 19832891A JP 19832891 A JP19832891 A JP 19832891A JP H0521898 A JPH0521898 A JP H0521898A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
refractive index
laser
surface emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19832891A
Other languages
Japanese (ja)
Inventor
Taketaka Kohama
剛孝 小濱
Yoshinori Nakano
好典 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19832891A priority Critical patent/JPH0521898A/en
Publication of JPH0521898A publication Critical patent/JPH0521898A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/166Single transverse or lateral mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/18347Mesa comprising active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties

Abstract

PURPOSE:To ensure a single mode with lower threshold by specifying the diameter of a first optical reflection layer formed on the principal surface of a semiconductor and the refractive index of a cavity layer. CONSTITUTION:Assumed refractive indexes of cavity layers (undoped GaAs layers) 3, 5 to be n1 and that of a third semiconductor to be n3, and a laser oscillation wavelength to be lambda0 those reflectivity satisfy: 0<2pin1a(2DELTA<1/2>/lambda0)<=2.405(DELTA=(n1<2>-n3<2>)/2/n1<2>). Further, a p/n Al0.43Ga0.57As is buried so as to form a reverse pn junction using p Al0.43Ga0.57As and hence ensure a higher light confinement coefficient, and a P<++>-GaAs layer 9 is grown as a contact layer. Finally, a p electrode 10 is deposited on the upper portion of the device and an n electrode 11 is deposited on the lower portion of the same. Hereby, there is ensured a single transverse mode with a lowest threshold.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板の主面上に
直径2aでなる凸状に第1の光反射層,キャビティー
層,第2の光反射層を形成した後に凸部の側面に接する
第3の半導体によって凸部を埋め込んだ構造を有する面
発光レーザにおいて、キャビティー層の屈折率をn1
第3の半導体の屈折率をn3 、レーザ発振波長をλ0
して0<2πn1 a(2Δ)1/2 /λ0 ≦2.405
(ここで、Δ=(n1 2−n3 2)/2/n1 2)の条件を満
足する直径2a,屈折率n1 を有することにより、従来
技術のものと比較して高い光閉じ込めを維持し単一横モ
ードでかつ低しきい値を得る面発光レーザに関するもの
である。
BACKGROUND OF THE INVENTION The present invention relates to a side surface of a convex portion after a first light reflecting layer, a cavity layer and a second light reflecting layer having a diameter of 2a are formed on the main surface of a semiconductor substrate in a convex shape. In a surface-emitting laser having a structure in which a convex portion is embedded by a third semiconductor in contact with, the refractive index of the cavity layer is n 1 ,
0 <2πn 1 a (2Δ) 1/2 / λ 0 ≦ 2.405, where n 3 is the refractive index of the third semiconductor and λ 0 is the laser oscillation wavelength.
(Where, Δ = (n 1 2 −n 3 2 ) / 2 / n 1 2 ) has a diameter 2a and a refractive index n 1 which satisfy the condition, so that the optical confinement is higher than that of the prior art. The present invention relates to a surface-emitting laser that maintains a single lateral mode and obtains a low threshold value.

【0002】[0002]

【従来の技術】通常、GaAsに代表されるIII −v族
化合物半導体レーザは、基板に対して平行な方向に光共
振器を形成し、光共振器の端面(通常はへき開面)より
レーザ光を取り出している。この場合、その構造上の問
題から2次元的にウェハ面上にレーザを高密度に集積す
るのは非常に困難である。即ち、個々のレーザは光共振
器の長さが100〜300μmと長いので、ウェハ内に
単位面積当たりに集積できるレーザの個数には限界があ
るうえ、レーザ光は基板に対して平行に出射するので、
基板に垂直な方向に光を取り出すにはレーザ部分とは別
に45°高反射ミラーをエッチングにより形成しなけれ
ばならないという欠点を有している。これに対してレー
ザ光を成長基板に対して垂直に取り出すいわゆる面発光
レーザは、その構造から容易に高密度に2次元集積する
ことが可能である。しかも上記面発光レーザは通常のレ
ーザと比較して1mAを下回る極めて低いしきい値を有
するレーザが実現可能となっている。図3に、この種の
面発光レーザの構成を示す。同図において、1はn型G
aAS基板、10はAuZnNi/Auのp電極、11
はAuGeNi/Auのn電極、22はn−AlAs/
GaAS DBR、23はGaAS層、24はInGa
As SQW、26はp−AlAs/GaASDBR、
30はポリイミドである。
2. Description of the Related Art Generally, a III-V group compound semiconductor laser typified by GaAs forms an optical resonator in a direction parallel to a substrate, and a laser beam is emitted from an end surface (usually a cleavage plane) of the optical resonator. Are taking out. In this case, it is very difficult to two-dimensionally integrate the laser on the wafer surface at a high density because of the structural problem. That is, since the length of the optical resonator of each laser is as long as 100 to 300 μm, there is a limit to the number of lasers that can be integrated in a wafer per unit area, and the laser light is emitted parallel to the substrate. So
It has a drawback that a 45 ° high-reflecting mirror must be formed by etching separately from the laser portion in order to extract light in a direction perpendicular to the substrate. On the other hand, a so-called surface-emitting laser that emits laser light perpendicularly to the growth substrate can be easily and two-dimensionally integrated with high density because of its structure. Moreover, as the surface emitting laser, a laser having an extremely low threshold value of less than 1 mA can be realized as compared with a normal laser. FIG. 3 shows the structure of this type of surface emitting laser. In the figure, 1 is an n-type G
aAS substrate, 10 is AuZnNi / Au p-electrode, 11
Is an n-electrode of AuGeNi / Au, 22 is n-AlAs /
GaAs DBR, 23 is a GaAS layer, 24 is InGa
As SQW, 26 is p-AlAs / GaASDBR,
30 is a polyimide.

【0003】[0003]

【発明が解決しようとする課題】従来、面発光レーザは
その注入電流を増加すると、突然横モードが変化してし
まい、その結果、光出力,光の空間分布が変動し、安定
に単一横モードで発振しないことが確認されている。こ
れは通常報告されている面発光レーザにおいては、直径
数10μm程度の周りを空気もしくはポリイミドに囲ま
れた円筒状を有しており、キャビティー構造において光
導波路構造を考えた単一横モードになるための条件と比
較すると、2桁大きいためと考えられる。上記事実に対
して光の閉じ込めを考慮して、上記面発光レーザのを円
筒直径を小さくするにはプロセスの上から困難があり、
また、微小径にするほど面発光レーザにおいては側面の
表面再結合による損失の寄与が無視できなくなり、つい
にはレーザ発振に至らなくなる。この理由により、素子
形状を小さくして低しきい値の安定した単一横モードレ
ーザを得ることは不可能であった。本発明は、単一横モ
ードで、低しきい値の面発光レーザを得ることを目的と
する。
Conventionally, in surface emitting lasers, when the injection current is increased, the transverse mode suddenly changes, and as a result, the optical output and the spatial distribution of light fluctuate, and a stable single lateral laser is obtained. It is confirmed that the mode does not oscillate. This is because the surface emitting laser that has been generally reported has a cylindrical shape with a diameter of about 10 μm surrounded by air or polyimide, and has a single transverse mode considering the optical waveguide structure in the cavity structure. This is considered to be because it is two orders of magnitude larger than the condition for becoming. Considering the confinement of light against the above facts, it is difficult to reduce the cylindrical diameter of the surface emitting laser from the viewpoint of the process,
Further, as the diameter is made smaller, the contribution of loss due to surface recombination on the side surface cannot be ignored in the surface emitting laser, and eventually laser oscillation cannot be achieved. For this reason, it has been impossible to obtain a stable single transverse mode laser with a low threshold by reducing the device shape. An object of the present invention is to obtain a surface emitting laser having a single transverse mode and a low threshold value.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、半導体基板の主面上に直径2aでなる凸状に第1の
光反射層,キャビティー層,第2の光反射層を形成した
後に凸部の側面に接する第3の半導体によって凸部を埋
め込んだ構造を有する面発光レーザにおいて、キャビテ
ィー層の屈折率をn1 ,第3の半導体の屈折率をn3
レーザ発振波長をλ0 として、0<2πn1 a(2Δ)
1/2 /λ0 ≦2.405(ここで、Δ=(n1 2−n3 2
/2/n1 2)の条件を満足する直径2a,屈折率n1
選択するようにしたものである。この結果、従来技術の
ものと比較して単一横モードを満たす高い光閉じ込めを
実現し、かつ第3の半導体による埋め込みにより上記面
発光レーザにおいて表面再結合が抑制されるため、単一
横モードでかつ低しきい値の面発光レーザが得られる。
即ち本発明は、半導体基板の主面上に直径2aでなる凸
状に第1の光反射層,キャビティー層,第2の光反射層
を形成した後に凸部の側面に接する第3の半導体によっ
て凸部を埋め込んだ構造を有する面発光レーザにおい
て、キャビティー層の屈折率をn1 ,第3の半導体の屈
折率をn3 、レーザ発振波長をλ0 として0<2πn1
a(2Δ)1/2 /λ0 ≦2.405(ここで、Δ=(n
1 2−n3 2)/2/n1 2)の条件を満足する直径2a,屈
折率n1 を選択するようにしたものである。
To achieve the above object, a first light reflecting layer, a cavity layer, and a second light reflecting layer having a diameter of 2a are formed in a convex shape on the main surface of a semiconductor substrate. In a surface emitting laser having a structure in which a convex portion is buried with a third semiconductor which comes into contact with the side surface of the convex portion later, in the surface emitting laser, the refractive index of the cavity layer is n 1 , the refractive index of the third semiconductor is n 3 ,
0 <2πn 1 a (2Δ) where lasing wavelength is λ 0
1/2 / λ 0 ≦ 2.405 (where Δ = (n 1 2 −n 3 2 )
The diameter 2a and the refractive index n 1 satisfying the condition of / 2 / n 1 2 ) are selected. As a result, higher optical confinement that satisfies the single transverse mode is realized as compared with the conventional technique, and surface recombination is suppressed in the surface emitting laser by the embedding with the third semiconductor, so that the single transverse mode is achieved. A low-threshold surface-emitting laser can be obtained.
That is, according to the present invention, the third semiconductor contacting the side surface of the convex portion is formed after the first light reflecting layer, the cavity layer, and the second light reflecting layer having the diameter of 2a are formed on the main surface of the semiconductor substrate in a convex shape. In a surface emitting laser having a structure in which a convex portion is embedded by, the refractive index of the cavity layer is n 1 , the refractive index of the third semiconductor is n 3 , the laser oscillation wavelength is λ 0 , and 0 <2πn 1
a (2Δ) 1/2 / λ 0 ≦ 2.405 (where Δ = (n
The diameter 2a and the refractive index n 1 satisfying the condition of 1 2 −n 3 2 ) / 2 / n 1 2 ) are selected.

【0005】[0005]

【作用】上記条件を満足する直径2a,屈折率n1 が選
択された結果、単一横モードでかつ低しきい値の面発光
レーザが実現が可能となる。
As a result of selecting the diameter 2a and the refractive index n 1 satisfying the above conditions, a surface emitting laser with a single transverse mode and a low threshold value can be realized.

【0006】[0006]

【実施例】以下、本発明について図面を参照して説明す
る。図1は、本発明に係る面発光レーザの一実施例を示
す構造図であり、これは活性層として井戸幅10nmの
InGaAs/GaAs歪超格子を用いた発振波長1.
0μm面発光レーザの例である。なお、この実施例は1
つの例示であって、本発明の精神を逸脱しない範囲で種
々の変更或いは改良を行い得ることは言うまでもない。
図1において、まず、最初にn型GaAs基板上にMO
CVD法を用いて順に各層の光学膜厚が発振波長のλ/
4(250nm)である30対のn−AlAs/GaA
s反射層、続いてアンドープGaAs層、活性層として
10nmアンドープIn0.2Ga0.8As層、アンドープ
GaAs層からなる全体が発振波長の膜厚であるキャビ
ティー層を形成後、各層の光学膜厚が発振波長のλ/4
(250nm)である20.5対のp−AlAs/Ga
As反射層を結晶成長させる。続いて、スパッタにより
SiO2 を200nm形成した上に、レジストパターン
ニングによりマスクを形成する。そして、マスク外部を
26及びSF6 を用いたRIEによりドライエッチン
グした後、塩素ガスによるECRエッチングを用いて上
記n−AlAs/GaAs反射層の途中までドライエッ
チング及び硫酸系の化学エッチャントによるスライトエ
ッチを行った後、直径2μm、高さ5μmの円筒を形成
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a structural diagram showing an embodiment of a surface emitting laser according to the present invention, which uses an InGaAs / GaAs strained superlattice having an well layer width of 10 nm as an active layer.
This is an example of a 0 μm surface emitting laser. Note that this embodiment is 1
It is needless to say that various modifications and improvements can be made without departing from the spirit of the present invention.
In FIG. 1, first, MO is first formed on an n-type GaAs substrate.
The optical film thickness of each layer is sequentially set to λ / of the oscillation wavelength using the CVD method.
4 (250 nm) 30 pairs of n-AlAs / GaA
After forming a cavity layer consisting of an s-reflecting layer, an undoped GaAs layer, a 10 nm undoped In 0.2 Ga 0.8 As layer as an active layer, and an undoped GaAs layer having a thickness of the oscillation wavelength as a whole, the optical thickness of each layer oscillates. Λ / 4 of wavelength
(250 nm) 20.5 pairs of p-AlAs / Ga
Crystallize the As reflective layer. Subsequently, SiO 2 is formed to a thickness of 200 nm by sputtering, and a mask is formed by resist patterning. Then, after the outside of the mask is dry-etched by RIE using C 2 F 6 and SF 6 , ECR etching with chlorine gas is used until the middle of the n-AlAs / GaAs reflective layer is dry-etched and a sulfuric acid-based chemical etchant is used. After performing the light etching, a cylinder having a diameter of 2 μm and a height of 5 μm is formed.

【0007】その後、上記円筒の側面に接するように、
MOCVD法を用いて上記のキャビティー層の屈折率を
1 (上記の場合アンドープGaAs層)、第3の半導
体の屈折率をn3 、レーザ発振波長をλ0 とした時、0
<2πn1 a(2Δ)1/2 /λ0 ≦2.405(ここ
で、Δ=(n1 2−n3 2)/2/n1 2)の条件を満足する
屈折率を持ち、かつ高い光閉じ込め係数を有するよう
に、Al0.43Ga0.57Asによって上記円筒を逆pn接
合を形成するようにp−Al0.43Ga0.57Asを1.7
μm、n−Al0.43Ga0.57Asを3.3μm埋め込
み、その後コンタクト層としてp++−GaAs層(p〜
1019cm-3)を10nm成長させる。そして、最後に
上部にp電極としてAuZnNi/Auを、下部にn電
極としてAuGeNi/Auを蒸着、シンター後、工程
を完了する。
After that, so as to contact the side surface of the cylinder,
MOCVD method n 1 the refractive index of the cavity layer with (in the above case undoped GaAs layer), when the refractive index of the third semiconductors and n 3, the laser oscillation wavelength lambda 0, 0
<2πn 1 a (2Δ) 1/2 / λ 0 ≦ 2.405 (where Δ = (n 1 2 −n 3 2 ) / 2 / n 1 2 ) and the refractive index is satisfied, and 1.7 of p-Al 0.43 Ga 0.57 As is used to form an inverse pn junction of the cylinder with Al 0.43 Ga 0.57 As so as to have a high optical confinement factor.
μm, n-Al 0.43 Ga 0.57 As is buried at 3.3 μm, and then a p ++ -GaAs layer (p ~
10 19 cm −3 ) is grown to 10 nm. Then, finally, AuZnNi / Au is vapor-deposited on the upper portion and AuGeNi / Au is vapor-deposited on the lower portion as the n-electrode, and after sintering, the process is completed.

【0008】上記のように構成した面発光レーザに対し
て、電流を注入しI−L特性を調べたところ、直径2μ
mと微細径であるにもかかわらず、周りを上記第3の半
導体によって埋め込んであるため、従来報告されている
値と比較して、低しきい値である0.8mAにおいてI
−L曲線が立ち上がり、レーザ発振に至ることが確認さ
れた。次にそのまま電流を増加してゆき、シリコンビジ
コンにより遠視野像を観察すると、従来のレーザでは通
常4〜5mAでモード変化が生じこれが観測されていた
のに対して、本発明による面発光レーザは15mAを越
えてもモード変化は観測されていない。また、発振スペ
クトルは上記第1,第2の光反射層から構成されるエタ
ロンにより決定される1μmであり、半値幅も0.2n
m以下と分光器の分解能の限界以下であり、通常の面発
光レーザと遜色がなかった。以上の実施例では、活性層
に井戸幅10nmであるInGaAs/GaAs歪超格
子を用いた発振波長1.0μm面発光レーザの場合を例
にとり説明したが、他の発振波長を有する面発光レーザ
の場合でも同様な効果が得られる。
A current was injected into the surface-emitting laser configured as described above, and the IL characteristics were examined.
Although the diameter is as small as m, the surrounding area is filled with the above-mentioned third semiconductor, and therefore, at a low threshold value of 0.8 mA, compared with the value reported hitherto, I
It was confirmed that the −L curve rises and laser oscillation occurs. Next, when the current is increased as it is and the far-field image is observed by the silicon vidicon, the mode change is usually observed at 4 to 5 mA in the conventional laser, whereas this is observed in the surface emitting laser according to the present invention. No mode change was observed even if it exceeded 15 mA. The oscillation spectrum is 1 μm determined by the etalon composed of the first and second light reflection layers, and the half width is 0.2 n.
It was less than m and less than the resolution limit of the spectroscope, and was comparable to a normal surface emitting laser. In the above embodiments, the description has been given by taking the case of the surface emitting laser having the oscillation wavelength of 1.0 μm using the InGaAs / GaAs strained superlattice having the well width of 10 nm in the active layer as an example. Even in this case, the same effect can be obtained.

【0009】次に、第2の実施例として、InP基板上
に活性層としてInGaAsPを用いた発振波長1.5
5μmの面発光レーザの場合を図2に示す。まず、最初
にn型InP基板上にMOCVD法を用いて、順に各層
の光学膜厚が発振波長のλ/4(387.5nm)であ
る30対のn−InGaAsP(1.45μm組成)/
InP反射層、続いてp−InGaAsPからなる活性
層(1.55μm組成)を光学膜厚が2λ(λは発振波
長)からなるキャビティー層として形成後、最後にp++
−InGaAsPコンタクト層を結晶成長させる。続い
てEB蒸着法によりTiO2及びSiO2からなる中心波
長1.55μmの誘電体多層膜4.5対によって構成さ
れる高反射膜を形成する。その後レジストパターンニン
グによりマスクを形成し、マスク外部をCF4及びH2
用いたRIEにより誘電体多層膜をドライエッチングし
た後、臭素ガスによるECRエッチングを用いてInP
基板までドライエッチング及び硫酸系によるスライトエ
ッチを行った後、直径10μm、高さ6.9μmの円筒
を形成する。
Next, as a second embodiment, an oscillation wavelength of 1.5 using InGaAsP as an active layer on an InP substrate.
FIG. 2 shows the case of a 5 μm surface emitting laser. First, by using the MOCVD method on an n-type InP substrate, 30 pairs of n-InGaAsP (1.45 μm composition) / wherein the optical thickness of each layer is λ / 4 (387.5 nm) of the oscillation wavelength in order.
After forming an InP reflective layer and then an active layer (1.55 μm composition) made of p-InGaAsP as a cavity layer having an optical film thickness of 2λ (λ is the oscillation wavelength), finally p ++
-Crystal growth of the InGaAsP contact layer. Then, a highly reflective film composed of 4.5 pairs of dielectric multilayer films made of TiO 2 and SiO 2 and having a central wavelength of 1.55 μm is formed by EB vapor deposition. After that, a mask is formed by resist patterning, the outside of the mask is dry-etched by RIE using CF 4 and H 2 , and then the dielectric multilayer film is dry-etched.
After dry etching and slight etching using a sulfuric acid system up to the substrate, a cylinder having a diameter of 10 μm and a height of 6.9 μm is formed.

【0010】その後、上記円筒の側面に接するように、
MOCVD法を用いて上記のキャビティー層(上記の場
合活性層であるp−InGaAsP層)の屈折率をn
1 、第3の半導体の屈折率をn3 、レーザ発振波長をλ
0 とした時、0<2πn1 a(2Δ)1/2 /λ0 ≦2.
405(ここで、Δ=(n1 2−n3 2)/2/n1 2)の条
件を満足し、かつ高い光閉じ込め係数を有するようにす
る屈折率を持つ半絶縁性層鉄ドープInGaAsP
(1.28μm組成)によって上記円筒を埋め込み、最
後にコンタクト層としてp++−InGaAsP層を10
nm成長させる。そして最後に上部にp電極としてAu
ZnNi/Auを、下部にn電極としてAuGeNi/
Auを蒸着、シンター後、工程を完了する。
Then, so as to contact the side surface of the cylinder,
Using the MOCVD method, the cavity layer (p-InGaAsP layer which is the active layer in the above case) has a refractive index of n.
1 , the refractive index of the third semiconductor is n 3 , the laser oscillation wavelength is λ
When 0 is set, 0 <2πn 1 a (2Δ) 1/2 / λ 0 ≦ 2.
405 (where, Δ = (n 1 2 −n 3 2 ) / 2 / n 1 2 ) is satisfied, and a semi-insulating layer iron-doped InGaAsP having a refractive index that enables a high optical confinement coefficient.
(1.28 μm composition), the above-mentioned cylinder is embedded, and finally a p ++ -InGaAsP layer is formed as a contact layer to form 10 layers.
nm growth. Finally, Au is used as a p-electrode on the top.
ZnNi / Au is used as an n-electrode on the bottom and AuGeNi /
After Au deposition and sintering, the process is completed.

【0011】[0011]

【発明の効果】以上説明したように、本発明は、半導体
基板の主面上に直径2aでなる凸状に第1の光反射面、
キャビティー層、第2の光反射層を形成した後に、凸部
の側面に接するキャビティー層の屈折率をn1、第3の
半導体の屈折率をn3、レーザ発振波長をλ0 として、
0<2πn1 a(2Δ)1/2 /λ0 ≦2.405(ここ
で、Δ=(n1 2−n3 2)/2/n1 2)の条件を満足する
直径2a,屈折率n1 を有する第3の半導体によって凸
部を埋め込むことにより、単一横モードでかつ低しきい
値の面発光レーザが実現できる。このため、光交換,光
ニューラルネットワーク、光情報処理用の光源としての
利用が可能になる等、経済効果が大である。
As described above, according to the present invention, a convex first light reflecting surface having a diameter 2a is formed on the main surface of a semiconductor substrate.
After forming the cavity layer and the second light reflection layer, the refractive index of the cavity layer in contact with the side surface of the convex portion is n 1 , the refractive index of the third semiconductor is n 3 , and the laser oscillation wavelength is λ 0 .
0 <2πn 1 a (2Δ) 1/2 / λ 0 ≦ 2.405 (where Δ = (n 1 2 −n 3 2 ) / 2 / n 1 2 ) diameter 2a and refractive index By embedding the convex portion with the third semiconductor having n 1 , a single lateral mode and low threshold surface emitting laser can be realized. Therefore, it can be used as a light source for optical switching, an optical neural network, and optical information processing, and has great economic effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る面発光レーザの一実施例を示す構
造図である。
FIG. 1 is a structural diagram showing an embodiment of a surface emitting laser according to the present invention.

【図2】この面発光レーザの他の実施例を示す構造図で
ある。
FIG. 2 is a structural view showing another embodiment of this surface emitting laser.

【図3】従来の面発光レーザの構造図である。FIG. 3 is a structural diagram of a conventional surface emitting laser.

【符号の説明】[Explanation of symbols]

1 n型GaAS基板 2 30対のn−AlAs/GaAS反射層 3,5 アンドープGaAS反射層 4 アンドープIn0.2Ga0.8As層 6 20.5対のp−AlAs/GaAS反射層 7 p−Al0.43Ga0.57As層 8 n−Al0.43Ga0.57As層 9 p++−GaAsコンタクト層 10 AuZnNi/Auのp電極 11 AuGeNi/Auのn電極 12 n型InP基板 13 30対のn−InGaAsP/InP反射
層 14 p−InGaAsPからなる活性層 15 p−InP層 16 p++−InGaAsPコンタクト層 17 4.5対のTiO2/SiO2高反射層 18 鉄ドープInGaAsP層
1 n-type GaAs substrate 2 30 pairs of n-AlAs / GaAS reflection layer 3,5 undoped GaAS reflection layer 4 undoped In 0.2 Ga 0.8 As layer 6 20.5 pairs of p-AlAs / GaAS reflection layer 7 p-Al 0.43 Ga 0.57 As layer 8 n-Al 0.43 Ga 0.57 As layer 9 p ++ -GaAs contact layer 10 AuZnNi / Au p electrode 11 AuGeNi / Au n electrode 12 n-type InP substrate 13 30 pairs of n-InGaAsP / InP reflective layers 14 p-InGaAsP active layer 15 p-InP layer 16 p ++ -InGaAsP contact layer 17 4.5 paired TiO 2 / SiO 2 high reflection layer 18 iron-doped InGaAsP layer

Claims (1)

【特許請求の範囲】 【請求項1】 半導体基板の主面上に第1の光反射層,
活性層を含むキャビティー層,第2の光反射層の順で積
層することによって前記第1及び第2の光反射層から構
成される光共振器を用いて前記活性層から放出された光
をレーザ発振させるとともに、前記半導体の主面に直径
2aでなる凸状に前記第1の光反射層,キャビティー
層,第2の光反射層を形成した後に該凸部の側面に接す
る第3の半導体により該凸部を埋め込むようにした面発
光レーザにおいて、 前記キャビティー層の屈折率をn1 ,第3の半導体の屈
折率をn3 ,レーザ発振波長をλ0 及びΔ=(n1 2−n
3 2)/2/n1 2としたときに、0<2πn1 a(2Δ)
1/2 /λ0≦2.405の条件を満足する直径2a,屈
折率n1 を有することを特徴とする面発光レーザ。
Claim: What is claimed is: 1. A first light reflecting layer on a main surface of a semiconductor substrate,
By stacking a cavity layer including an active layer and a second light reflecting layer in this order, light emitted from the active layer is emitted by using an optical resonator composed of the first and second light reflecting layers. Laser oscillation is performed, and after the first light reflection layer, the cavity layer, and the second light reflection layer are formed in a convex shape having a diameter 2a on the main surface of the semiconductor, a third light contact layer that contacts the side surface of the projection is formed. In a surface emitting laser in which the convex portion is filled with a semiconductor, a refractive index of the cavity layer is n 1 , a refractive index of the third semiconductor is n 3 , a laser oscillation wavelength is λ 0 and Δ = (n 1 2 -N
When 3 2 ) / 2 / n 1 2 , 0 <2πn 1 a (2Δ)
A surface emitting laser having a diameter 2a and a refractive index n 1 satisfying a condition of 1/2 / λ 0 ≦ 2.405.
JP19832891A 1991-07-15 1991-07-15 Surface emitting type laser Pending JPH0521898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19832891A JPH0521898A (en) 1991-07-15 1991-07-15 Surface emitting type laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19832891A JPH0521898A (en) 1991-07-15 1991-07-15 Surface emitting type laser

Publications (1)

Publication Number Publication Date
JPH0521898A true JPH0521898A (en) 1993-01-29

Family

ID=16389284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19832891A Pending JPH0521898A (en) 1991-07-15 1991-07-15 Surface emitting type laser

Country Status (1)

Country Link
JP (1) JPH0521898A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207938A (en) * 2006-01-31 2007-08-16 Sumitomo Electric Ind Ltd Surface emission optical semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207938A (en) * 2006-01-31 2007-08-16 Sumitomo Electric Ind Ltd Surface emission optical semiconductor laser

Similar Documents

Publication Publication Date Title
US4956844A (en) Two-dimensional surface-emitting laser array
JPH10126010A (en) Manufacturing method of semiconductor laser device
JPH10233557A (en) Semiconductor light emitting element
JP2002064244A (en) Distributed feedback semiconductor laser device
US8802468B2 (en) Semiconductor light emitting device and fabrication method for semiconductor light emitting device
US5566198A (en) Method of forming a groove in a semiconductor laser diode and a semiconductor laser diode
US20020015428A1 (en) High-power semiconductor laser device in which near-edge portions of active layer are removed
US6396863B1 (en) High-power semiconductor laser device having index-guided structure with InAlGaP current confinement layer
US6846685B2 (en) Vertical-cavity surface-emitting semiconductor laser
US20030035453A1 (en) Method of coating optical device facets with dielectric layer and device made therefrom
US6560261B2 (en) Semiconductor laser device having InGaAs compressive-strain active layer, GaAsP tensile-strain barrier layers, and InGaP optical waveguide layers
US5420066A (en) Method for producing semiconductor laser device using etch stop layer
US6577661B1 (en) Semiconductor laser with lateral light confinement by polygonal surface optical grating resonator
US6621845B2 (en) Semiconductor laser device which includes AlGaAs optical waveguide layer being formed over internal stripe groove and having controlled refractive index
JP2871288B2 (en) Surface type optical semiconductor device and method of manufacturing the same
JPH06252504A (en) Surface-emission laser and manufacture thereof
JPH0521898A (en) Surface emitting type laser
JP2613975B2 (en) Periodic gain type semiconductor laser device
US6600770B2 (en) High-power semiconductor laser device having current confinement structure and index-guided structure and stably oscillating in single mode
US20010017871A1 (en) High-power semiconductor laser device in which near-edge portions of active layer are removed
JP2804062B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0567838A (en) Surface emission laser
JPH04316387A (en) Surface light emitting laser
WO2021038680A1 (en) Surface-emitting laser and production method therefor
JPH05145170A (en) Plane emission laser