JPH05218321A - Field-effect transistor and its manufacture - Google Patents

Field-effect transistor and its manufacture

Info

Publication number
JPH05218321A
JPH05218321A JP4040321A JP4032192A JPH05218321A JP H05218321 A JPH05218321 A JP H05218321A JP 4040321 A JP4040321 A JP 4040321A JP 4032192 A JP4032192 A JP 4032192A JP H05218321 A JPH05218321 A JP H05218321A
Authority
JP
Japan
Prior art keywords
epitaxial layer
region
effect transistor
source
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4040321A
Other languages
Japanese (ja)
Inventor
Kazuji Yamazaki
和次 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4040321A priority Critical patent/JPH05218321A/en
Publication of JPH05218321A publication Critical patent/JPH05218321A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a resistance by the use of embedded tungsten in order to ground a substrate by forming the rear surface of a high-frequency operation high-output field effect transistor, in the case of a lateral type electric field structure, into a source. CONSTITUTION:A tungsten-embedded region 10 is formed through an epitaxial layer 2 in order to connect a source electrode 9 to a silicon substrate 1. This renders the silicon substrate 1 free of a raised area, and hence makes it possible to withstand a high voltage. Also, the area of an element can be reduced because of the low resistance of tungsten.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の構造に関
し、特に横型電界効果型トランジスタと縦型電界効果型
トランジスタ高周波の高出力個別半導体素子および高出
力の集積回路用半導体素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a semiconductor device, and more particularly to a horizontal field effect transistor and a vertical field effect transistor, a high frequency high power individual semiconductor device and a high power integrated circuit semiconductor device.

【0002】[0002]

【従来の技術】従来の半導体装置の構造は、図4に示す
ようにソース5、ドレイン3、低濃度N型拡散層4、ゲ
ート7で構成されている。横型電界効果型トランジスタ
のソース接地の場合、ソースインダクタンス成分を低減
するために低濃度のエピタキシャル層2を高濃度しシリ
コン基板1上に成長させ、ソース電極9を高濃度のシリ
コン基板に高濃度の拡散層15を介して接続している。
したがって、シリコン基板1をソース電極として用いる
構造を有している。
2. Description of the Related Art The structure of a conventional semiconductor device is composed of a source 5, a drain 3, a low concentration N type diffusion layer 4 and a gate 7, as shown in FIG. In the case of grounding the source of the lateral field effect transistor, in order to reduce the source inductance component, the low-concentration epitaxial layer 2 is highly concentrated and grown on the silicon substrate 1, and the source electrode 9 is highly concentrated on the high-concentration silicon substrate. Connection is made via the diffusion layer 15.
Therefore, it has a structure in which the silicon substrate 1 is used as a source electrode.

【0003】次に図5は縦型電界効果型トランジスタの
個別半導体素子の構造を示している。図2おいて、14
はエピタキシャル層、5はソース、12はベース領域、
7はゲート、9はソース電極である。縦型電界効果型ト
ランジスタはシリコン基板13がドレイン端子となり、
電源端子がシリコン基板13に接続されることになる。
また図6に示すように、拡散層によって埋め込み層11
に接続する構造を有している。
Next, FIG. 5 shows the structure of an individual semiconductor element of a vertical field effect transistor. In FIG. 2, 14
Is an epitaxial layer, 5 is a source, 12 is a base region,
Reference numeral 7 is a gate, and 9 is a source electrode. In the vertical field effect transistor, the silicon substrate 13 serves as a drain terminal,
The power supply terminal is connected to the silicon substrate 13.
Further, as shown in FIG. 6, the buried layer 11 is formed by the diffusion layer.
It has a structure to connect to.

【0004】[0004]

【発明が解決しようとする課題】この従来の半導体装置
では、横型電界効果型トランジスタの場合、高濃度の拡
散層15によって、半導体装置の裏面にあたるシリコン
基板1にソース電極9を接地させていた。このため接地
端子となるソース電極9に寄生となる抵抗成分が存在
し、接地端子に大きな抵抗成分が寄生した場合、接地端
子となるソース端子に電圧降下が生じ増幅特性が著しく
悪化する。このため高濃度の拡散層15によって裏面の
シリコン基板にソースを接地させる場合、拡散層15の
断面積を大きくして抵抗を小さくする必要がある。しか
しながら、図3のプロットAで示すように高濃度の拡散
層15によって裏面の高濃度シリコン基板と接地させる
場合、高濃度のシリコン基板1がボロンの場合、P型シ
リコン基板1のせり上がりによって従来のエピタキシャ
ル層の濃度分布B(拡散前の濃度分布)に対して高濃度
化C(せり上がったエピタキシャル層の濃度分布)耐圧
の低下、トランジスタのしきい値が増加するという問題
があった。
In this conventional semiconductor device, in the case of the lateral field effect transistor, the source electrode 9 is grounded by the high-concentration diffusion layer 15 to the silicon substrate 1 which is the back surface of the semiconductor device. Therefore, when a parasitic resistance component exists in the source electrode 9 serving as the ground terminal and a large resistance component is parasitic in the ground terminal, a voltage drop occurs at the source terminal serving as the ground terminal and the amplification characteristic is significantly deteriorated. Therefore, when the source is grounded to the back silicon substrate by the high-concentration diffusion layer 15, it is necessary to increase the cross-sectional area of the diffusion layer 15 to reduce the resistance. However, as shown in the plot A of FIG. 3, when the high-concentration diffusion layer 15 is grounded to the rear surface of the high-concentration silicon substrate, when the high-concentration silicon substrate 1 is boron, the P-type silicon substrate 1 rises up to a conventional level. In contrast to the concentration distribution B of the epitaxial layer (concentration distribution before diffusion), there was a problem that the concentration was increased C (concentration distribution of the raised epitaxial layer), the breakdown voltage was lowered, and the threshold value of the transistor was increased.

【0005】また縦型電界効果型トランジスタの場合、
半導体装置表面にドレイン電極8を形成する場合も同様
に、寄生抵抗によりしきい値電流などの非飽和電流の値
が減少しオン抵抗が増大する。このため横型電界効果型
トランジスタと同様に高濃度の拡散層15の断面積を大
きくし、抵抗を小さくする必要がある。このため半導体
装置の素子面積が増大し、素子の小型化,集積化に対し
問題があった。
In the case of a vertical field effect transistor,
Similarly, when the drain electrode 8 is formed on the surface of the semiconductor device, the parasitic resistance decreases the value of the non-saturation current such as the threshold current and increases the on-resistance. Therefore, like the lateral field effect transistor, it is necessary to increase the cross-sectional area of the high-concentration diffusion layer 15 and reduce the resistance. For this reason, the element area of the semiconductor device increases, and there is a problem in miniaturization and integration of the element.

【0006】[0006]

【課題を解決するための手段】本願発明の第1の要旨
は、半導体基板上に成長したエピタキシャル層と、エピ
タキシャル層の表面部に形成されたソース領域及びドレ
イン領域と、ゲート電極と、ソース領域とドレイン領域
にそれぞれ接続したソース電極及びドレイン電極とを備
えた横型の電界効果型トランジスタにおいて、エピタキ
シャル層を貫通し、ソース電極と半導体基板とを接続す
る連絡領域を高融点金属で形成したことである。
The first gist of the present invention is to provide an epitaxial layer grown on a semiconductor substrate, source and drain regions formed on the surface of the epitaxial layer, a gate electrode, and a source region. In a lateral field-effect transistor having a source electrode and a drain electrode respectively connected to the drain region and the drain region, by forming a contact region penetrating the epitaxial layer and connecting the source electrode and the semiconductor substrate with a refractory metal. is there.

【0007】本願発明の第2の要旨は、半導体基板上に
成長したエピタキシャル層と、エピタキシャル層の表面
部に形成されたソース領域及びドレイン領域と、ゲート
電極と、ソース領域とドレイン領域にそれぞれ接続した
ソース電極及びドレイン電極とを備えた横型の電界効果
型トランジスタの製造方法において、エピタキシャル層
を貫通し、ソース電極と半導体基板とを接続する連絡領
域用トレンチを形成する工程と、該トレンチを高融点金
属の化学気相成長法で埋める工程とを備えたことであ
る。
A second gist of the present invention is to connect an epitaxial layer grown on a semiconductor substrate, a source region and a drain region formed on the surface of the epitaxial layer, a gate electrode, and a source region and a drain region, respectively. In a method for manufacturing a lateral field effect transistor having a source electrode and a drain electrode, the step of forming a contact region trench penetrating the epitaxial layer and connecting the source electrode and the semiconductor substrate, and the trench And a step of filling with melting point metal by chemical vapor deposition.

【0008】本願発明の第3の要旨は、半導体基板上に
成長しドレイン領域として機能するエピタキシャル層
と、半導体基板とエピタキシャル層との界面に設けられ
た埋込層と、エピタキシャル層の表面部に設けられたベ
ース領域と、ベース領域の表面部に設けられたソース領
域とを備えた縦型の電界効果トランジスタにおいて、エ
ピタキシャル層を貫通し埋込層とドレイン電極を接続す
る連絡領域を高融点金属で形成したことである。
A third aspect of the present invention is that an epitaxial layer grown on a semiconductor substrate and functioning as a drain region, a buried layer provided at an interface between the semiconductor substrate and the epitaxial layer, and a surface portion of the epitaxial layer. In a vertical field effect transistor including a provided base region and a source region provided on the surface of the base region, a refractory metal is used as a contact region that penetrates the epitaxial layer and connects the buried layer and the drain electrode. It was formed in.

【0009】[0009]

【発明の作用】高融点金属で連絡領域を形成しても、エ
ピタキシャル層の不純物濃度は変化せず、また、高融点
金属は低抵抗なので断面積が少なく、電界効果トランジ
スタの半導体基板上の占有面積を減少できる。
Even if the contact region is formed of a refractory metal, the impurity concentration of the epitaxial layer does not change, and the refractory metal has a low resistance, so that the cross-sectional area is small and the field effect transistor is occupied on the semiconductor substrate. The area can be reduced.

【0010】[0010]

【実施例】次に本発明を図面を参照して説明する。図1
は本発明の第1実施例であるNチャネル横型電界効果型
トランジスタの断面図である。高濃度のP型シリコン基
板1上に低濃度のP型エピタキシャル層2を成長させて
いる。このP型エピタキシャル層2に高濃度N型ドレイ
ン3と低濃度N型の拡散層4、高濃度N型ソース5を形
成し、素子分離および寄生容量低減及びゲートの絶縁の
ためのシリコン酸化膜6と、ゲート電極7と、ドレイン
電極8と、ソース電極9とを有している。ここでソース
電極9を裏面の高濃度シリコン基板1に接続させるた
め、エピタキシャル層2にトレンチ溝を形成し、そこに
化学気相成長法によって形成したタングステンなどの高
融点金属10を埋め込む。
The present invention will be described below with reference to the drawings. Figure 1
FIG. 3 is a sectional view of an N-channel lateral field effect transistor according to a first embodiment of the present invention. A low-concentration P-type epitaxial layer 2 is grown on a high-concentration P-type silicon substrate 1. A high-concentration N-type drain 3, a low-concentration N-type diffusion layer 4, and a high-concentration N-type source 5 are formed on the P-type epitaxial layer 2, and a silicon oxide film 6 for element isolation and parasitic capacitance reduction and gate insulation is formed. , A gate electrode 7, a drain electrode 8 and a source electrode 9. Here, in order to connect the source electrode 9 to the high-concentration silicon substrate 1 on the back surface, a trench groove is formed in the epitaxial layer 2 and a refractory metal 10 such as tungsten formed by chemical vapor deposition is embedded therein.

【0011】高融点金属10はシリコンの高濃度状態の
抵抗率よりも3桁程度低いため断面積を著しく減少させ
ることができ、しかも基板の高濃層のせり上がりがない
のでエピタキシャル層2の濃度が高濃度化せず、ドレイ
ン耐圧が保たれる。このため電源電圧を高くすることが
可能である。
Since the refractory metal 10 is lower than the resistivity of silicon in a high concentration state by about three orders of magnitude, the cross-sectional area can be remarkably reduced, and since the high-concentration layer of the substrate does not rise, the concentration of the epitaxial layer 2 is high. However, the drain breakdown voltage is maintained without increasing the concentration. Therefore, the power supply voltage can be increased.

【0012】図2は本発明の第2実施例を示す断面図で
ある。縦型電界効果型トランジスタの集積化のため、シ
リコン基板13とエピタキシャル層14の間に埋め込み
層11が形成されている。縦型電界効果型トランジスタ
とするためのベース領域12がソース領域5の周囲に形
成され、埋め込み層11に開口するトレンチ溝をエピタ
キシャル層14に形成し、そこに化学気相成長法によっ
て形成したタングステンなどの高融点金属10を埋め込
み、ドレインの寄生抵抗を低減する。
FIG. 2 is a sectional view showing a second embodiment of the present invention. A buried layer 11 is formed between the silicon substrate 13 and the epitaxial layer 14 for integration of the vertical field effect transistor. A base region 12 for forming a vertical field effect transistor is formed around the source region 5, and a trench groove opening to the buried layer 11 is formed in the epitaxial layer 14, and tungsten is formed therein by a chemical vapor deposition method. A refractory metal 10 such as is embedded to reduce the parasitic resistance of the drain.

【0013】[0013]

【発明の効果】横型電界効果型トランジスタの場合、気
相成長法の場合の高温の熱処理が加えられず、低温で処
理されるため高濃度シリコン基板のせり上がりが起き
ず、高耐圧および低しきい値動作のトランジスタが実現
できる。また横型、縦型両電界効果型トランジスタとも
高濃度拡散層にくらべ基板および埋め込み層に接続する
接続領域の断面積を著しく低減できるという効果を有す
る。
In the case of the lateral field effect transistor, the high temperature heat treatment in the case of the vapor phase growth method is not applied and it is processed at a low temperature, so that the high-concentration silicon substrate does not rise and the high breakdown voltage and the low breakdown voltage are lowered. A threshold value transistor can be realized. Further, both the lateral and vertical field effect transistors have the effect of significantly reducing the cross-sectional area of the connection region connected to the substrate and the buried layer as compared with the high-concentration diffusion layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例を示す断面図である。FIG. 1 is a cross-sectional view showing a first embodiment.

【図2】第2実施例を示す断面図である。FIG. 2 is a sectional view showing a second embodiment.

【図3】横型電解効果型トランジスタの高濃度拡散層を
形成した場合の濃度分布図である。
FIG. 3 is a concentration distribution diagram in the case where a high concentration diffusion layer of a lateral field effect transistor is formed.

【図4】従来例の断面図である。FIG. 4 is a sectional view of a conventional example.

【図5】従来例の断面図である。FIG. 5 is a sectional view of a conventional example.

【図6】従来例の断面図である。FIG. 6 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 P型高濃度シリコン基板 2 P型エピタキシャル層 3 ドレイン 4 低濃度N型拡散層 5 ソース 6 シリコン酸化膜 7 ゲート電極 8 ドレイン電極 9 ソース電極 10 タングステン 11 埋め込み層 12 ベース領域 13 シリコン基板 14 エピタキシャル層 15 高濃度拡散層 1 P-type high-concentration silicon substrate 2 P-type epitaxial layer 3 Drain 4 Low-concentration N-type diffusion layer 5 Source 6 Silicon oxide film 7 Gate electrode 8 Drain electrode 9 Source electrode 10 Tungsten 11 Buried layer 12 Base region 13 Silicon substrate 14 Epitaxial layer 15 High concentration diffusion layer

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/784 Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 29/784

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に成長したエピタキシャル
層と、エピタキシャル層の表面部に形成されたソース領
域及びドレイン領域と、ゲート電極と、ソース領域とド
レイン領域にそれぞれ接続したソース電極及びドレイン
電極とを備えた横型の電界効果型トランジスタにおい
て、エピタキシャル層を貫通し、ソース電極と半導体基
板とを接続する連絡領域を高融点金属で形成したことを
特徴とする横型の電界効果トランジスタ。
1. An epitaxial layer grown on a semiconductor substrate, a source region and a drain region formed on the surface of the epitaxial layer, a gate electrode, and a source electrode and a drain electrode connected to the source region and the drain region, respectively. A lateral field-effect transistor comprising: a contact region penetrating an epitaxial layer and connecting a source electrode and a semiconductor substrate with a refractory metal.
【請求項2】 半導体基板上に成長したエピタキシャル
層と、エピタキシャル層の表面部に形成されたソース領
域及びドレイン領域と、ゲート電極と、ソース領域とド
レイン領域にそれぞれ接続したソース電極及びドレイン
電極とを備えた横型の電界効果型トランジスタの製造方
法において、エピタキシャル層を貫通し、ソース電極と
半導体基板とを接続する連絡領域用トレンチを形成する
工程と、該トレンチを高融点金属の化学気相成長法で埋
める工程とを備えたことを特徴とする横型の電界効果ト
ランジスタの製造方法。
2. An epitaxial layer grown on a semiconductor substrate, a source region and a drain region formed on the surface of the epitaxial layer, a gate electrode, and a source electrode and a drain electrode connected to the source region and the drain region, respectively. In a method of manufacturing a lateral field effect transistor including: a step of forming a trench for a connection region that penetrates an epitaxial layer and connects a source electrode and a semiconductor substrate; and chemical vapor deposition of a refractory metal in the trench. A method of manufacturing a lateral field effect transistor, comprising:
【請求項3】 半導体基板上に成長しドレイン領域とし
て機能するエピタキシャル層と、半導体基板とエピタキ
シャル層との界面に設けられた埋込層と、エピタキシャ
ル層の表面部に設けられたベース領域と、ベース領域の
表面部に設けられたソース領域とを備えた縦型の電界効
果トランジスタにおいて、エピタキシャル層を貫通し埋
込層とドレイン電極を接続する連絡領域を高融点金属で
形成したことを特徴とした縦型の電界効果トランジス
タ。
3. An epitaxial layer grown on a semiconductor substrate and functioning as a drain region, a buried layer provided at an interface between the semiconductor substrate and the epitaxial layer, and a base region provided on a surface portion of the epitaxial layer. In a vertical field effect transistor having a source region provided on the surface of a base region, a contact region penetrating an epitaxial layer and connecting a buried layer and a drain electrode is formed of a refractory metal. Vertical type field effect transistor.
JP4040321A 1992-01-30 1992-01-30 Field-effect transistor and its manufacture Pending JPH05218321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4040321A JPH05218321A (en) 1992-01-30 1992-01-30 Field-effect transistor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4040321A JPH05218321A (en) 1992-01-30 1992-01-30 Field-effect transistor and its manufacture

Publications (1)

Publication Number Publication Date
JPH05218321A true JPH05218321A (en) 1993-08-27

Family

ID=12577351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4040321A Pending JPH05218321A (en) 1992-01-30 1992-01-30 Field-effect transistor and its manufacture

Country Status (1)

Country Link
JP (1) JPH05218321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078765B2 (en) 2003-03-31 2006-07-18 Renesas Technology Corp. Semiconductor device and a method of manufacturing the same
US7176520B2 (en) 2003-09-05 2007-02-13 Renesas Technology Corp. Semiconductor device and a method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078765B2 (en) 2003-03-31 2006-07-18 Renesas Technology Corp. Semiconductor device and a method of manufacturing the same
US7388256B2 (en) 2003-03-31 2008-06-17 Renesas Technology Corp. Semiconductor device and a method of manufacturing the same
US7176520B2 (en) 2003-09-05 2007-02-13 Renesas Technology Corp. Semiconductor device and a method of manufacturing the same
US7791131B2 (en) 2003-09-05 2010-09-07 Renesas Electronics Corp. Semiconductor device and a method of manufacturing the same
US7994567B2 (en) 2003-09-05 2011-08-09 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6987303B2 (en) Silicon-controlled rectifier structures on silicon-on insulator with shallow trench isolation
US5055896A (en) Self-aligned LDD lateral DMOS transistor with high-voltage interconnect capability
JP3130323B2 (en) MOSFET having substrate source contact and method of manufacturing the same
US7485941B2 (en) Cobalt silicide schottky diode on isolated well
US6191457B1 (en) Integrated circuit structure having a bipolar transistor with a thick base oxide and a field effect transistor with a thin gate oxide
TWI408779B (en) Method of forming a semiconductor device and structure therefor
US7544557B2 (en) Gate defined Schottky diode
US20070007593A1 (en) Metal-oxide-semiconductor device with enhanced source electrode
US20040080883A1 (en) Compensated-well electrostatic discharge protection devices
US6570229B1 (en) Semiconductor device
US4929991A (en) Rugged lateral DMOS transistor structure
US6261932B1 (en) Method of fabricating Schottky diode and related structure
US8115273B2 (en) Deep trench isolation structures in integrated semiconductor devices
JPH07283414A (en) Mos-type semiconductor device
US4287526A (en) Insulated gate field effect transistor
US8269274B2 (en) Semiconductor device and method for fabricating the same
US6153473A (en) Method of symmetrically implanted punch-through stopper for a rugged DMOS power device
JP3493681B2 (en) Buried avalanche diode
US5405789A (en) Method of manufacturing a semiconductor device whereby a laterally bounded semiconductor zone is formed in a semiconductor body in a self-aligning manner
JPH11354627A (en) Semiconductor integrated circuit and its manufacture
JP2000068372A (en) Semiconductor device and manufacture thereof
JPH05218321A (en) Field-effect transistor and its manufacture
KR100482950B1 (en) Semiconductor device and manufacturing method thereof
JP3402244B2 (en) Semiconductor device including lateral MOS element
US6828651B2 (en) Integrated structure