JPH05218462A - Semiconductor photodetective device - Google Patents

Semiconductor photodetective device

Info

Publication number
JPH05218462A
JPH05218462A JP4017606A JP1760692A JPH05218462A JP H05218462 A JPH05218462 A JP H05218462A JP 4017606 A JP4017606 A JP 4017606A JP 1760692 A JP1760692 A JP 1760692A JP H05218462 A JPH05218462 A JP H05218462A
Authority
JP
Japan
Prior art keywords
optical fiber
photodiode chip
light receiving
lens
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4017606A
Other languages
Japanese (ja)
Other versions
JP3191822B2 (en
Inventor
Miki Kuhara
美樹 工原
Hideaki Koseki
英明 小関
Hisato Michikoshi
久人 道越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP01760692A priority Critical patent/JP3191822B2/en
Priority to CA002088612A priority patent/CA2088612C/en
Priority to DE69328579T priority patent/DE69328579T2/en
Priority to KR1019930001426A priority patent/KR970005215B1/en
Priority to EP93101639A priority patent/EP0554849B1/en
Priority to DK93101639T priority patent/DK0554849T3/en
Publication of JPH05218462A publication Critical patent/JPH05218462A/en
Priority to US08/159,577 priority patent/US5412229A/en
Application granted granted Critical
Publication of JP3191822B2 publication Critical patent/JP3191822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To prevent signals from being distorted and to dispense with an expensive lens so as to lessen a semiconductor photodetective device in manufacturing cost by a method wherein a disused carrier trapping structure is provided to a photodiode chip, and signal light emitted from an optical fiber is made to impinge on the photodiode chip without interposing a lens optical system. CONSTITUTION:A photodiode chip 1 is provided with a structure which treats a photocurrent, which is generated by light that impinges on a region outside a PN junction which serves as a photodetective region, as ineffective, and an optical fiber 6 is made to approach the photodiode chip 1 so as to make it as high in sensitivity as required without interposing a lens optical system between them. The optical fiber 6 is inserted into a housing 8 through a ferrule 7, and the light emitting end face of the optical fiber 6 and the light receiving face of the photodiode 1 are made to confront each other without interposing an optical lens or the like between them. An expensive lens need not be used, and furthermore an optical fiber is not required to be finely aligned with a lens, so that a photodetective device of this design can be obtained at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信システムの受信
装置等に用いられる半導体受光装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light receiving device used in a receiving device of an optical communication system.

【0002】[0002]

【従来の技術】光ファイバーを用いる光通信のための半
導体受光装置は、たとえば図3のようにフォトダイオー
ドッチップ1がヘッダー2上にマウントされ、リード3
を通じて外部に光電流を取り出すことにより光信号を電
気信号に変換している。キャップ4は透光性の窓5を有
しており、フォトダイオードチップを気密シールするた
めに用いられる。ここで、ハウジング8にフェルール7
を介して挿通された光ファイバー6からの光を効率よく
フォトダイオードチップ1に照射するために、集光レン
ズ9が用いられている。図3のような形状をコアキシャ
ルタイプと呼ぶ。
2. Description of the Related Art In a semiconductor light receiving device for optical communication using an optical fiber, a photodiode chip 1 is mounted on a header 2 and leads 3 are provided as shown in FIG.
The optical signal is converted into an electric signal by taking out a photocurrent to the outside through. The cap 4 has a translucent window 5 and is used for hermetically sealing the photodiode chip. Here, the ferrule 7 in the housing 8
A condenser lens 9 is used to efficiently irradiate the photodiode chip 1 with the light from the optical fiber 6 that is inserted through. The shape shown in FIG. 3 is called a coaxial type.

【0003】図4の装置は、バタフライタイプと呼ばれ
るもので、ハウジング8が短形となっている。基本的に
は、図3と機能は同じであるが、ハウジング8の中にI
C(集積回路)チップなどを配置し、フォトダイオード
チップ1からの光電流信号をある程度増幅してから、外
部に取り出すような使い方もできる。
The apparatus shown in FIG. 4 is of a butterfly type, and has a short housing 8. Basically, the function is the same as that of FIG.
A C (integrated circuit) chip or the like may be arranged so that the photocurrent signal from the photodiode chip 1 is amplified to some extent and then taken out to the outside.

【0004】[0004]

【発明が解決しようとする課題】従来のこの種の装置
は、光ファイバーとしてシングルモードファイバーまた
はマルチモードファイバーを用いている。そのコア径は
たとえば1.3μm帯の光では、シングルモードファイ
バーで約10μm、マルチモードファイバーで約50μ
mである。光ファイバーの端面から出射される光は、そ
の光ファイバーのコアとクラッドの屈折率差に応じた角
度で空間に広がっていく。従って、この広がっていく光
を効率良くフォトダイオードの受光面に集光するため
に、レンズ9を用いる。特に、高速用の100μm以下
の小受光径のフォトダイオードチップを用いるときは、
より集光特性の良い非球面レンズもしくは、セルフォッ
クレンズを用いることがよく行われ、高価な部品を使わ
ざるを得ないという状況にある。
A conventional device of this type uses a single mode fiber or a multimode fiber as an optical fiber. For example, in the 1.3 μm band light, the core diameter is about 10 μm for a single mode fiber and about 50 μ for a multimode fiber.
m. The light emitted from the end face of the optical fiber spreads into the space at an angle according to the refractive index difference between the core and the clad of the optical fiber. Therefore, the lens 9 is used to efficiently collect the expanding light on the light receiving surface of the photodiode. Especially when using a photodiode chip with a small light receiving diameter of 100 μm or less for high speed,
It is often the case that an aspherical lens or a SELFOC lens having better light condensing characteristics is used, and there is no choice but to use expensive parts.

【0005】また、たとえこれらのレンズを用いたとし
ても、光ファイバーとの調芯には非常に高い精度を要求
される。特に図3に示すB部分の固定時には、感度のば
らつきを±0.5dB以内に収めるには、±15μm程
度の位置精度を必要とする。この種の部品の固定には、
YAGレーザによるスポット溶接が最もよく用いられる
が、それでも位置ずれが生じ、歩留りは70〜80%と
低い。また、1回の調芯に20〜30分の長時間を要し
ている。
Even if these lenses are used, very high accuracy is required for alignment with the optical fiber. Particularly, when the portion B shown in FIG. 3 is fixed, a positional accuracy of about ± 15 μm is required to keep the sensitivity variation within ± 0.5 dB. For fixing this kind of parts,
Spot welding with a YAG laser is most often used, but it still causes misalignment and yield is as low as 70-80%. Further, it takes a long time of 20 to 30 minutes for one alignment.

【0006】特に問題となるは、集光された光ビームが
フォトダイオードチップのpn接合の受光領域外に当た
った場合である。図5にその様子を示す。ファトダイオ
ードチップ1については、半導体基板11上にエピタキ
シャル成長層12が形成され、金属元素の拡散によって
層12とは逆の極性の拡散領域13が形成される。層1
2と領域13との境界部分がpn接合といわれ、この部
分に照射された光が主に光電流に寄与する。光電流は電
極14、15を通じて、外部に信号として取り出され
る。
A particular problem is that the condensed light beam hits the outside of the light receiving region of the pn junction of the photodiode chip. This is shown in FIG. In the fat diode chip 1, an epitaxial growth layer 12 is formed on a semiconductor substrate 11, and a diffusion region 13 having a polarity opposite to that of the layer 12 is formed by diffusion of a metal element. Layer 1
The boundary portion between 2 and the region 13 is called a pn junction, and the light applied to this portion mainly contributes to the photocurrent. The photocurrent is taken out as a signal to the outside through the electrodes 14 and 15.

【0007】ここで、符号16は光ファバー6のコア6
´より放射された光ビームの広がりを示すものである。
このビームのうち領域13およびそのごく近傍(たとえ
ば3〜5μm)で吸収された光は、pn接合に印加され
た電界によって高速に、かつ効率よく光電流に寄与する
が、それより外側では、電界が印加されていないので吸
収された光は非常に応答速度の遅い光電流を発生してし
まう。そうすると、アナログ信号光の再生においては、
位相のずれた信号となり歪みレベルが高くなってしま
い、再生画像にノイズが入る問題がある。また、デジタ
ル信号光の再生においては、パルス波形の歪みが出て
(特に矩形パルスの立ち下がり部分がμsecの尾をひ
く)、高速に通信ができないという問題が生じる。この
ような弊害がないよう、高級、高価な光学系で光ファイ
バーからの光をフォトダイオードチップに集光している
のが現状である。
Here, reference numeral 16 is a core 6 of the optical fiber 6.
It shows the spread of the light beam emitted from ′.
The light absorbed in the region 13 and its immediate vicinity (for example, 3 to 5 μm) of this beam contributes to the photocurrent at high speed and efficiently by the electric field applied to the pn junction, but outside the region, the electric field is increased. Is not applied, the absorbed light will generate a photocurrent with a very slow response speed. Then, in the reproduction of analog signal light,
The signal becomes out of phase, the distortion level becomes high, and there is a problem that noise appears in the reproduced image. Further, in the reproduction of the digital signal light, the pulse waveform is distorted (particularly, the falling portion of the rectangular pulse has a μsec tail), which causes a problem that high-speed communication cannot be performed. In order to prevent such an adverse effect, the light from the optical fiber is focused on the photodiode chip by a high-grade and expensive optical system.

【0008】半導体受光装置は光通信に必須のものであ
るにもかかわらず、このような困難性を有し、高価であ
ることが光通信システムの急速な普及を阻害している。
本発明は、かかる問題点を解決することを課題としてい
る。
Although the semiconductor light receiving device is indispensable for optical communication, its difficulty and high price hinder the rapid spread of the optical communication system.
An object of the present invention is to solve such a problem.

【0009】[0009]

【課題を解決するための手段】本発明は、フォトダイオ
ードチップがマウントされたヘッダーに、光ファイバー
が挿通されたハウジングが固定されることにより一体構
造とされ、フォトダイオードチップの受光面が光ファイ
バーの光出射端面と対向するように配置された半導体受
光装置において、フォトダイオードチップは光電流を検
出信号として出力するためのpn接合領域を受光面に有
すると共に、pn接合領域の周囲で生成されるキャリア
を捕獲する領域を有し、光ファイバーの出射光はレンズ
光学系を介することなく直ちに受光面に入射されている
ことを特徴とする。
The present invention has an integrated structure in which a housing having an optical fiber inserted therein is fixed to a header on which a photodiode chip is mounted, and the light receiving surface of the photodiode chip is an optical fiber. In the semiconductor light receiving device arranged so as to face the emitting end face, the photodiode chip has a pn junction region for outputting a photocurrent as a detection signal on the light receiving face, and carriers generated around the pn junction region are generated. It is characterized in that it has a region to be captured, and the light emitted from the optical fiber is immediately incident on the light receiving surface without passing through the lens optical system.

【0010】[0010]

【作用】本発明の構造によれば、フォトダイオードチッ
プには無効とすべきキャリアの捕獲構造が設けられてい
るため、レンズ光学系を介在させることなく光ファイバ
からの信号光をフォトダイオードチップに入射しても、
信号の歪みなどを生じることがない。
According to the structure of the present invention, since the photodiode chip is provided with the carrier trapping structure to be invalidated, the signal light from the optical fiber is transmitted to the photodiode chip without interposing the lens optical system. Even if it is incident,
No signal distortion will occur.

【0011】[0011]

【実施例】以下、添付図面の図1,図2を参照して本発
明の一実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0012】図1は要部を破砕断面にて示した半導体受
光装置の側面図であり、図2は要部の拡大図である。図
示のように、従来と異なる点は、フォトダイオードチッ
プ1として、受光領域であるpn接合の外部に入射した
光によって発生した光電流を無効にする構造を有するタ
イプ(電荷捕獲型フォトダイオードチップと呼ぶ)を用
い、かつ、レンズ光学系を介在させることなく、このフ
ォトダイオードチップ1に光ファイバー6を接近させて
所望の感度を得るようにしたことである。
FIG. 1 is a side view of the semiconductor light receiving device showing a crushed section of the main part, and FIG. 2 is an enlarged view of the main part. As shown in the figure, the point different from the prior art is that the photodiode chip 1 has a structure (a charge trapping photodiode chip The optical fiber 6 is brought close to the photodiode chip 1 without using a lens optical system to obtain a desired sensitivity.

【0013】図1のように、ヘッダー2にはフォトダイ
オードチップ1がマウントされ、これにハウジング8が
一体化されている。そして、ハウジング8にはフェルー
ル7によって光ファイバー6が挿通され、光ファイバー
6の光出射端面とフォトダイオードチップ1の受光面
が、光学レンズなどを介することなく対向している。
As shown in FIG. 1, a header 2 is mounted with a photodiode chip 1, and a housing 8 is integrated with the photodiode chip 1. The optical fiber 6 is inserted into the housing 8 by the ferrule 7, and the light emitting end face of the optical fiber 6 and the light receiving face of the photodiode chip 1 face each other without an optical lens or the like.

【0014】このような、本発明の実施例に係る半導体
受光装置に用いることの出来るフォトダイオードチップ
1として、受光領域であるpn接合の外部に入射した光
によって発生した光電流を無効にする構造を有する(電
荷捕獲型フォトダイオードチップ)を用いる事ができ、
図2にその一例を示す。この構造では、エピタキシャル
層12に領域13と同じ極性を持った領域17を金属元
素の熱拡散によって形成する。領域17で発生した光キ
ャリアーは領域13の方には流れず、エピタキシャル層
12と領域17との間にあるpn接合付近または、その
チップ端面に露出したpn接合部で消滅してしまう。具
体的には、本出願人による特願平2−308094号、
同2−230207号にその詳細が示されている。
As such a photodiode chip 1 that can be used in the semiconductor light receiving device according to the embodiment of the present invention, the photocurrent generated by the light incident on the outside of the pn junction, which is the light receiving region, is invalidated. (Charge trap type photodiode chip) having
FIG. 2 shows an example thereof. In this structure, a region 17 having the same polarity as the region 13 is formed in the epitaxial layer 12 by thermal diffusion of a metal element. The photocarriers generated in the region 17 do not flow toward the region 13 and disappear in the vicinity of the pn junction between the epitaxial layer 12 and the region 17 or at the pn junction exposed on the chip end face thereof. Specifically, Japanese Patent Application No. 2-308094 by the applicant,
The details are given in No. 2-230207.

【0015】このような改良されたフォトダイオードチ
ップを用いると、光ビームが広がった状態でも、何ら特
性に影響を与えないので、高価なレンズを用いる必要も
なく、また光ファイバーとの微妙な調芯も必要でなくな
り、非常に簡単に、安価な半導体受光装置が得られる。
When such an improved photodiode chip is used, even if the light beam is spread, it does not affect the characteristics at all, so it is not necessary to use an expensive lens and the optical fiber is finely aligned. Is no longer necessary, and a semiconductor light receiving device of low cost can be obtained very easily.

【0016】図1の構成で、長波長帯(1.1μm〜
1.6μm)の光通信に使用される半導体受光装置の実
施例を述べる。フォトダイオードチップ1としては、I
nPを基板とし、InGaAsのエピタキシャル層にZ
n拡散により100μmの受光領域のpn接合を形成
し、さらに同じ方法で電荷捕獲領域を形成した電荷捕獲
型フォトダイオードチップを用いる。もちろん、このチ
ップ1には、SiN膜による接合部分のパッシベーショ
ン、及び受光部分及び電荷捕獲領域の全面に反射防止膜
がそれぞれ形成されている。このチップ1をコバール製
のヘッダー2にAuSnを用いてボンディングし、30
μmの金線でリード3との電気的導通を取る。
In the configuration of FIG. 1, a long wavelength band (1.1 μm-
An example of a semiconductor light receiving device used for optical communication of 1.6 μm) will be described. As the photodiode chip 1, I
nP is used as the substrate and Z is used as the InGaAs epitaxial layer.
A charge trap type photodiode chip in which a pn junction having a light receiving region of 100 μm is formed by n diffusion and a charge trap region is further formed by the same method is used. Of course, in this chip 1, an antireflection film is formed on the entire surface of the light receiving portion and the charge trapping region and the passivation of the junction portion by the SiN film. This chip 1 is bonded to the Kovar header 2 using AuSn,
Electrical continuity with the lead 3 is established with a μm gold wire.

【0017】次に、戻り光を防止するために、端面を8
度に斜めカットしたシングルモードファイバー6をフェ
ルール7に固定し、これをステンレス製のハウジング8
に固定したものを用意する。この時のフェルール7の固
定位置は、チップ1の受光面積に応じて、フォトダイオ
ードチップ1の受光面とファイバー6先端との距離を幾
何光学を用いて計算した値に固定する。
Next, in order to prevent the returning light, the end face is
Fix the single mode fiber 6 cut diagonally to the ferrule 7 and attach it to the stainless steel housing 8
Prepare the one fixed on. At this time, the fixed position of the ferrule 7 is fixed to a value calculated by using geometrical optics according to the light receiving area of the chip 1 and the distance between the light receiving surface of the photodiode chip 1 and the tip of the fiber 6.

【0018】次に光ファイバー6より1.3μmのレー
ザ光をチップ1に照射し、光電流をモニターしながら、
YAGレーザ溶接機を用いて、図中のAの部分で固定す
る。レンズがないため、短時間(2〜3分)で調芯、溶
接でき、しかも、全体の95%が0.8A/Wの高い感
度特性を示す。
Next, the chip 1 is irradiated with a laser beam of 1.3 μm from the optical fiber 6, and while monitoring the photocurrent,
Using a YAG laser welder, fix at A in the figure. Since there is no lens, alignment and welding can be performed in a short time (2 to 3 minutes), and 95% of the whole exhibits high sensitivity characteristics of 0.8 A / W.

【0019】この半導体受光装置を用いて、デジタル通
信で125Mbpsの光信号を受信しても、波形の歪み
や、時間的に波形の立ち上がりや立ち下がり部分がふら
つくジッターのような現象は全く観察されない。また、
40チャンネルのアナログ画像伝送装置の受光部分にこ
の半導体受光装置を用いても、感度として0.8A/W
は全く十分であり、かつ今まで高感度でもわずかの漏れ
光のため、位相のずれた信号で画面にちらつきが出てい
たものが、この半導体受光装置の採用により全く見られ
なくなる。さらに反射防止を施された電荷捕獲領域で、
不要な光をすべて吸収するため、光通信のノイズとなる
反射光や散乱光を生じない。
Even when an optical signal of 125 Mbps is received by digital communication using this semiconductor light receiving device, a phenomenon such as waveform distortion and jitter in which the rising and falling portions of the waveform fluctuate with time are not observed at all. .. Also,
Even if this semiconductor light receiving device is used for the light receiving portion of a 40-channel analog image transmission device, the sensitivity is 0.8 A / W.
Is quite sufficient, and even with high sensitivity, a slight amount of leaked light has caused flickering on the screen due to signals with a phase shift, but by using this semiconductor light receiving device, it will not be seen at all. Furthermore, in the charge trapping area with antireflection,
Since it absorbs all unnecessary light, it does not generate reflected light or scattered light that is noise in optical communication.

【0020】このように短時間で光ファバーとの実装が
できコストが下げられることや、多くの用途において波
形のふらつきや、ノイズがなくなることのため、本発明
の半導体受光装置は、今まで高価なために幅広い実用化
が遅れていた光による通信を一気に加速するものであ
る。また、本発明の他の実施例として、バタフライタイ
プのハウジングに適用しても同様の効果が得られる。
Thus, the semiconductor light receiving device of the present invention has been expensive until now because it can be mounted on an optical fiber in a short time and the cost can be reduced, and in many applications, the fluctuation of the waveform and the noise are eliminated. For this reason, it will accelerate communication using light, which has been delayed in widespread practical application. Further, as another embodiment of the present invention, the same effect can be obtained even when applied to a butterfly type housing.

【0021】[0021]

【発明の効果】以上の通り本発明では、フォトダイオー
ドチップには無効とすべきキャリアの捕獲構造が設けら
れているため、レンズ光学系を介在させることなく光フ
ァイバからの信号光をフォトダイオードチップに入射し
ても、信号の歪みなどを生じることがない。このよう
に、高価なレンズを用いない安価な半導体受光装置を構
成するものであるとともに、アナログ信号光の再生には
位相にずれた信号となり歪みレベルが高くなってしまう
とか、デジタル信号ではパルス波形の歪みが出て、高速
の通信ができないというような、従来の問題点を解決し
た半導体受光装置を供給することが可能となるものであ
る。
As described above, according to the present invention, since the photodiode chip is provided with the carrier trapping structure to be invalidated, the signal light from the optical fiber can be transmitted without interposing the lens optical system. Even if it is incident on, the signal will not be distorted. In this way, an inexpensive semiconductor light receiving device that does not use an expensive lens is configured, and a signal with a phase shift is generated when reproducing analog signal light, and the distortion level becomes high. Therefore, it is possible to provide a semiconductor light receiving device that solves the conventional problems such as the above distortion and the inability to perform high-speed communication.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係る半導体受光装置の全体構成を示す
図である。
FIG. 1 is a diagram showing an overall configuration of a semiconductor light receiving device according to an embodiment.

【図2】実施例の要部に係るフォトダイオードチップと
光ファイバーの関係を示す図である。
FIG. 2 is a diagram showing a relationship between a photodiode chip and an optical fiber according to an essential part of the embodiment.

【図3】従来例の全体構成図である。FIG. 3 is an overall configuration diagram of a conventional example.

【図4】従来例の全体構成図である。FIG. 4 is an overall configuration diagram of a conventional example.

【図5】従来例におけるフォトダイオードチップと光フ
ァイバーの関係図である。
FIG. 5 is a relationship diagram between a photodiode chip and an optical fiber in a conventional example.

【符号の説明】[Explanation of symbols]

1…フォトダイオードチップ、2…ヘッダー、3…リー
ド、4…キャップ、5…窓、6…光ファイバー、6´…
コア、7…フェルール、8…ハウジング、9…集光レン
ズ、11…半導体基板、12…エピタキシャル成長層、
13…拡散領域、14,15…電極、17…拡散領域。
1 ... Photodiode chip, 2 ... Header, 3 ... Lead, 4 ... Cap, 5 ... Window, 6 ... Optical fiber, 6 '...
Core, 7 ... Ferrule, 8 ... Housing, 9 ... Focusing lens, 11 ... Semiconductor substrate, 12 ... Epitaxial growth layer,
13 ... Diffusion region, 14, 15 ... Electrode, 17 ... Diffusion region.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年11月20日[Submission date] November 20, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】このような、本発明の実施例に係る半導体
受光装置に用いることの出来るフォトダイオードチップ
1として、受光領域であるpn接合の外部に入射した光
によって発生した光電流を無効にする構造を有する(電
荷捕獲型フォトダイオードチップ)を用いる事ができ、
図2にその一例を示す。この構造では、エピタキシャル
層12に領域13と同じ極性を持った領域17を金属元
素の熱拡散によって形成する。領域17で発生した光キ
ャリアーは領域13の方には流れず、エピタキシャル層
12と領域17との間にあるpn接合付近または、その
チップ端面に露出したpn接合部で消滅してしまう。具
体的には、本出願人による特願平2−230206号に
その詳細が示されている。
As such a photodiode chip 1 that can be used in the semiconductor light receiving device according to the embodiment of the present invention, a structure for canceling the photocurrent generated by the light incident on the outside of the pn junction which is the light receiving region. (Charge trap type photodiode chip) having
FIG. 2 shows an example thereof. In this structure, a region 17 having the same polarity as the region 13 is formed in the epitaxial layer 12 by thermal diffusion of a metal element. The photocarriers generated in the region 17 do not flow toward the region 13 and disappear in the vicinity of the pn junction between the epitaxial layer 12 and the region 17 or at the pn junction exposed on the chip end face thereof. Specifically, the details are shown in Japanese Patent Application No. 2-230206 by the present applicant.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フォトダイオードチップがマウントされ
たヘッダーに、光ファイバーが挿通されたハウジングが
固定されることにより一体構造とされ、前記フォトダイ
オードチップの受光面が前記光ファイバーの光出射端面
と対向するように配置された半導体受光装置において、 前記フォトダイオードチップは光電流を検出信号として
出力するためのpn接合領域を前記受光面に有すると共
に、前記pn接合領域の周囲で生成されるキャリアを捕
獲する領域を有し、 前記光ファイバの出射光はレンズ光学系を介することな
く直ちに前記受光面に入射されていることを特徴とする
半導体受光装置。
1. A header on which a photodiode chip is mounted is fixed to a housing in which an optical fiber is inserted so as to form an integrated structure, and a light receiving surface of the photodiode chip faces a light emitting end surface of the optical fiber. In the semiconductor light receiving device arranged in, the photodiode chip has a pn junction region for outputting a photocurrent as a detection signal on the light receiving surface, and a region for trapping carriers generated around the pn junction region. The semiconductor light receiving device according to claim 1, wherein the light emitted from the optical fiber is immediately incident on the light receiving surface without passing through a lens optical system.
JP01760692A 1990-08-31 1992-02-03 Semiconductor light receiving device Expired - Fee Related JP3191822B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP01760692A JP3191822B2 (en) 1992-02-03 1992-02-03 Semiconductor light receiving device
CA002088612A CA2088612C (en) 1992-02-03 1993-02-02 Semiconductor light detecting device
KR1019930001426A KR970005215B1 (en) 1992-02-03 1993-02-03 Semiconductor light detecting device
EP93101639A EP0554849B1 (en) 1992-02-03 1993-02-03 Semiconductor light detecting device
DE69328579T DE69328579T2 (en) 1992-02-03 1993-02-03 Semiconductor light detector device
DK93101639T DK0554849T3 (en) 1992-02-03 1993-02-03 Semiconductor light detection device
US08/159,577 US5412229A (en) 1990-08-31 1993-12-01 Semiconductor light detecting device making use of a photodiode chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01760692A JP3191822B2 (en) 1992-02-03 1992-02-03 Semiconductor light receiving device

Publications (2)

Publication Number Publication Date
JPH05218462A true JPH05218462A (en) 1993-08-27
JP3191822B2 JP3191822B2 (en) 2001-07-23

Family

ID=11948547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01760692A Expired - Fee Related JP3191822B2 (en) 1990-08-31 1992-02-03 Semiconductor light receiving device

Country Status (1)

Country Link
JP (1) JP3191822B2 (en)

Also Published As

Publication number Publication date
JP3191822B2 (en) 2001-07-23

Similar Documents

Publication Publication Date Title
JP3324286B2 (en) Analog PD module and method of manufacturing the same
JP3436009B2 (en) Optical semiconductor device
JP2645862B2 (en) Semiconductor light emitting device and its applied products
JPS6273437A (en) Optical head device
JPH05235396A (en) Semiconductor photoreceptor
JPH03120884A (en) Semiconductor laser module
JP3531456B2 (en) Light receiving element module and method of manufacturing the same
JP3245838B2 (en) Semiconductor laser device
JPH09113768A (en) Optical coupling structure of optical receiver
JP3191823B2 (en) Semiconductor light receiving device
JPH05218462A (en) Semiconductor photodetective device
KR970005215B1 (en) Semiconductor light detecting device
JPH09269440A (en) Light transmitting and receiving module
JPH10117012A (en) Semiconductor light-receiving element
US5345075A (en) Semiconductor photodetector with dielectric shielding
JP3593998B2 (en) Photodiode chip
JP3325742B2 (en) Optical coupler
JPH02277010A (en) Method for optical coupling between photosemiconductor chip and optical fiber
JPH06194548A (en) Photoelectronic device
US20030075672A1 (en) Method and apparatus for coupling optical fiber with photodetectors
JPH03104286A (en) Adp light receiving device
JPH0553033A (en) Optical receiver
JP2008227040A (en) Optical receiving device
JPH0621577A (en) Semiconductor laser module
JPH10303513A (en) Semiconductor laser device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees