JPH05218319A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05218319A
JPH05218319A JP4056401A JP5640192A JPH05218319A JP H05218319 A JPH05218319 A JP H05218319A JP 4056401 A JP4056401 A JP 4056401A JP 5640192 A JP5640192 A JP 5640192A JP H05218319 A JPH05218319 A JP H05218319A
Authority
JP
Japan
Prior art keywords
region
base
film
emitter
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4056401A
Other languages
Japanese (ja)
Inventor
Hideo Akahori
英郎 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP4056401A priority Critical patent/JPH05218319A/en
Publication of JPH05218319A publication Critical patent/JPH05218319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To realize a high-speed transistor by forming an intrinsic base region of an npn transistor after a high temperature heat treatment process so that shallow base and emitter regions can be formed, whereby a side wall of the emitter region can be formed into a double structure. CONSTITUTION:Only a Si3N4 film 17 to be used as intrinsic base and emitter regions 20 of an npn transistor is removed after a thermal oxidation treatment, and an intrinsic base 8 having an electical continuity to a graft base region 7 is formed by introducing p-type impurities into the regions from which the film was removed. An SiO2 film 13 located above regions to be used as a collector 16 of the npn transistor and a base 26 of a pnp transistor, a p<+>-type polysilicon 6, and a Si3N4 film 27 are sequentially removed. An emitter region 9 and a collector region 6 of the npn transistor and a base extraction region 61 of the pnp transistor are formed by introducing impurities into the regions from which the films were removed. An isolation film between the base region and the emitter region is formed into a double structure made of a SiO2 film 13 and a Si3N4 film 27, and hence it is possible to reduce a leakage current and an emitter-base junction capacitance. Therefore, shallow base and emitter regions can be formed, and a high-speed transistor can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微細化、高速度化を図
った半導体装置、特に高周波トランジスタを中心とした
バイポーラ型トランジスタの製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device which is miniaturized and has a high speed, and more particularly to a method of manufacturing a bipolar transistor centering on a high frequency transistor.

【0002】[0002]

【従来の技術】従来から高周波トランジスタは、ベース
領域の幅と深さを縮小し、コレクターベース接合容量を
減少することと、浅いベース・エミッタ拡散層を形成す
ることすなわち、シャロー化により、高速度化が進めら
れてきた。しかしながら、NPN、PNPの両トランジ
スタを同一基板内に製造しようとすると、例えばNPN
トランジスタ(NPNTr)を縦型にして高速にして
も、PNPトランジスタ(PNPTr)は横型になり、
PNPTrの高速性が損なわれてしまう。図8から図1
2は縦型NPNTrと横型PNPTrの公知で基本的な
製造工程の一例である。すなわち、図8は周知の技術に
よりP形シリコン基板1に、n+埋込み層4を形成した
後、N形エピタキシャル層2を形成し、素子分離のため
のP形拡散層5とNPNTrの補償コレクタ領域である
n+形拡散層6と、PNPTrの補償ベース領域である
n+形拡散層61とを熱拡散等により形成する。さらに
NPNTrのベース領域7とPNPTrのエミッタ領域
71、コレクタ領域72にP形拡散層を同様の方法によ
り形成する。この際PNPTrのベース幅62は、横型
であるため、フォトエッチング技術の能力に左右され、
サブミクロンの形成は不可能である。その後、全面にノ
ンドープトポリシリコン16を堆積し、いわゆるLOC
OS法により、不要部分のノンドープトポリシリコンを
酸化し、酸化シリコン膜(Si2膜)13にする。次に
図9では、窒化シリコン膜(Si34膜)17、Si2
膜を順次堆積し、Si2膜については、NPNTrのエ
ミッタ、コレクタ形成予定部分とPNPTrのベース形
成予定部分のSi2膜18のみを残存させ、他の部分を
選択除去する。このSi2膜18を不純物拡散マスクに
してノンドープトポリシリコン16にボロン等のP形不
純物をイオン注入法によって導入して、p+形ポリシリ
コン12とする。この結果、Si2膜18直下のノンド
ープトポリシリコン16はノンドープのままとなる。次
に図10では、Si34膜17をウエットエッチングに
より除去する。この際、Si2膜18直下のSi 34
のみが残存するが、オーバーエッチぎみにエッチングを
行ない、いわゆるサイドエッチングにより、Si2膜1
8よりも細くする。そこで、p+ポリシリコン12より
ノンドープトポリシリコン16の方がエッチ速度の速い
エッチング液を用いてノンドープトポリシリコン16を
エッチングする。するとエミッタパターンのエッヂ部分
からノンドープトポリシリコン16の一部がエッチング
され、p+ポリシリコン12とノンドープトポリシリコ
ン16が分離される。さらに、図11では、Si2膜1
8を除去した後、熱酸化を行ない、ノンドープトポリシ
リコン16、P+ポリシリコン12、及びシリコン基板
2のNPNTrのベース形成領域の露出部分をSi2
13(絶縁膜)とする。そして、Si34膜17を除去
する。最後に、図12では、ノンドープポリシリコン1
6にヒ素(As)等のN形不純物を熱拡散等の方法によ
り、n+ポリシリコン15にして、これを不純物源にし
て、エミッタ領域9を形成する。そして、NPNTrの
ベース電極42、エミッタ電極41、コレクタ電極4
3、PNPTrのベース電極44、エミッタ電極45、
コレクタ電極46を形成する。
2. Description of the Related Art Conventionally, a high-frequency transistor has a high speed by reducing the width and depth of the base region, reducing the collector-base junction capacitance, and forming a shallow base-emitter diffusion layer, that is, by forming a shallow region. Has been promoted. However, if both NPN and PNP transistors are manufactured in the same substrate, for example, NPN
Even if the transistor (NPNTr) is made vertical and high speed, the PNP transistor (PNPTr) becomes horizontal,
The high speed of PNPTr will be impaired. 8 to 1
Reference numeral 2 is an example of a known and basic manufacturing process of the vertical NPTr and the horizontal PNPTr. That is, FIG. 8 shows a P-type silicon substrate 1 formed by a well-known technique, an n + buried layer 4 and then an N-type epitaxial layer 2, and a P-type diffusion layer 5 for element isolation and a compensation collector of NPNTr. An n + type diffusion layer 6 which is a region and an n + type diffusion layer 61 which is a compensation base region of the PNPTr are formed by thermal diffusion or the like. Further, a P-type diffusion layer is formed in the base region 7 of the NPNTr, the emitter region 71 and the collector region 72 of the PNPTr by the same method. At this time, since the base width 62 of the PNPTr is horizontal, it depends on the capability of the photoetching technique.
Submicron formation is not possible. After that, non-doped polysilicon 16 is deposited on the entire surface and a so-called LOC is formed.
The OS method oxidizes non-doped polysilicon unnecessary portions, to the silicon oxide film (S i O 2 film) 13. Next, referring to FIG. 9, a silicon nitride film (S i3 N 4 film) 17, S i O 2
Film are sequentially deposited, for S i O 2 film, the emitter of NPNTr, to leave only S i O 2 film 18 of the base portion reserved for formation of the collector formation area and PNPTr, choose remove other portions. The P-type impurity such as boron The S i O 2 film 18 on the non-doped polysilicon 16 in the impurity diffusion mask is introduced by ion implantation, the p + -type polysilicon 12. Consequently, non-doped polysilicon 16 immediately below S i O 2 film 18 remains non-doped. Next, in FIG. 10, the S i3 N 4 film 17 is removed by wet etching. At this time, only the S i 3 N 4 film immediately below the S i O 2 film 18 remains, but etching is performed to the extent of overetching, so-called side etching, whereby the S i O 2 film 1 is formed.
Make it thinner than 8. Therefore, the non-doped polysilicon 16 is etched by using an etching solution in which the non-doped polysilicon 16 has a faster etching rate than the p + polysilicon 12. Then, a part of the non-doped polysilicon 16 is etched from the edge portion of the emitter pattern, and the p + polysilicon 12 and the non-doped polysilicon 16 are separated. Further, in FIG. 11, S i O 2 film 1
After 8 was removed, subjected to thermal oxidation, non-doped polysilicon 16, P + polysilicon 12, and the exposed portions of the base forming region of NPNTr the silicon substrate 2 S i O 2 film 13 and (insulating film). Then, the S i3 N 4 film 17 is removed. Finally, in FIG. 12, undoped polysilicon 1
An N-type impurity 15 such as arsenic (As) is formed into n + polysilicon 15 by a method such as thermal diffusion, and this is used as an impurity source to form an emitter region 9. Then, the base electrode 42, the emitter electrode 41, and the collector electrode 4 of the NPNTr.
3, PNPTr base electrode 44, emitter electrode 45,
The collector electrode 46 is formed.

【0003】[0003]

【発明が解決しようとする課題】このように、従来法に
よる製造方法では、NPNTrの場合ベース拡散を工程
の初期に行なわなければならず、その後の熱処理によ
り、拡散が進行し、ベース拡散が深く形成されるため、
十分な高速性が得られなかった。また、ベース、エミッ
タ間が薄いSi2膜であるため、ベースエミッタ間に、
リーク電流が発生する可能性があるという欠点があっ
た。また同時に製造されるPNPTrは横型であるた
め、NPNTrと同様、ベース幅が広くなり、高速性が
得られないという欠点があった。本発明は、上記欠点を
解消し、NPNTrの場合は、微細なベース領域内にサ
ブミクロン幅及び深さを備えた超微細なエミッタ領域を
形成し、寄生容量の少ないTrと、PNPTrは、NP
NTrと同様の縦型構造とし、高速なTrの製造方法を
提供することを目的とする。
As described above, in the manufacturing method according to the conventional method, in the case of NPNTr, the base diffusion must be performed at the beginning of the process, and the subsequent heat treatment promotes the diffusion to deepen the base diffusion. Because it is formed
It was not possible to obtain sufficient speed. The base, for emitter is a thin S i O 2 film, the base-emitter,
There is a drawback that a leak current may occur. Further, since the PNPTr manufactured at the same time is a horizontal type, there is a drawback that the base width is wide and the high speed cannot be obtained, like the NPNTr. The present invention solves the above-mentioned drawbacks, and in the case of NPNTr, an ultrafine emitter region having a submicron width and depth is formed in a fine base region, and Tr with a small parasitic capacitance and PNPTr are NP
It is an object to provide a high-speed Tr manufacturing method with a vertical structure similar to that of NTr.

【0004】[0004]

【課題を解決するための手段】本発明は、上記目的を達
成するため、NPNTrの真性ベース領域の形成を製造
工程の後期(高温熱処理工程後)に行なうことにより、
浅いベース領域及びエミッタ領域を形成し、またエミッ
タ領域の側壁をSi2膜とSi34膜の二重構造とする
ことにより、ベース・エミッタ接合容量を低減でき、な
おかつ、ベース・エミッタ間のリーク電流を減少できる
構造としたものである。また同時に、ベース幅の狭い縦
型PNPTrをも製造するものである。
According to the present invention, in order to achieve the above object, the formation of the intrinsic base region of the NPNTr is performed in the latter stage of the manufacturing process (after the high temperature heat treatment process).
To form a shallow base region and the emitter region, also by the side walls of the emitter region and the double structure of S i O 2 film and S i3 N 4 film, it is possible to reduce the base-emitter junction capacitance, yet, the base-emitter The structure is such that the leak current between them can be reduced. At the same time, a vertical PNPTr having a narrow base width is also manufactured.

【0005】[0005]

【作用】その結果、Trの微細化と同時に、寄生容量
(ベース・エミッタ接合容量)と、ベース・エミッタ間
のリーク電流を減少させることが可能となり、高速度の
NPNTrと、高速の縦型のPNPTrを同一基板上に
製造することが可能となる。
As a result, it is possible to reduce the parasitic capacitance (base-emitter junction capacitance) and the leak current between the base and emitter simultaneously with the miniaturization of Tr, and it is possible to reduce the high speed NPNTr and the high speed vertical type. It is possible to manufacture the PNPTr on the same substrate.

【0006】[0006]

【実施例】以下、本発明の実施例を参照して、詳細に説
明する。図1から図7は、本発明の実施例を説明するた
めの各工程における断面図である。これらの図におい
て、左側がPNPTr右側がNPNTrについての説明
である。図1は、周知の技術により、P形シリコン基板
1の上に、N形埋込み層4と、P形埋込み層5、51、
を夫々形成する。この時のP形埋込み層51は、N形埋
込み層4より高濃度で形成する。その後、N形エピタキ
シャル層2を形成し、この上に例えば、CVD法による
i34膜等の耐酸化性かつ耐シリコンエッチング性膜
を全面に堆積した後、フォトエッチング技術によりNP
NTrのベース・コレクタ、PNPTrのベース、エミ
ッタ、コレクタ電極の設置予定領域及び素子分離領域上
の上記Si34膜を除去する。そして、残存するSi34
膜17を、エッチングマスクにしてN形エピタキシャル
層2をエッチングする。この時、素子分離領域と、PN
PTrのコレクタ領域10は、深くエッチングする。次
に図2では、上記Si34膜17の存在する状態で熱酸
化を行い絶縁膜であるSi2膜3を形成する。この際、
熱酸化を十分行なうとSi34膜17の下のN形エピタ
キシャル層2もSi2膜3となる。次に図3では、この
状態で、ステップカバレジの悪い付着物の堆積を伴う反
応性イオンエッチングとか、方向性の良いドライエッチ
ングを行なうと、図2で説明したSi34膜17の下の
i2膜3だけが残る。このエッチング法は異方性であ
るため、エッチング溝の側壁は、ほぼ垂直となる。さら
に、この状態で例えば絶縁膜であるCUD法によるSi3
4膜27を全面に堆積する。次に図4では、NPNT
rのコレクタ電極16、PNPTrのベース電極26形
成予定領域を、フォトレジスト等の耐エッチング材を選
択的に形成し、図4において説明した異方性エッチング
を行なうと、先のエッチング溝の側壁Si2膜3の側壁
のSi34膜27のみが残り、平坦部のSi34膜27が
除去される。この時、上記NPNTrのコレクタ電極1
6、PNPTrのベース電極26形成予定領域は、平坦
部のSi34膜27は残る。この側壁Si34膜27と図
3で説明した側壁Si2膜3が、NPNTrのエミッタ
領域とベース引き出し電極との分離膜となる。さらに、
p+形ポリシリコンをCVD法により全面に堆積する。
この時のp+形ポリシリコンは先のエッチング溝の深さ
の二倍以上の厚さを堆積する。こうすると堆積後は、ほ
とんど段差がなくなり、表面は、ほぼ平坦になる。そし
て、この状態で等方性エッチングを行ない、エッチング
溝部分にのみp+形ポリシリコン12を残存させる。こ
の方法は、いわゆるエッチバック法と呼ばれるものであ
る。さらに、この状態で熱酸化を行なうと、p+形ポリ
シリコン12の露出部分が酸化され、Si2膜13が形
成される。この熱酸化処理の間に、p+形ポリシリコン
12からP形不純物がN形エピタキシャル層2に拡散さ
れ、NPNTrでは、グラフトベース領域7が、PNP
Trでは、P形埋込み層51と接続するコレクタ層7
1、及びエミッタ層72が形成され、また素子分離領域
ではP形埋込み層5と接続して、素子分離領域が完成す
る。この際、NPNTrのコレクタ部16とPNPTr
のベース部26では、Si34膜27が拡散ストッパー
となり、不純物は拡散されない。次に図5ではNPNT
rの真性ベース、エミッタ形成予定領域20のSi34
膜17のみを除去し、この開口からP形不純物を導入し
て、グラフトベース領域7と導通する真性ベース領域8
をイオン注入法等により形成する。次にNPNTrのコ
レクタ16、PNPTrのベース26形成予定領域上の
i2膜13、p+形ポリシリコン6、Si34膜27を
順次除去する。さらに図6では、この状態で例えばイオ
ン注入法でN形不純物を導入すると、NPNTrのエミ
ッタ領域9と、コレクタ領域6、及びPNPTrのベー
ス引き出し領域61が形成できる。さらに、PNPTr
のエミッタ、コレクタ部のSi2膜13を開口する。さ
らに、NPNTrのグラフトベース上のP形ポリシリコ
ン6の上のSi2膜13の一部を開口する。以上で、N
PNPNPの両トランジスタのベース、エミッタ、コレ
クタ領域の形成を終了した。最後に、図7では、アルミ
ニウム等の電極材料を堆積して、NPNTrのエミッタ
電極41、ベース電極42、コレクタ電極43をPNP
Trのエミッタ電極45、コレクタ電極46、ベース電
極44、を形成する。なお、NPNTrのエミッタ電極
41と、コレクタ電極43とPNPTrのベース電極4
4をn+形ポリシリコンで形成し、これを拡散源として
上記領域を形成してもよい。
Embodiments will be described in detail below with reference to embodiments of the present invention. 1 to 7 are cross-sectional views in each process for explaining an embodiment of the present invention. In these figures, the left side is the PNPTr and the right side is the description about the NPNTr. FIG. 1 shows an N-type buried layer 4 and P-type buried layers 5 and 51, which are formed on a P-type silicon substrate 1 by a known technique.
Are formed respectively. At this time, the P-type buried layer 51 is formed with a higher concentration than the N-type buried layer 4. After that, an N type epitaxial layer 2 is formed, and an oxidation resistant and silicon etching resistant film such as a Si 3 N 4 film is deposited on the entire surface by a CVD method, and then NP is applied by a photo etching technique.
The S i3 N 4 film on the base / collector of the NTr, the base / emitter of the PNPTr, the region where the collector electrode is to be installed and the element isolation region is removed. And the remaining S i3 N 4
The N type epitaxial layer 2 is etched using the film 17 as an etching mask. At this time, the element isolation region and the PN
The collector region 10 of the PTr is deeply etched. Next, in FIG. 2, thermal oxidation is performed in the presence of the S i3 N 4 film 17 to form a S i O 2 film 3 as an insulating film. On this occasion,
When the thermal oxidation is sufficiently performed, the N-type epitaxial layer 2 under the S i3 N 4 film 17 also becomes the S i O 2 film 3. Next, in FIG. 3, in this state, if reactive ion etching accompanied by deposition of deposits with poor step coverage or dry etching with good directionality is performed, the S i3 N 4 film under the film 17 described in FIG. only S i O 2 film 3 is left. Since this etching method is anisotropic, the side walls of the etching groove are almost vertical. Further, in this state, for example, S i3 by the CUD method which is an insulating film
The N 4 film 27 is deposited on the entire surface. Next, in FIG. 4, NPNT
When the anti-etching material such as photoresist is selectively formed in the region where the collector electrode 16 of r and the base electrode 26 of the PNPTr are to be formed, and the anisotropic etching described in FIG. Only the S i3 N 4 film 27 on the sidewall of the i O 2 film 3 remains, and the S i3 N 4 film 27 on the flat portion is removed. At this time, the collector electrode 1 of the NPNTr
6. In the PNPTr base electrode 26 formation planned region, the Si 3 N 4 film 27 in the flat portion remains. The side wall S i3 N 4 film 27 and the side wall S i O 2 film 3 described with reference to FIG. 3 serve as a separation film between the emitter region of the NPNTr and the base extraction electrode. further,
P + type polysilicon is deposited on the entire surface by the CVD method.
At this time, the p + -type polysilicon is deposited with a thickness that is more than twice the depth of the etching groove. In this way, after the deposition, there is almost no step, and the surface becomes almost flat. Then, isotropic etching is performed in this state to leave the p + -type polysilicon 12 only in the etching groove portion. This method is a so-called etch back method. Furthermore, the thermal oxidation is performed in this state, the exposed portion of the p + -type polysilicon 12 is oxidized, S i O 2 film 13 is formed. During this thermal oxidation process, the P-type impurities are diffused from the p + -type polysilicon 12 into the N-type epitaxial layer 2, and in the NPNTr, the graft base region 7 becomes the PNP.
In Tr, the collector layer 7 connected to the P-type buried layer 51
1 and the emitter layer 72 are formed, and the element isolation region is completed by connecting to the P-type buried layer 5 in the element isolation region. At this time, the collector section 16 of the NPNTr and the PNPTr
In the base portion 26, the Si 3 N 4 film 27 serves as a diffusion stopper, and the impurities are not diffused. Next, in FIG. 5, NPNT
Intrinsic base of r, S i3 N 4 of the emitter formation planned region 20
Only the film 17 is removed, P-type impurities are introduced from this opening, and the intrinsic base region 8 that is electrically connected to the graft base region 7
Are formed by an ion implantation method or the like. Then sequentially removing S i O 2 film 13, p + form polysilicon 6, S i3 N 4 film 27 on the base 26 forming area of the collector 16, PNPTr of NPNTr. Further, in FIG. 6, when N-type impurities are introduced in this state by, for example, an ion implantation method, the emitter region 9 of the NPNTr, the collector region 6, and the base extraction region 61 of the PNPTr can be formed. Furthermore, PNPTr
Opening the emitter, the S i O 2 film 13 of the collector unit. Further, an opening part of S i O 2 film 13 on the P-type polysilicon 6 on the graft base NPNTr. With the above, N
The formation of the base, emitter and collector regions of both PNPNP transistors was completed. Finally, in FIG. 7, an electrode material such as aluminum is deposited, and the emitter electrode 41, the base electrode 42, and the collector electrode 43 of the NPNTr are connected to the PNP.
An emitter electrode 45, a collector electrode 46, and a base electrode 44 of Tr are formed. The emitter electrode 41 of the NPNTr, the collector electrode 43, and the base electrode 4 of the PNPTr
4 may be formed of n + type polysilicon, and this region may be formed by using this as a diffusion source.

【0007】[0007]

【発明の効果】以上説明したように、NPNTrを製造
すると、ベース領域とエミッタ領域の分離膜が、Si2
膜と、Si34膜の二重構造であるため、リーク電流が
少なく、また、エミッタ・ベース接合容量(CEB)が小
さくでき、素子分離領域も、エッチングによりエピタキ
シャル層を薄くしているため、コレクタ・基板接合容量
(Csub)が小さくできる。また、真性ベース形成以後
に、熱酸化等の高温熱処理工程を用いないので、浅いベ
ース、エミッタ領域が形成でき、いわゆるシャロー化が
達成できる。その結果、高速トランジスタが製造でき
る。さらに、同時に、縦型のベース幅の狭いPNPTr
が製造でき、高速性が増す。
As described above, according to the present invention, when producing NPNTr, separation membrane of the base region and the emitter region, S i O 2
For film and a double structure of S i3 N 4 film, low leakage current and the emitter-base junction capacitance (CEB) can be reduced, element isolation region, because of the thin epitaxial layer by etching The collector-substrate junction capacitance (Csub) can be reduced. Further, since a high temperature heat treatment process such as thermal oxidation is not used after the formation of the intrinsic base, shallow base and emitter regions can be formed and so-called shallowing can be achieved. As a result, a high speed transistor can be manufactured. Furthermore, at the same time, the vertical PNPTr with a narrow base width
Can be manufactured, and the speed is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の断面図。FIG. 1 is a sectional view of an embodiment of the present invention.

【図2】本発明の実施例の断面図。FIG. 2 is a sectional view of an embodiment of the present invention.

【図3】本発明の実施例の断面図。FIG. 3 is a sectional view of an embodiment of the present invention.

【図4】本発明の実施例の断面図。FIG. 4 is a sectional view of an embodiment of the present invention.

【図5】本発明の実施例の断面図。FIG. 5 is a sectional view of an embodiment of the present invention.

【図6】本発明の実施例の断面図。FIG. 6 is a sectional view of an embodiment of the present invention.

【図7】本発明の実施例の断面図。FIG. 7 is a sectional view of an embodiment of the present invention.

【図8】従来例の断面図。FIG. 8 is a sectional view of a conventional example.

【図9】従来例の断面図。FIG. 9 is a sectional view of a conventional example.

【図10】従来例の断面図。FIG. 10 is a sectional view of a conventional example.

【図11】従来例の断面図。FIG. 11 is a sectional view of a conventional example.

【図12】従来例の断面図。FIG. 12 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 P形Si基板 2 N形エピタキシャル層 3、13 Si2膜 4 N形埋込層 5、51 P形埋込層 6 補償コレクタ領域 7 グラフトベース領域 8 真性ベース領域 9 エミッタ領域 10 PNPTrコレクタ形成予定領域 12 p+形ポリシリコン 15 n+ポリシリコン 16 ノンドープトポリシリコン 17、27 Si34膜 20 真性ベース、エミッタ形成領域 72 PNPTrエミッタ領域 41、42、43、44、45、46 アルミ電極 61 PNPTrベース領域 71 PNPTrコレクタ領域1 P-type S i substrate 2 N type epitaxial layer 3, 13 S i O 2 film 4 N-type buried layer 5 and 51 P-type buried layer 6 compensation collector region 7 graft base region 8 intrinsic base region 9 emitter region 10 PNPTr Collector formation planned region 12 p + type polysilicon 15 n + polysilicon 16 undoped polysilicon 17, 27 Si 3 N 4 film 20 intrinsic base, emitter formation region 72 PNPTr emitter region 41, 42, 43, 44, 45, 46 Aluminum electrode 61 PNPTr base region 71 PNPTr collector region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1導電形の半導体基板の第1主面に、
第2導電形の埋込みコレクタ層と、これをとり囲むよう
に第1導電形の埋込み素子分離層を形成し、それと同時
に上記半導体基板の第2主面に、第2導電形の素子分離
層を形成し、その層の内側に第1導電形の埋込みコレク
タ層を形成し、それをとり囲むように第1導電形の埋込
み素子分離層を形成し、第2導電形のエピタキシャル層
を形成する工程と、上記エピタキシャル層上の第1主面
のベース引き出し電極、コレクタ補償領域、第2主面の
ベースエミッタ、コレクタ領域、及びそれらを囲む素子
分離領域以外に、耐シリコンエッチング性かつ、耐酸化
性を持つ膜を形成し、この状態で上記エピタキシャル層
を異方性エッチングを行ない、エッチング溝を形成し、
この際、第2エピタキシャル主面のコレクタ領域と、素
子分離領域のエッチング溝は、他のエッチング溝より深
く形成し、上記エッチング溝の側壁に、シリコン酸化膜
とシリコン窒化膜を形成する工程と、上記第1エピタキ
シャル主面の上記コレクタ補償領域と、上記第2エピタ
キシャル主面のベース領域以外のエッチング溝内に第1
導電形のエピタキシャル層とオーミック接続する電極を
形成する工程と、上記電極の露出部分を酸化し、素子分
離領域と、第1エピタキシャル主面内にグラフトベー
ス、第2エピタキシャル主面内に、エミッタ、ベース領
域を形成する工程と、上記グラフトベース領域と隣接す
る上記耐シリコンエッチング、耐酸化性膜を除去し、そ
の開口部に上記グラフトベース領域と導通する第1導電
形の不純物を導入して、真性ベース領域を形成し、上記
第1エピタキシャル主面内のコレクタ補償領域と、第2
エピタキシャル主面内のベース、エミッタコレクタ領域
上に開口を形成する工程と、上記、第1、第2エピタキ
シャル主面内のベース、エミッタ、コレクタ領域とオー
ミック接続する電極を夫々形成することを含むことを特
徴とする半導体装置の製造方法。
1. A first major surface of a semiconductor substrate of a first conductivity type,
A second conductivity type buried collector layer and a first conductivity type buried element isolation layer are formed so as to surround the second conductivity type buried collector layer, and at the same time, a second conductivity type element isolation layer is formed on the second main surface of the semiconductor substrate. Forming, a buried collector layer of the first conductivity type is formed inside the layer, a buried element isolation layer of the first conductivity type is formed so as to surround it, and an epitaxial layer of the second conductivity type is formed. Aside from the base extraction electrode on the first main surface on the epitaxial layer, the collector compensation region, the base emitter on the second main surface, the collector region, and the element isolation region surrounding them, silicon etching resistance and oxidation resistance. Film is formed, and in this state, the above-mentioned epitaxial layer is anisotropically etched to form an etching groove,
At this time, the collector region on the second epitaxial main surface and the etching trench in the element isolation region are formed deeper than the other etching trenches, and a silicon oxide film and a silicon nitride film are formed on the side wall of the etching trench. A first portion is formed in the etching groove other than the collector compensation region of the first epitaxial main surface and the base region of the second epitaxial main surface.
A step of forming an electrode that makes ohmic contact with the conductive type epitaxial layer, oxidizing the exposed portion of the electrode to form an element isolation region, a graft base in the first epitaxial main surface, an emitter in the second epitaxial main surface, A step of forming a base region, removing the silicon-etching-resistant and oxidation-resistant film adjacent to the graft base region, and introducing an impurity of the first conductivity type that is conductive with the graft base region into the opening, Forming an intrinsic base region, a collector compensation region in the first epitaxial main surface, and a second
And a step of forming an opening on the base and emitter collector regions in the epitaxial main surface, and forming an electrode that makes ohmic contact with the base, emitter and collector regions in the first and second epitaxial main surfaces, respectively. A method for manufacturing a semiconductor device, comprising:
JP4056401A 1992-02-06 1992-02-06 Manufacture of semiconductor device Pending JPH05218319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4056401A JPH05218319A (en) 1992-02-06 1992-02-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4056401A JPH05218319A (en) 1992-02-06 1992-02-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05218319A true JPH05218319A (en) 1993-08-27

Family

ID=13026175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4056401A Pending JPH05218319A (en) 1992-02-06 1992-02-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05218319A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355585B2 (en) 2019-10-01 2022-06-07 Analog Devices International Unlimited Company Bipolar junction transistor, and a method of forming a charge control structure for a bipolar junction transistor
US11404540B2 (en) 2019-10-01 2022-08-02 Analog Devices International Unlimited Company Bipolar junction transistor, and a method of forming a collector for a bipolar junction transistor
US11563084B2 (en) 2019-10-01 2023-01-24 Analog Devices International Unlimited Company Bipolar junction transistor, and a method of forming an emitter for a bipolar junction transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355585B2 (en) 2019-10-01 2022-06-07 Analog Devices International Unlimited Company Bipolar junction transistor, and a method of forming a charge control structure for a bipolar junction transistor
US11404540B2 (en) 2019-10-01 2022-08-02 Analog Devices International Unlimited Company Bipolar junction transistor, and a method of forming a collector for a bipolar junction transistor
US11563084B2 (en) 2019-10-01 2023-01-24 Analog Devices International Unlimited Company Bipolar junction transistor, and a method of forming an emitter for a bipolar junction transistor

Similar Documents

Publication Publication Date Title
US4508579A (en) Lateral device structures using self-aligned fabrication techniques
JP2728671B2 (en) Manufacturing method of bipolar transistor
US4339767A (en) High performance PNP and NPN transistor structure
US4378630A (en) Process for fabricating a high performance PNP and NPN structure
US4318751A (en) Self-aligned process for providing an improved high performance bipolar transistor
US6287930B1 (en) Methods of forming bipolar junction transistors having trench-based base electrodes
US4839305A (en) Method of making single polysilicon self-aligned transistor
US4563227A (en) Method for manufacturing a semiconductor device
JPS63305560A (en) Manufacture of completely self-aligning bipolar transistor
JPH0658912B2 (en) Bipolar transistor manufacturing method
JPH038343A (en) Bipolar transistor and manufacture thereof
EP0281235B1 (en) Bipolar transistor fabrication utilizing cmos techniques
EP0147249B1 (en) Method of manufacturing transistor structures having junctions bound by insulating layers, and resulting structures
US4743565A (en) Lateral device structures using self-aligned fabrication techniques
JPH0437580B2 (en)
JPS62179764A (en) Manufacture of bipolar semiconductor device with wall spaser
US4688073A (en) Lateral device structures using self-aligned fabrication techniques
JPH05218319A (en) Manufacture of semiconductor device
JPH07288284A (en) Manufacture of semiconductor device
JPH06140418A (en) Manufacture of semiconductor device
JPH0340436A (en) Bipolar semiconductor device
JP3207561B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JP3176606B2 (en) Manufacturing method of bipolar semiconductor integrated circuit device
JPH0424926A (en) Manufacture of semiconductor device
JPH088266A (en) Method of manufacturing semiconductor device