JPH05217699A - Synchrotron radiation generating device - Google Patents

Synchrotron radiation generating device

Info

Publication number
JPH05217699A
JPH05217699A JP1730092A JP1730092A JPH05217699A JP H05217699 A JPH05217699 A JP H05217699A JP 1730092 A JP1730092 A JP 1730092A JP 1730092 A JP1730092 A JP 1730092A JP H05217699 A JPH05217699 A JP H05217699A
Authority
JP
Japan
Prior art keywords
sor
sor light
generating device
synchrotron radiation
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1730092A
Other languages
Japanese (ja)
Inventor
Osamu Takeda
修 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1730092A priority Critical patent/JPH05217699A/en
Publication of JPH05217699A publication Critical patent/JPH05217699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To provide possibility of installing a number of synchrotron radiation take-out ports by enlarging to exceed 360deg. to total of the deflection angles during one turn of a beam orbiting within a synchrotron radiation generating device. CONSTITUTION:In case four units of 270-deg. deflecting bipolar electromagnets 5a are in use, a beam track 1 as shown by the broken line can be formed. While orbiting along this track one turn, a beam is deflected 1080deg. The synchrotron orbit radiation(SOR) is emitted in tangential direction in the deflection part. Unless SOR take-out port directed toward the device body is provided, the angle which can be utilized for provision or ports per magnet 5a is 180deg., amounting to 720deg. for the whole device which is twice as large as any conventional arrangement. This SOR generating device can, therefore, be equipped with irradiation devices 10 in the number twice as large as in the conventional device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシンクロトロン放射光
(以下SOR光と称する)の発生装置に関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a generator for synchrotron radiation light (hereinafter referred to as SOR light).

【0002】[0002]

【従来の技術】図2に、従来のSOR光発生装置の平面
構成図の一例を示す。電子、陽電子等の荷電粒子のビー
ム(以下ビームと称する)は、高真空に保たれた真空チ
ャンバ2の中の設計軌道上を周回している。3は図示し
ない入射用予備加速器からビームを軌道上に投入するた
めのセプタム電磁石、4はビーム入射時に設計軌道を入
射点を通るように変更するためのバンプ電磁石である。
これらの電磁石はビーム入射時にだけ励磁する。ビーム
は偏向部に配置した二極電磁石5により偏向され閉じた
軌道を形成し、直線部に配置した四極電磁石6と図示し
ない多極電磁石により集束作用を受けビーム形状を維持
する。7はビームがSOR光の形で失ったエネルギーを
補償するための高周波加速空胴である。
2. Description of the Related Art FIG. 2 shows an example of a plan view of a conventional SOR light generator. A beam of charged particles such as electrons and positrons (hereinafter referred to as a beam) circulates on a designed orbit in a vacuum chamber 2 kept in a high vacuum. Reference numeral 3 is a septum electromagnet for introducing a beam from a pre-accelerator for injection (not shown) into the orbit, and reference numeral 4 is a bump electromagnet for changing the designed orbit so as to pass through the incident point.
These electromagnets are excited only when the beam is incident. The beam is deflected by the dipole electromagnet 5 arranged in the deflection part to form a closed orbit, and the beam shape is maintained by the quadrupole electromagnet 6 arranged in the straight part and the multipole electromagnet (not shown) to maintain the beam shape. Reference numeral 7 is a high-frequency accelerating cavity for compensating the energy lost by the beam in the form of SOR light.

【0003】SOR光は、荷電粒子が磁場により偏向作
用を受けたときにビーム軌道の接線方向に放出される電
磁波で、著しい指向性を持ち強度が非常に大きいという
特徴を持つ。SOR光発生装置ではSOR光を利用する
ため、SOR光を装置から引き出すための取り出し用ポ
ート8を二極電磁石5の部分の真空チェンバに設ける。
取り出されたSOR光は、SOR光用真空チャンバ9中
をチャンバ内に設置した図示しない光学系により照射装
置10まで導かれ、LSI製造のためのエックス線リソ
グラフィーなどの目的に供される。図2では、SOR光
取り出し用ポートは2本しか示していないが、空間的に
許す限りポートを設けることができる。
SOR light is an electromagnetic wave emitted in the tangential direction of the beam orbit when charged particles are deflected by a magnetic field, and is characterized by having extremely high directivity and extremely high intensity. Since the SOR light generator uses the SOR light, an extraction port 8 for extracting the SOR light from the device is provided in the vacuum chamber of the bipolar electromagnet 5.
The extracted SOR light is guided to the irradiation device 10 by an optical system (not shown) installed in the SOR light vacuum chamber 9 and is used for the purpose of X-ray lithography for manufacturing an LSI. Although only two SOR light extraction ports are shown in FIG. 2, ports can be provided as long as space permits.

【0004】[0004]

【発明が解決しようとする課題】以上のようにSOR光
はその特徴から産業上重要な分野で利用されるが、SO
R光発生装置としての性能はSOR光自身の強度と空間
的な広がり、SOR光取り出し用ポートの数に大きく左
右される。
As described above, SOR light is used in industrially important fields because of its characteristics.
The performance of the R light generation device is greatly affected by the intensity and spatial spread of the SOR light itself and the number of SOR light extraction ports.

【0005】SOR光の全強度はビーム電流とビームエ
ネルギーの4乗に比例する。したがって、SOR光強度
を大きくするためにはビーム電流とビームエネルギーの
どちらか一方、またはその両方を大きくすればよい。し
かし、一般にビームエネルギーはSOR光のスペクトル
が最適な分布になるように設定するので、SOR光の強
度はおもにビーム電流に依存することになる。しかし、
ビーム不安定性やビーム寿命などによりビーム電流をそ
の装置固有のある一定の値以上にするのは非常に難し
い。従って、SOR光強度についても同様のことがいえ
る。
The total intensity of SOR light is proportional to the beam current and the fourth power of the beam energy. Therefore, in order to increase the SOR light intensity, either one or both of the beam current and the beam energy may be increased. However, since the beam energy is generally set so that the spectrum of the SOR light has an optimum distribution, the intensity of the SOR light mainly depends on the beam current. But,
Due to beam instability and beam life, it is very difficult to make the beam current above a certain value peculiar to the device. Therefore, the same applies to the SOR light intensity.

【0006】SOR光の空間的な広がりは、指向性が強
いという性質のためSOR光発生装置内を周回するビー
ムの径に依存する。SOR光発生装置内を周回するビー
ムの径は非常に小さいため、SOR光の空間的な広がり
も小さくなる。
The spatial spread of the SOR light depends on the diameter of the beam that circulates inside the SOR light generator due to its strong directivity. Since the diameter of the beam circulating in the SOR light generator is very small, the spatial spread of the SOR light is also small.

【0007】SOR光取り出し用ポートは、二極電磁石
5の部分の真空チェンバに設けられるため、偏向部の弧
長の総和もしくは一周の間の偏向角の総和によって制限
される。特に産業用SOR光発生装置の場合、装置全体
の小型化が望まれるので、SOR光取り出し用ポートの
総数は、一周の間の偏向角の総和に強い制限を受けると
考えられる。
Since the SOR light extraction port is provided in the vacuum chamber in the portion of the dipole electromagnet 5, it is limited by the total arc length of the deflection section or the total deflection angle during one round. Particularly in the case of an industrial SOR light generator, it is considered that the size of the entire device is desired to be small, and therefore the total number of SOR light extraction ports is strongly limited by the total deflection angle during one round.

【0008】以上のことから、たとえばLSI製造のた
めのエックス線リソグラフィーに使用する場合、SOR
光強度もある値以上にできず、照射面積も小さい。ま
た、SOR光取り出し用ポートの総数つまり一度に照射
できるシリコンウエファーの枚数にも制限を受けるの
で、単位時間当りの照射枚数を増やすことは難しい。本
発明は、SOR光発生装置について多数のSOR光取出
しポートをつけられるようにすることを目的とする。
From the above, when used for X-ray lithography for manufacturing LSI, for example, SOR
The light intensity cannot exceed a certain value, and the irradiation area is small. Further, since the total number of SOR light extraction ports, that is, the number of silicon wafers that can be irradiated at one time is limited, it is difficult to increase the number of irradiations per unit time. It is an object of the present invention to provide a SOR light generator with a large number of SOR light extraction ports.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明においてはSOR光発生装置内を周回するビ
ームの一周の間の偏向角の総和を、360度よりも大き
くする。
In order to achieve the above object, in the present invention, the total deflection angle during one round of the beam circulating in the SOR light generator is made larger than 360 degrees.

【0010】[0010]

【作用】偏向角の総和を360度よりも大きくすること
により、SOR光取り出し用ポートの取付数を増やすこ
とができ、たとえばLSI製造のためのエックス線リソ
グラフィーに使用する場合、一度に照射できるシリコン
ウエファーの枚数を増やすことができる。
By increasing the total deflection angle to more than 360 degrees, the number of SOR light extraction ports to be mounted can be increased. For example, when used in X-ray lithography for LSI manufacturing, a silicon wafer that can be irradiated at one time is used. The number of sheets can be increased.

【0011】[0011]

【実施例】本発明の実施例を、図1に示す。本実施例は
270度偏向二極電磁石5aを4台使用した例で、真空
チャンバ2、セプタム電磁石3、バンプ電磁石4、四極
電磁石6、高周波加速空胴7、SOR光取り出し用ポー
ト8、SOR光用真空チャンバ9、照射装置10、その
他図示しない多極電磁石等からなる。
FIG. 1 shows an embodiment of the present invention. This embodiment is an example in which four 270-degree deflection dipole electromagnets 5a are used. The vacuum chamber 2, the septum electromagnet 3, the bump electromagnet 4, the quadrupole electromagnet 6, the high-frequency acceleration cavity 7, the SOR light extraction port 8, and the SOR light are used. The vacuum chamber 9 for irradiation, the irradiation device 10, and other multi-pole electromagnets (not shown).

【0012】このように270度偏向電磁石を4台使用
することにより、図1に破線で示したビーム軌道1を形
成することができる。この軌道を1周する間にビームは
1080度の偏向を受ける。
By using four 270-degree bending electromagnets in this way, the beam orbit 1 shown by the broken line in FIG. 1 can be formed. The beam is deflected by 1080 degrees during one round of this orbit.

【0013】前述のように、SOR光は偏向部において
ビームの接線方向に放射される。装置本体の方向に向か
うSOR光取り出し用ポートは設けないとすると、一つ
の二極電磁石5aあたりポートを設けるために利用でき
る角度は180度となる。装置全体としては720度と
なり、従来の二倍の角度が利用できる。これにより本実
施例のSOR光発生装置には、従来の二倍の台数の照射
装置10を設置することができ、たとえばLSI製造の
ためのエックス線リソグラフィーに利用する場合、シリ
コンウエファーの単位時間あたりの照射枚数を2倍とす
る事ができる。 (他の実施例)
As described above, the SOR light is emitted in the tangential direction of the beam in the deflection section. If no SOR light extraction port directed toward the device body is provided, the angle that can be used to provide a port per one bipolar electromagnet 5a is 180 degrees. The entire device has 720 degrees, and a double angle can be used. As a result, the SOR light generator of this embodiment can be provided with twice as many irradiation devices 10 as in the conventional case. For example, when the irradiation device 10 is used for X-ray lithography for manufacturing an LSI, the irradiation time per unit time of a silicon wafer is reduced. The number of irradiations can be doubled. (Other embodiments)

【0014】上記実施例では270度偏向電磁石を4台
使用する例を示したが、本質的には一周の間の偏向角の
総和が360度の整数倍になっていれば、二極電磁石の
台数や一台あたりの偏向角に制限なく、いろいろな構成
を考えることができる。また、二極電磁石の励磁コイル
を超電導化すれば、偏向部の曲率半径を小さくすること
ができ装置を小型化できる。
In the above embodiment, an example in which four 270-degree deflection electromagnets are used is shown. However, essentially, if the total sum of deflection angles during one rotation is an integral multiple of 360 degrees, the dipole electromagnet will be used. Various configurations can be considered without any limitation on the number of units or the deflection angle per unit. Further, if the exciting coil of the dipole electromagnet is made superconducting, the radius of curvature of the deflecting portion can be reduced and the device can be downsized.

【0015】[0015]

【発明の効果】本発明では、SOR光発生装置内を周回
するビームの一周の間の偏向角の総和を360度よりも
大きくし、SOR光取り出し用ポートの数を増やすこと
ができる。これにより、SOR光の利用効率を向上させ
ることが可能である。以上のように本発明により、小型
でSOR光の利用効率の良い産業用SOR光発生装置を
提供することができる。
According to the present invention, it is possible to increase the total deflection angle for one round of the beam circulating in the SOR light generator to be more than 360 degrees, and to increase the number of SOR light extraction ports. This makes it possible to improve the utilization efficiency of SOR light. INDUSTRIAL APPLICABILITY As described above, the present invention can provide a small-sized industrial SOR light generator with high utilization efficiency of SOR light.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のSOR光発生装置の平面構
成図
FIG. 1 is a plan configuration diagram of an SOR light generator according to an embodiment of the present invention.

【図2】従来のSOR光発生装置の平面構成図FIG. 2 is a plan configuration diagram of a conventional SOR light generator.

【符号の説明】[Explanation of symbols]

1…ビーム軌道 2…真空チャンバ 3…セプタム電磁石 4…バンプ電磁石 5…90度偏向二極電磁石 5a…270度偏向二極電磁石 6…四極電磁石 7…高周波加速空胴 8…SOR光取り出し用ポート 9…SOR光用真空チャンバ 10…照射装置 1 ... Beam trajectory 2 ... Vacuum chamber 3 ... Septum electromagnet 4 ... Bump electromagnet 5 ... 90 degree deflection dipole electromagnet 5a ... 270 degree deflection dipole electromagnet 6 ... Quadrupole electromagnet 7 ... High frequency acceleration cavity 8 ... SOR light extraction port 9 ... Vacuum chamber for SOR light 10 ... Irradiation device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数個の偏向部および直線部から構成さ
れるシンクロトロン放射光発生装置において、装置内を
周回する荷電粒子の一周の間の偏向角の総和が、360
度よりも大きいことを特徴とするシンクロトロン放射光
発生装置。
1. In a synchrotron radiation light generating device composed of a plurality of deflecting portions and a linear portion, the sum of deflection angles during one round of charged particles circulating in the apparatus is 360.
Synchrotron radiation generator characterized in that it is larger than a degree.
JP1730092A 1992-02-03 1992-02-03 Synchrotron radiation generating device Pending JPH05217699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1730092A JPH05217699A (en) 1992-02-03 1992-02-03 Synchrotron radiation generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1730092A JPH05217699A (en) 1992-02-03 1992-02-03 Synchrotron radiation generating device

Publications (1)

Publication Number Publication Date
JPH05217699A true JPH05217699A (en) 1993-08-27

Family

ID=11940155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1730092A Pending JPH05217699A (en) 1992-02-03 1992-02-03 Synchrotron radiation generating device

Country Status (1)

Country Link
JP (1) JPH05217699A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195441A1 (en) * 2017-04-21 2018-10-25 Massachusetts Institute Of Technology Dc constant-field synchrotron providing inverse reflection of charged particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195441A1 (en) * 2017-04-21 2018-10-25 Massachusetts Institute Of Technology Dc constant-field synchrotron providing inverse reflection of charged particles

Similar Documents

Publication Publication Date Title
JP3246364B2 (en) Synchrotron accelerator and medical device using the same
JPH10233299A (en) Charged particle beam expander
Kitamura Recent trends of insertion-device technology for X-ray sources
US6794661B2 (en) Ion implantation apparatus capable of increasing beam current
JPH11513528A (en) Method for extracting charged particles from isochronous cyclotron and apparatus applying this method
US20020150193A1 (en) Compact high flux neutron generator
US7139349B2 (en) Spherical neutron generator
KR100479372B1 (en) Toroidal filament for plasma generation
JPH05217699A (en) Synchrotron radiation generating device
JP2002056786A (en) Ion source for ion implanting equipment
US20210393986A1 (en) Ion source, circular accelerator using same, and particle beam therapy system
CN115812340A (en) Particle accelerator and particle beam therapy device
JPH01310179A (en) Ecr type ion thruster
US4737726A (en) Charged particle beam storage and circulation apparatus
JP3045619B2 (en) Plasma generator
JPH11337699A (en) Injector with high frequency acceleration tube and high frequency large current ion implantation device thereof
JPH05198400A (en) Charged particle beam device
JP2003272900A (en) Wiggler ring
JP2004296164A (en) Power source for deflection electromagnet and power source for acceleration core of charged particle accelerator
JP3341497B2 (en) High frequency type charged particle accelerator
JPS6226797A (en) Charged particle apparatus
JPH05215900A (en) Multipolar electromagnet for electronic accelerator
SU610459A1 (en) Charge particle accelerator
JPH0753280Y2 (en) Bending electromagnet for SOR device
JPH02299200A (en) Apparatus for generating synchrotron radiant light