JPH05218196A - Manufacture of semiconductor chips - Google Patents

Manufacture of semiconductor chips

Info

Publication number
JPH05218196A
JPH05218196A JP1880692A JP1880692A JPH05218196A JP H05218196 A JPH05218196 A JP H05218196A JP 1880692 A JP1880692 A JP 1880692A JP 1880692 A JP1880692 A JP 1880692A JP H05218196 A JPH05218196 A JP H05218196A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
polycrystalline silicon
chip
semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1880692A
Other languages
Japanese (ja)
Other versions
JP3217105B2 (en
Inventor
Yukihiro Tominaga
之廣 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1880692A priority Critical patent/JP3217105B2/en
Publication of JPH05218196A publication Critical patent/JPH05218196A/en
Application granted granted Critical
Publication of JP3217105B2 publication Critical patent/JP3217105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)

Abstract

PURPOSE:To prevent cracks and nicks in dividing a semiconductor substrate into a plurality of chips by growing a polycrystalline silicon in thickness of more than 2mum after grinding a back side of the semiconductor substrate, and obtaining semiconductor chips through scribing. CONSTITUTION:The manufacture comprises a process of grinding a back side of a semiconductor substrate 1, and a process of growing a polycrystal silicon on the back side of the semiconductor substrate 1 in thickness of more than 2mum. Subsequently, the semiconductor substrate 1 is scribed along a scribe line formed on a top side 2 of the semiconductor substrate 1. As a result, semiconductor chips 9 become to be obtained. On one hand, the polycrystal silicon cuts into the fine rugged part of a crushed layer 5 composed of single crystal silicon. The polycrystalline silicon has good bonding performance with the single crystal silicon. A film thickness T4 of the polycrystalline silicon layer 6 is worth to reinforce satisfactorily the strength of the semiconductor substrate 1. As a result, semiconductor chips having no cracks of a wafer and nicks of a chip can be obtained by a simple process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体チップの製造方
法に関し、詳しくは半導体基板の強度を増加させて半導
体チップを得る半導体チップの製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor chip, and more particularly to a method for manufacturing a semiconductor chip in which the strength of a semiconductor substrate is increased to obtain a semiconductor chip.

【0002】[0002]

【従来の技術】図2(a)〜(e)は従来の半導体チッ
プの製造方法を示す工程断面図である。この図を参照し
つつ従来の技術を説明する。
2 (a) to 2 (e) are process sectional views showing a conventional method for manufacturing a semiconductor chip. The conventional technique will be described with reference to this figure.

【0003】まず図2(a)に示すように半導体基板2
1の表面22に半導体素子を形成後、スクライブライン
23を形成する。このとき、半導体基板21の厚さT1
は一般的に、5インチウエハー及び6インチウエハーで
625μm程度、8インチウエハーで725μmであ
る。半導体基板はその後の工程で半導体チップにして実
装するが、この実装の際に半導体チップの厚さは150
〜400μm程度が望ましい。
First, as shown in FIG. 2A, the semiconductor substrate 2
After forming the semiconductor element on the surface 22 of No. 1, the scribe line 23 is formed. At this time, the thickness T 1 of the semiconductor substrate 21
Is generally about 625 μm for a 5-inch wafer and a 6-inch wafer, and 725 μm for an 8-inch wafer. The semiconductor substrate is mounted as a semiconductor chip in a subsequent process, and the thickness of the semiconductor chip is 150 when mounting.
It is preferably about 400 μm.

【0004】従って図2(b)に示すように半導体基板
21の表面22に保護テープ24を接着する。その後、
裏面より半導体基板21を研削し、半導体基板の厚さT
2 を150〜400μmとする。この研削工程は一般的
に機械研削が用いられるため、半導体基板裏面には破砕
層25が形成される。
Therefore, as shown in FIG. 2B, a protective tape 24 is adhered to the surface 22 of the semiconductor substrate 21. afterwards,
The semiconductor substrate 21 is ground from the back surface to obtain the thickness T of the semiconductor substrate.
2 is 150 to 400 μm. Since mechanical grinding is generally used in this grinding step, the crush layer 25 is formed on the back surface of the semiconductor substrate.

【0005】保護テープ24はこの後はがされ(図2
(c))、今度は破砕層25にダイシングテープ26が
接着される。さらに半導体基板21のスクライブライン
231に沿ってダイヤモンドブレードでスクライブす
る。このスクライブにより、半導体基板21は複数の半
導体チップ28に溝27によって分割される(図3
(d))。
After that, the protective tape 24 is removed (see FIG. 2).
(C)) Then, the dicing tape 26 is adhered to the crush layer 25. Further, a diamond blade is used to scribe along the scribe line 231 of the semiconductor substrate 21. By this scribing, the semiconductor substrate 21 is divided into a plurality of semiconductor chips 28 by the grooves 27 (FIG. 3).
(D)).

【0006】最後に図3(e)に示すように、ダイシン
グテープ26がはがされ、半導体チップ28が得られ
る。
Finally, as shown in FIG. 3 (e), the dicing tape 26 is peeled off to obtain a semiconductor chip 28.

【0007】[0007]

【発明が解決しようとする課題】しかし、半導体裏面に
は破砕層25があるため、スクライブ時において図3に
示すようにクラック30や欠け31が発生し、特にIC
カード用のICとしては不良の原因となっていた。ま
た、スクライブ前の電気特性測定工程やウエハー搬送工
程及びダイシングテープ接着工程においても、ウエハー
厚さの薄さ(150〜400μm)及び破砕層によりウ
エハー割れが発生するという問題点があった。
However, since the back surface of the semiconductor has the fractured layer 25, cracks 30 and chips 31 are generated as shown in FIG.
It has been a cause of defects as an IC for cards. Further, also in the electric characteristic measuring step before scribing, the wafer conveying step and the dicing tape adhering step, there is a problem that a wafer crack occurs due to a thin wafer thickness (150 to 400 μm) and a crush layer.

【0008】このような問題を解決するために、特開昭
63−37612に開示されるようにウエハーを鏡面仕
上げとして、強度補強のために有機物層を裏面に形成す
ることが提案されている。しかし鏡面仕上げは工程が複
雑であり、有機物層の形成もスピンコーティングベ
ーキングと多くの工程を必要とする。
In order to solve such a problem, it has been proposed as disclosed in Japanese Patent Laid-Open No. 63-37612 that the wafer has a mirror-finished surface and an organic material layer is formed on the back surface for reinforcing the strength. However, the process of mirror finishing is complicated, and formation of the organic material layer also requires spin coating baking and many steps.

【0009】この発明の目的はウエハー割れ、チップの
欠け等がなく、しかも簡単な工程で半導体チップが得ら
れる半導体チップの製造方法を提供することにある。
An object of the present invention is to provide a method of manufacturing a semiconductor chip which is free from wafer cracking, chipping and the like and which can be obtained by a simple process.

【0010】[0010]

【課題を解決するための手段】そこで、この発明では半
導体基板裏面を研削後、研削面に多結晶シリコンを2μ
mより厚く成長させ、スクライブして半導体チップを得
るようにした。
Therefore, in the present invention, after the back surface of the semiconductor substrate is ground, polycrystalline silicon of 2 μm is applied to the ground surface.
It was grown thicker than m and scribed to obtain a semiconductor chip.

【0011】[0011]

【作用】研削面に成長させた多結晶シリコンは半導体基
板の強度向上に寄与する。
Function The polycrystalline silicon grown on the ground surface contributes to the improvement of the strength of the semiconductor substrate.

【0012】[0012]

【実施例】図1(a)〜(c)はこの発明の一実施例を
示す工程断面図である。以下、この図を参照しつつこの
発明の実施例を説明する。
1 (a) to 1 (c) are process sectional views showing an embodiment of the present invention. Embodiments of the present invention will be described below with reference to this drawing.

【0013】図1(a)は従来の図2(b)までと同じ
であり単結晶シリコンからなるN型の半導体基板1は、
その表面2にスクライブライン3を有し、保護テープ4
が接着され裏面から半導体基板1が研削される。裏面に
は破砕層5が形成されており、半導体基板1の厚さT3
は140〜390μmまで薄くなっている。
FIG. 1 (a) is the same as the conventional one shown in FIG. 2 (b). The N-type semiconductor substrate 1 made of single crystal silicon is
It has a scribe line 3 on its surface 2 and a protective tape 4
Are bonded and the semiconductor substrate 1 is ground from the back surface. The crush layer 5 is formed on the back surface, and has a thickness T 3 of the semiconductor substrate 1.
Is as thin as 140 to 390 μm.

【0014】次に図1(b)に示すように、保護テープ
4を剥離後、破砕層5の全面を被うように多結晶シリコ
ン層6を成長させる。多結晶シリコンは一般的にSiH
4 を約600℃において熱分解反応をさせて得ることが
出来る。しかし、半導体素子の配線には低融点金属であ
るAlが一般的によく用いられている。半導体基板1の
表面2にAl配線が形成されている場合、約600℃と
いう熱処理にAlが耐えることが出来ない。従って、こ
の実施例においては、SiH4 の熱分解をプラズマ中で
行なうことにより約400℃程度の温度で多結晶シリコ
ン層6を成長させている。なお、素子形成面である半導
体基板1の表面2を電極面に密着させて多結晶シリコン
層6を成長させるため、多結晶シリコン層は半導体基板
1の裏面である破砕層5のみに選択的に成長する。
Next, as shown in FIG. 1B, after peeling off the protective tape 4, a polycrystalline silicon layer 6 is grown so as to cover the entire surface of the crushed layer 5. Polycrystalline silicon is generally SiH
4 can be obtained by a thermal decomposition reaction at about 600 ° C. However, Al, which is a low melting point metal, is generally often used for wiring of semiconductor elements. When Al wiring is formed on the surface 2 of the semiconductor substrate 1, Al cannot withstand the heat treatment of about 600 ° C. Therefore, in this embodiment, the polycrystalline silicon layer 6 is grown at a temperature of about 400 ° C. by thermally decomposing SiH 4 in plasma. Since the polycrystalline silicon layer 6 is grown by bringing the surface 2 of the semiconductor substrate 1 which is the element forming surface into close contact with the electrode surface, the polycrystalline silicon layer is selectively formed only on the fracture layer 5 which is the rear surface of the semiconductor substrate 1. grow up.

【0015】なお、この多結晶シリコンは、単結晶シリ
コンからなる破砕層5の細かい凹凸にもくい込み、また
多結晶シリコンと単結晶シリコンとは密着性も良い。多
結晶シリコン層6の膜厚T4 はシリコン分子どうしが充
分に結合し、半導体基板1の強度を十分補強する値であ
る約5〜10μmとしている。
The polycrystalline silicon also penetrates into the fine irregularities of the crush layer 5 made of single crystal silicon, and the polycrystalline silicon and the single crystal silicon have good adhesion. The film thickness T 4 of the polycrystalline silicon layer 6 is set to about 5 to 10 μm, which is a value that sufficiently bonds silicon molecules to each other and sufficiently reinforces the strength of the semiconductor substrate 1.

【0016】また、多結晶シリコン層6は半導体基板1
と同一の導電型であるN型不純物が高濃度に導入されて
いる。具体的には多結晶シリコン層6の成長時にドープ
材としてPH3 を導入しており、最終的に多結晶シリコ
ン層6は半導体基板1より高濃度の1015〜1021cm
程度となっている。これはダイスボンディング時におい
てダイパットとチップ間の抵抗を下げることが出来ると
共に、チップ内の基板電位を均一に保つことが出来ると
いうメリットを有する。
Further, the polycrystalline silicon layer 6 is formed on the semiconductor substrate 1
An N-type impurity having the same conductivity type as that of is introduced at a high concentration. Specifically, PH 3 is introduced as a doping material during the growth of the polycrystalline silicon layer 6, and the polycrystalline silicon layer 6 finally has a higher concentration of 10 15 to 10 21 cm than the semiconductor substrate 1.
It has become a degree. This has the advantage that the resistance between the die pad and the chip can be reduced during die bonding, and the substrate potential in the chip can be kept uniform.

【0017】この後、図1(c)に示すように多結晶シ
リコン層6上にダイシングテープ7を接着させ、スクラ
イブライン3に沿ってスクライブする。これにより半導
体基板1は複数のチップ9に溝8によって分割される。
Thereafter, as shown in FIG. 1C, a dicing tape 7 is adhered on the polycrystalline silicon layer 6 and scribed along the scribe line 3. As a result, the semiconductor substrate 1 is divided into the plurality of chips 9 by the groove 8.

【0018】分割されたチップ9の斜視図が図4であ
る。図からわかるようにチップ9の裏面は多結晶シリコ
ン層6で覆れているため、研削工程における破砕層5は
チップ9内部に閉じ込められている。従って、従来のよ
うにスクライブ時のダイヤモンドブレード圧力によって
破砕層5を起点として切り抜き面に発生していたクラッ
ク欠けを抑制することが出来る。
FIG. 4 is a perspective view of the divided chip 9. As can be seen from the figure, since the back surface of the chip 9 is covered with the polycrystalline silicon layer 6, the crush layer 5 in the grinding step is confined inside the chip 9. Therefore, it is possible to suppress the crack chipping that has occurred in the cutout surface from the crushed layer 5 as the starting point due to the diamond blade pressure at the time of scribing.

【0019】[0019]

【発明の効果】以上説明した本発明のチップを従来のチ
ップと比較するため、図5に示すチップの強度測定を行
なった。この強度測定方法は測定用チップ50を資料台
51に載置する。そして、加圧針52を測定用チップの
表面から矢印A方向に加圧し、測定用チップ50が破壊
された時の圧力を読み取ることで、チップ強度を測定し
た。
In order to compare the chip of the present invention described above with the conventional chip, the strength of the chip shown in FIG. 5 was measured. In this strength measuring method, the measuring chip 50 is placed on the sample table 51. Then, the chip strength was measured by pressing the pressing needle 52 from the surface of the measuring chip in the direction of arrow A and reading the pressure when the measuring chip 50 was broken.

【0020】測定は260μm厚の7mm×7mm角の
チップ強度を、裏面に形成した多結晶シリコンの膜厚を
変化させて行なった。この結果を図6に示す。
The measurement was carried out by changing the chip strength of 260 μm thick 7 mm × 7 mm square while changing the film thickness of the polycrystalline silicon formed on the back surface. The result is shown in FIG.

【0021】図6からわかるように、従来のように多結
晶シリコン層を有さないチップ(多結晶シリコン成長厚
0μm)はチップ強度が1.0kg以下であるのに対
し、多結晶シリコンを5μm成長させたチップではチッ
プ強度が7.5kgを示している。一般にチップ強度は
6〜7kgあれば充分であるため、多結晶シリコン層は
2μmより大きい値であれば本願発明の目的を達成でき
る。
As can be seen from FIG. 6, the chip without a polycrystalline silicon layer (polycrystalline silicon growth thickness 0 μm) as in the prior art has a chip strength of 1.0 kg or less, while the polycrystalline silicon has a thickness of 5 μm. The grown chip shows a chip strength of 7.5 kg. Generally, a chip strength of 6 to 7 kg is sufficient, so that the polycrystalline silicon layer having a value of more than 2 μm can achieve the object of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例の工程断面図。FIG. 1 is a process sectional view of an embodiment of the present invention.

【図2】従来の半導体チップの製造方法を示す図。FIG. 2 is a diagram showing a conventional method for manufacturing a semiconductor chip.

【図3】従来の半導体チップの斜視図。FIG. 3 is a perspective view of a conventional semiconductor chip.

【図4】実施例のチップの斜視図。FIG. 4 is a perspective view of a chip of an example.

【図5】チップの強度測定を示す図。FIG. 5 is a diagram showing the measurement of chip strength.

【図6】チップ強度と多結晶シリコン膜厚の関係を示す
図。
FIG. 6 is a diagram showing the relationship between chip strength and polycrystalline silicon film thickness.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 表面 3 スクライブライン 4 保護テープ 5 破砕層 6 多結晶シリコン層 7 ダイシングテープ 8 溝 9 チップ 1 Semiconductor Substrate 2 Surface 3 Scribe Line 4 Protective Tape 5 Crush Layer 6 Polycrystalline Silicon Layer 7 Dicing Tape 8 Groove 9 Chip

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の裏面を研削する工程と、 この研削された半導体基板の裏面に2μmより厚く多結
晶シリコンを成長させる工程と、 この後、前記半導体基板表面に形成されたスクライブラ
インに沿って半導体基板をスクライブすることにより、
半導体チップを得る工程とを有する半導体チップの製造
方法。
1. A step of grinding a back surface of a semiconductor substrate, a step of growing polycrystalline silicon to a thickness of more than 2 μm on the ground back surface of the semiconductor substrate, and thereafter, a scribe line formed on the front surface of the semiconductor substrate. By scribing the semiconductor substrate along
A method of manufacturing a semiconductor chip, comprising the step of obtaining a semiconductor chip.
JP1880692A 1992-02-04 1992-02-04 Manufacturing method of semiconductor chip Expired - Fee Related JP3217105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1880692A JP3217105B2 (en) 1992-02-04 1992-02-04 Manufacturing method of semiconductor chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1880692A JP3217105B2 (en) 1992-02-04 1992-02-04 Manufacturing method of semiconductor chip

Publications (2)

Publication Number Publication Date
JPH05218196A true JPH05218196A (en) 1993-08-27
JP3217105B2 JP3217105B2 (en) 2001-10-09

Family

ID=11981838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1880692A Expired - Fee Related JP3217105B2 (en) 1992-02-04 1992-02-04 Manufacturing method of semiconductor chip

Country Status (1)

Country Link
JP (1) JP3217105B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815826A (en) * 1983-03-30 1989-03-28 Manchester R & D Partnership Colored encapsulated liquid crystal apparatus using enhanced scattering, fluorescent dye and dielectric thin films
US4838660A (en) * 1983-03-30 1989-06-13 Manchester R & D Partnership Colored encapsulated liquid crystal apparatus using enhanced scattering
US4850678A (en) * 1983-03-30 1989-07-25 Manchester R & D Partnership Colored encapsulated liquid crystal apparatus using enhanced scattering
US4856876A (en) * 1983-03-30 1989-08-15 Manchester R & D Partnership Fluorescent colored encapsulated liquid crystal apparatus using enhanced scattering
US6680241B2 (en) 2000-07-25 2004-01-20 Fujitsu Limited Method of manufacturing semiconductor devices by dividing wafer into chips and such semiconductor devices
US6930023B2 (en) 2000-05-16 2005-08-16 Shin-Etsu Handotai Co, Ltd. Semiconductor wafer thinning method, and thin semiconductor wafer
JP2015146391A (en) * 2014-02-03 2015-08-13 富士通株式会社 Semiconductor device and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815826A (en) * 1983-03-30 1989-03-28 Manchester R & D Partnership Colored encapsulated liquid crystal apparatus using enhanced scattering, fluorescent dye and dielectric thin films
US4838660A (en) * 1983-03-30 1989-06-13 Manchester R & D Partnership Colored encapsulated liquid crystal apparatus using enhanced scattering
US4850678A (en) * 1983-03-30 1989-07-25 Manchester R & D Partnership Colored encapsulated liquid crystal apparatus using enhanced scattering
US4856876A (en) * 1983-03-30 1989-08-15 Manchester R & D Partnership Fluorescent colored encapsulated liquid crystal apparatus using enhanced scattering
US6930023B2 (en) 2000-05-16 2005-08-16 Shin-Etsu Handotai Co, Ltd. Semiconductor wafer thinning method, and thin semiconductor wafer
US6680241B2 (en) 2000-07-25 2004-01-20 Fujitsu Limited Method of manufacturing semiconductor devices by dividing wafer into chips and such semiconductor devices
JP2015146391A (en) * 2014-02-03 2015-08-13 富士通株式会社 Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP3217105B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
EP0182218B1 (en) Method for dicing semiconductor wafer
US20030127428A1 (en) Method for separating chips from diamond wafer
US5907768A (en) Methods for fabricating microelectronic structures including semiconductor islands
WO2001088970A1 (en) Semiconductor wafer thinning method, and thin semiconductor wafer
EP0969505A3 (en) SOI substrate
JPH11297980A (en) Semiconductor chip of mesa structure to be cut off by sawing
CN104488081B (en) The manufacture method and SOS substrate of SOS substrate
JPH05218196A (en) Manufacture of semiconductor chips
JP3904943B2 (en) Sapphire wafer processing method and electronic device manufacturing method
US6465344B1 (en) Crystal thinning method for improved yield and reliability
JP3247592B2 (en) Method for manufacturing compound semiconductor
JP2588326B2 (en) Method for manufacturing semiconductor wafer
JP2000040677A (en) Manufacture of semiconductor element
JPH11330438A (en) Manufacture of soi wafer and soi wafer
JP4572529B2 (en) Manufacturing method of semiconductor device
CN112242352A (en) Wafer cutting method and circuit board
JPH1126337A (en) Manufacture of laminated substrate
JPH05259274A (en) Semiconductor device and its manufacture
US4389280A (en) Method of manufacturing very thin semiconductor chips
JPH0442949A (en) Semiconductor device with dicing slit
JPH05152304A (en) Manufacture of semiconductor substrate
JPH05304062A (en) Bonded wafer and manufacture therefore
JPH09213593A (en) Bonded substrate and manufacture thereof
JP2008112813A (en) Manufacturing method for semiconductor device
JPH11243081A (en) Manufacture of thin-film semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees