JPH01310179A - Ecr type ion thruster - Google Patents

Ecr type ion thruster

Info

Publication number
JPH01310179A
JPH01310179A JP14042188A JP14042188A JPH01310179A JP H01310179 A JPH01310179 A JP H01310179A JP 14042188 A JP14042188 A JP 14042188A JP 14042188 A JP14042188 A JP 14042188A JP H01310179 A JPH01310179 A JP H01310179A
Authority
JP
Japan
Prior art keywords
magnetic field
magnet
cyclotron resonance
electron cyclotron
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14042188A
Other languages
Japanese (ja)
Other versions
JP2856740B2 (en
Inventor
Hideki Yoshida
英樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63140421A priority Critical patent/JP2856740B2/en
Publication of JPH01310179A publication Critical patent/JPH01310179A/en
Application granted granted Critical
Publication of JP2856740B2 publication Critical patent/JP2856740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters

Abstract

PURPOSE:To minimize the leakage magnetic field in the surrounding part of the surface of an accelerating electrode by equalizing electron cyclotron resonance fields formed around the front of N pole and S pole. CONSTITUTION:Annular magnet columns 5 with about same magnetic field intensity and magnet width are placed on the wall face of a discharge container 3, N and S alternately, and annular magnet columns 9 about half in their magnet width are disposed on the side of an accelerating electrode 6. Annular magnet columns 10 with the magnet width such that the line of magnetic force in the discharge container 3 does not come out to the exterior are placed on the ceiling side. The width of the electron cyclotron resonance layer 11 formed around the front of the magnet columns 9, 10 at both ends is about half of that of the electron cyclotron resonance layer 11 formed around the front of the remaining magnet columns 5. Accordingly, the entire electron cyclotron resonance layer 11 is subjected to the mirror field confinement.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、人工衛星の軌道制御等を行なうときに用いら
れるE CR(Ejlectron Cycffiot
ron Re5onance)型イオンスラスタに関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is directed to an ECR (Ejelectron Cyclofiot
ron Re5onance) type ion thruster.

(従来の技術) 人工衛星の軌道制御等を行なうときに用いられるECR
型イオンスラスタは通常、第4図に示すように構成され
ている。宇宙線等で自然に電離している電子を種に生成
されたプラズマ電子が、放電容器3の壁面に配置された
磁石5の表面から数mの位置(磁束密度0.0875T
の曲面)で、マイクロ波(2,450GHz)導入系2
から供給されたマイクロ波を共鳴吸収(電子サイクロト
ロン共鳴)して加速され、加速された電子がガス導入系
1より共給されたX。ガスに衝突して電極プラズマを放
電室内に生成し、電離プラズマ中のxe+イオンが加速
電極(3枚)6によって運動エネルギを与えられ、中和
器8から放出される電子によって中和化された後放出さ
れてイオンスラスタの推力となる。
(Prior technology) ECR used for orbit control of artificial satellites, etc.
A type ion thruster is usually constructed as shown in FIG. Plasma electrons generated from naturally ionized electrons due to cosmic rays, etc. are located several meters from the surface of the magnet 5 placed on the wall of the discharge vessel 3 (magnetic flux density 0.0875T).
), microwave (2,450 GHz) introduction system 2
X is accelerated by resonance absorption (electron cyclotron resonance) of microwaves supplied from the X, and the accelerated electrons are co-supplied from the gas introduction system 1. Electrode plasma was generated in the discharge chamber by colliding with the gas, and the xe+ ions in the ionized plasma were given kinetic energy by the accelerating electrodes (3 pieces) 6 and were neutralized by electrons emitted from the neutralizer 8. It is then ejected and becomes the thrust of the ion thruster.

このとき、電離プラズマの多くは放電容器3の壁面近傍
に形成されたカスプ磁場内(複数のミラー磁場を形成)
で生成され、磁場の弱い磁石5と磁石5の間からフルー
ト不安定性(/12ute 1nstabiQity)
により無磁場領域(放電室中心部分)に放出される。放
出されたプラズマ電子はまだ工。ガスを電離するだけの
エネルギを持っているため再び工。ガスに衝突して残り
の電離プラズマを生成する。無磁場領域内の電離プラズ
マはカスプ磁場で閉じ込められているため、加速電極6
の方向に大部分が流出していく、なお、図中4は工。ガ
スを拡散するための拡散板を示し、7はスラスタケース
である。
At this time, most of the ionized plasma is within the cusp magnetic field formed near the wall of the discharge vessel 3 (forming multiple mirror magnetic fields).
The flute instability (/12ute 1nstabiQity) is generated between magnets 5 and 5 with a weak magnetic field.
It is emitted into the non-magnetic field area (the central part of the discharge chamber). The emitted plasma electrons are still being processed. Since it has enough energy to ionize the gas, it is used again. It collides with the gas to create residual ionized plasma. Since the ionized plasma in the non-magnetic field region is confined by the cusp magnetic field, the accelerating electrode 6
The majority of the water flows out in the direction shown in Figure 4. A diffusion plate for diffusing gas is shown, and 7 is a thruster case.

ところが、この様なECR型イオンスラスタのカスプ磁
場形状は磁場の強さが等しく1幅の等しいS、−C,磁
石列を直線状にNS交互に同じ長さだけ並べて構成して
いるため、加速電極6の表面近傍周辺部での漏れ磁場が
大きく、第5図実線12に示すようにプラズマ密度の−
様な領域が狭くて加速電極6の口径が狭い欠点がある。
However, the cusp magnetic field shape of such an ECR type ion thruster is constructed by aligning S, -C, and magnet arrays of equal width in a straight line alternately for the same length, so that the acceleration The leakage magnetic field near the surface of the electrode 6 is large, and as shown by the solid line 12 in FIG.
The drawback is that the area is narrow and the diameter of the accelerating electrode 6 is narrow.

(発明が解決しようとする課題) 本発明は、加速電極6の表面近傍周辺部での漏れ磁場が
小さくて、第5図破線13に示すようにプラズマ密度の
−様な領域が広く、加速電極6の口径を広く取れる高効
率のECR型イオンスラスタを提供することを目的とし
ている。
(Problems to be Solved by the Invention) The present invention is advantageous in that the leakage magnetic field in the vicinity of the surface of the accelerating electrode 6 is small, and as shown by the broken line 13 in FIG. The purpose of this invention is to provide a highly efficient ECR type ion thruster that can have a wide diameter.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明はカスプ磁場形状を加速電極面に平行に環状の磁
石列をNS交互に並べて、N極前面とS極前面近傍に形
成される電子サイクロトロン共鳴領域が同程度になるよ
うに両端の環状磁石列の磁石幅を調整したことを特徴と
している。
(Means for Solving the Problems) The present invention has a cusp magnetic field shape in which annular magnet arrays are alternately arranged in NS parallel to the accelerating electrode surface, so that the electron cyclotron resonance regions formed near the N-pole front and the S-pole front are the same. It is characterized by adjusting the magnet width of the annular magnet rows at both ends so that

(作 用) 磁場の強さと磁石幅の等しい磁石をNS交互に同じ長さ
だけ環状に配置してカスプ磁場を構成すると、第5図破
線13のような加速電極表面近傍でのプラズマ密度の一
様性の改善を図ることができる(周方向の磁場がないた
め、加速電極を磁石環から離することにより加速電極表
面近傍の磁場を指数関数的に小さくできるため)。しか
し、それだけでは第2図に示すように両端の磁石列の磁
場がミラー磁場配位を構成せず、せっか<ECR加速さ
れた電子の一部が壁に衝突して損失してしまう。ミラー
磁場配位を構成しない電子サイクロトロン共鳴領域を取
り除くことにより加速電極口径の広い高効率のカスプ磁
場配位が実現できたことになる。
(Function) When a cusp magnetic field is constructed by arranging magnets with the same magnetic field strength and magnet width in a ring shape with the same length alternately, the plasma density near the surface of the accelerating electrode will be uniform as shown by the broken line 13 in Figure 5. (Because there is no circumferential magnetic field, the magnetic field near the surface of the accelerating electrode can be exponentially reduced by separating the accelerating electrode from the magnet ring.) However, as shown in FIG. 2, the magnetic fields of the magnet arrays at both ends do not constitute a mirror magnetic field configuration, and some of the electrons accelerated by <ECR collide with the wall and are lost. By removing the electron cyclotron resonance region that does not constitute the mirror magnetic field configuration, we have achieved a highly efficient cusp magnetic field configuration with a wide accelerating electrode diameter.

(実施例) 以下1本発明の実施例を図面を参照しながら説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係る環状カスプ磁場を用い
たECR型イオンスラスタの概要図である。磁場の強さ
と磁石幅の同程度の環状磁石列5をNS交互に放電容器
3の壁面に並べ、加速電極側の環状磁石列5の端に磁場
の強さが等しく隣接磁石列と極の向きが逆で磁石幅が半
分程度の環状磁石列9を配置し、天井側の環状磁石列5
の端に磁場の強さが等しく隣接磁石列と極の向きが逆で
磁石幅を放電容器内の磁力−を外部に出さない程度にし
た環状磁石列10を配置する。環状磁石列lOが放電容
器3の中心軸上にあるときは環状でなくて例えば円柱状
でも良い、このように磁石を配置したときの放電容器3
丙の磁力線の様子を第3図に示す。なお、WM単のため
に、放電容器3の壁面を平坦にして示している6両端の
磁石列9,10の磁石幅で放電容器3の外部に磁力線が
出ない様にしているため、両端の磁石列9.lOの前面
近傍に形成される電子サイクロトロン共鳴層11は残り
の磁石列5の前面近傍に形成される電子サイクロトロン
共鳴層11の半分程度の幅しかない、よって、電子サイ
クロトロン共鳴層11は全てミラー磁場閉じ込めを行っ
ていることになり(第3図斜線部)。
FIG. 1 is a schematic diagram of an ECR type ion thruster using an annular cusp magnetic field according to an embodiment of the present invention. Annular magnet arrays 5 with the same magnetic field strength and magnet width are arranged alternately on the wall surface of the discharge vessel 3, and the end of the annular magnet array 5 on the accelerating electrode side is placed with an adjacent magnet array with the same magnetic field strength and polar orientation. An annular magnet array 9 with the opposite magnet width and about half the magnet width is arranged, and an annular magnet array 5 on the ceiling side is arranged.
An annular magnet array 10 having the same magnetic field strength, opposite pole direction to the adjacent magnet array, and magnet width set to such an extent that the magnetic force inside the discharge vessel is not released to the outside is disposed at the end of the annular magnet array 10. When the annular magnet array lO is on the central axis of the discharge vessel 3, it may not be annular but may be, for example, cylindrical. When the magnets are arranged in this way, the discharge vessel 3
Figure 3 shows the magnetic field lines of C. In addition, for WM single use, the wall surface of the discharge vessel 3 is flattened, and the magnet width of the magnet arrays 9 and 10 at both ends of 6 is shown to prevent lines of magnetic force from appearing outside the discharge vessel 3. Magnet row9. The width of the electron cyclotron resonance layer 11 formed near the front surface of IO is only about half that of the electron cyclotron resonance layer 11 formed near the front surface of the remaining magnet array 5.Therefore, the electron cyclotron resonance layer 11 is entirely covered by the mirror magnetic field. This means that they are being confined (shaded area in Figure 3).

ミラー磁場内の電子は両端の電子サイクロトロン共鳴層
11を少し出た所で反射されて往復運動をすることにな
る。往復運動をしている電子は1往復で4回電子サイク
ロトロン共鳴層11を通過し、そこでマイクロ波を共鳴
吸収して回転エネルギを増加させる。増加したエネルギ
が工。のイオ化エネルギを越えると工。ガスに衝突して
電離プラズマを生成することになる。ミラー磁場内(第
3図斜線部)で生成された電離プラズマは磁力線が凸に
なっている中央部からフルート不安定性で放出される。
The electrons in the mirror magnetic field are reflected at a position slightly outside the electron cyclotron resonance layers 11 at both ends, and undergo reciprocating motion. The reciprocating electrons pass through the electron cyclotron resonance layer 11 four times in one reciprocation, where they resonate and absorb microwaves to increase their rotational energy. The increased energy is used. When the ionization energy of It will collide with the gas and generate ionized plasma. The ionized plasma generated within the mirror magnetic field (shaded area in Figure 3) is emitted from the center where the lines of magnetic force are convex due to flute instability.

放出されたプラズマ電子の内、工。のイオン化エネルギ
以上のエネルギを持つ電子はカスプ磁場内に閉じ込めら
れている内に工。ガスに衝突して電離プラズマを放電容
器中央部に生成させる。
Of the emitted plasma electrons, engineering. Electrons with energy greater than the ionization energy of are trapped within the cusp magnetic field. Collisions with gas generates ionized plasma in the center of the discharge vessel.

プラズマの一様性はこの放電容器中央部で生成されるプ
ラズマに強く影響されるから、加速電極表面近傍で無磁
場領域の広い環状カスプ磁場配位の方が線状カスプ磁場
配位より一様なプラズマの領域が広くなる(第5図破線
13)。−様なプラズマ領域から工。+イオンを引き出
すことができるから、環状カスプ磁場配位の本特許例に
よる方が従来の線状カスプ磁場配位の場合より加速電極
径を大きく取れることになる。また、環状カスプ磁場配
位にしたことによる高速エネルギー電子の放電容器3へ
の衝突の問題はなくなる。
Plasma uniformity is strongly influenced by the plasma generated in the center of the discharge vessel, so an annular cusp magnetic field configuration with a wide non-magnetic field region near the accelerating electrode surface is more uniform than a linear cusp magnetic field configuration. The plasma region becomes wider (dashed line 13 in Fig. 5). −Engineered from various plasma regions. Since + ions can be extracted, the diameter of the accelerating electrode can be made larger in the case of the annular cusp magnetic field arrangement of this patent example than in the case of the conventional linear cusp magnetic field arrangement. Furthermore, the problem of high-speed energy electrons colliding with the discharge vessel 3 due to the annular cusp magnetic field configuration is eliminated.

本特許例では、電子サイクロトロン共鳴MiJ11の内
、ミラー磁場閉じ込めを構′成しない領域の除去法とし
て、両端の環状磁石列9,10の幅で実施したが、要は
電子サイクロトロン共鳴層11が全てミラー磁場閉じ込
めを構成していれば何でも良い。
In this patent example, as a method of removing the region that does not constitute mirror magnetic field confinement in the electron cyclotron resonance MiJ11, it is carried out with the width of the annular magnet arrays 9 and 10 at both ends, but the point is that the electron cyclotron resonance layer 11 is completely removed. Anything is fine as long as it constitutes mirror magnetic field confinement.

導入ガスとして工。を用いたが、工。に限定するもので
はない。また、加速電極6として3枚のものを使用して
いるが、3枚に限定するものでもない。マイクロ波とし
て2.450GHz、電子サイクロトロン共鳴磁束密度
0.0875Tで説明したが、この値に限定するもので
もない。
Used as introduced gas. I used . It is not limited to. Further, although three accelerating electrodes 6 are used, the number is not limited to three. Although the microwave frequency is 2.450 GHz and the electron cyclotron resonance magnetic flux density is 0.0875 T, the present invention is not limited to these values.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、高効率で大口径の
加速電極を持つ小型のECR型イガイオンスラスタ成す
ることができる。
As described above, according to the present invention, a small ECR type ion thruster having high efficiency and a large diameter accelerating electrode can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のECR型イガイオンスラス
タ要を示す一部切欠斜視図、第2図は磁力線の端末処理
をしていない場合の放電容器内の環状カスプ磁場配位の
概要図、第3図は本特許の磁力線の端末処理をした環状
カスプ磁場配位の概要図、第4図は従来のECR型イガ
イオンスラスタ要を示す一部切欠斜視図、第5図は本特
許と従来例とのプラズマ密度の一様性の比較図である6
1・・・ガス導入系    2・・・マイクロ波導入系
3・・・放電容器     4・・・ガス拡散板5.9
.to・・・磁 石  6・・・加速電極(3枚)7・
・・スラスタケース  8・・・中和器11・・・電子
サイクロトロン共鳴層 12・・・従来のプラズマの一様性 13・・・本特許のプラズマの−様性 代理人 弁理士 則 近 憲 佑 同     松  山  光  之 第1図 第2図
Fig. 1 is a partially cutaway perspective view showing the essentials of an ECR-type ion thruster according to an embodiment of the present invention, and Fig. 2 is an overview of the annular cusp magnetic field configuration in the discharge vessel when the magnetic field lines are not terminated. Figure 3 is a schematic diagram of the annular cusp magnetic field configuration with terminal processing of magnetic lines of force according to this patent, Figure 4 is a partially cutaway perspective view showing the main part of a conventional ECR type burr ion thruster, and Figure 5 is a diagram of this patent. 6 is a comparison diagram of the uniformity of plasma density between the conventional example and the conventional example.
1... Gas introduction system 2... Microwave introduction system 3... Discharge vessel 4... Gas diffusion plate 5.9
.. to...Magnet 6...Acceleration electrode (3 pieces) 7.
... Thruster case 8 ... Neutralizer 11 ... Electron cyclotron resonance layer 12 ... Conventional plasma uniformity 13 ... Plasma modality of this patent Agent Patent attorney Noriyuki Chika Figure 1, Figure 2, by Hikaru Matsuyama

Claims (2)

【特許請求の範囲】[Claims] (1)ガス導入系とマイクロ波導入系と壁面をカスプ磁
場で覆った放電容器と加速電極と中和器と電源等で構成
されるイオンスラスタに於いて、N極前面近傍に形成さ
れる電子サイクロトロン共鳴層とS極前面近傍に形成さ
れる電子サイクロトロン共鳴層との面積が同程度になる
ように磁石の表面積を調整したことを特徴とするECR
型イオンスラスタ。
(1) In an ion thruster consisting of a gas introduction system, a microwave introduction system, a discharge vessel whose walls are covered with a cusp magnetic field, an accelerating electrode, a neutralizer, a power supply, etc., electrons are formed near the front surface of the N pole. An ECR characterized in that the surface area of the magnet is adjusted so that the areas of the cyclotron resonance layer and the electron cyclotron resonance layer formed near the S-pole front surface are approximately the same.
type ion thruster.
(2)前記カスプ磁場を環状に配置した磁石列で構成し
、両端の磁石列の表面の幅を調整して、放電容器内の磁
力線が外部に出ないようにしたことを特徴とする請求項
1記載のECR型イオンスラスタ。
(2) Claim characterized in that the cusp magnetic field is constituted by a ring-shaped array of magnets, and the width of the surface of the magnet arrays at both ends is adjusted to prevent lines of magnetic force inside the discharge vessel from coming out. 1. The ECR type ion thruster described in 1.
JP63140421A 1988-06-09 1988-06-09 ECR type ion thruster Expired - Lifetime JP2856740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140421A JP2856740B2 (en) 1988-06-09 1988-06-09 ECR type ion thruster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140421A JP2856740B2 (en) 1988-06-09 1988-06-09 ECR type ion thruster

Publications (2)

Publication Number Publication Date
JPH01310179A true JPH01310179A (en) 1989-12-14
JP2856740B2 JP2856740B2 (en) 1999-02-10

Family

ID=15268316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140421A Expired - Lifetime JP2856740B2 (en) 1988-06-09 1988-06-09 ECR type ion thruster

Country Status (1)

Country Link
JP (1) JP2856740B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011103194A2 (en) * 2010-02-16 2011-08-25 University Of Florida Research Foundation, Inc. Method and apparatus for small satellite propulsion
WO2013098505A1 (en) 2011-12-29 2013-07-04 ONERA (Office National d'Etudes et de Recherches Aérospatiales) Plasma thruster and method for generating a plasma propulsion thrust
US9820369B2 (en) 2013-02-25 2017-11-14 University Of Florida Research Foundation, Incorporated Method and apparatus for providing high control authority atmospheric plasma
CN109681398A (en) * 2018-12-12 2019-04-26 上海航天控制技术研究所 A kind of novel microwave ecr ion thruster arc chamber
CN111140454A (en) * 2020-02-13 2020-05-12 哈尔滨工业大学 Ignition device of miniature electron cyclotron resonance ion thruster

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2246035C9 (en) * 2003-05-30 2005-05-10 Кошкин Валерий Викторович Ion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248978A (en) * 1987-04-02 1988-10-17 Natl Aerospace Lab Cusp magnetic field type ion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248978A (en) * 1987-04-02 1988-10-17 Natl Aerospace Lab Cusp magnetic field type ion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011103194A2 (en) * 2010-02-16 2011-08-25 University Of Florida Research Foundation, Inc. Method and apparatus for small satellite propulsion
WO2011103194A3 (en) * 2010-02-16 2011-12-22 University Of Florida Research Foundation, Inc. Method and apparatus for small satellite propulsion
US9228570B2 (en) 2010-02-16 2016-01-05 University Of Florida Research Foundation, Inc. Method and apparatus for small satellite propulsion
WO2013098505A1 (en) 2011-12-29 2013-07-04 ONERA (Office National d'Etudes et de Recherches Aérospatiales) Plasma thruster and method for generating a plasma propulsion thrust
US9820369B2 (en) 2013-02-25 2017-11-14 University Of Florida Research Foundation, Incorporated Method and apparatus for providing high control authority atmospheric plasma
CN109681398A (en) * 2018-12-12 2019-04-26 上海航天控制技术研究所 A kind of novel microwave ecr ion thruster arc chamber
CN111140454A (en) * 2020-02-13 2020-05-12 哈尔滨工业大学 Ignition device of miniature electron cyclotron resonance ion thruster
CN111140454B (en) * 2020-02-13 2021-05-04 哈尔滨工业大学 Ignition device of miniature electron cyclotron resonance ion thruster

Also Published As

Publication number Publication date
JP2856740B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US5859428A (en) Beam generator
EP1640608B1 (en) Spacecraft thruster
EP0286132B1 (en) Plasma generating apparatus
US3969646A (en) Electron-bombardment ion source including segmented anode of electrically conductive, magnetic material
US20030184205A1 (en) Hall effect ion source at high current density
US20130067883A1 (en) Spacecraft thruster
KR102567704B1 (en) Systems and methods for processing workpieces using neutral atom beams
JPH08279400A (en) Microwave distribution device and plasma generator
US3613370A (en) Ion thruster
US6960888B1 (en) Method of producing and accelerating an ion beam
US5620522A (en) Microwave plasma generator
US20010016166A1 (en) Plasma vacuum pumping cell
EP0639939B1 (en) Fast atom beam source
JPH01310179A (en) Ecr type ion thruster
KR100479372B1 (en) Toroidal filament for plasma generation
RU2246035C1 (en) Ion engine
US6559601B1 (en) Plasma vacuum pump
US5432342A (en) Method of and apparatus for generating low-energy neutral particle beam
US4931698A (en) Ion source
RU2614906C1 (en) Direct flow electric propulsion engine
JP3045619B2 (en) Plasma generator
EP0095879B1 (en) Apparatus and method for working surfaces with a low energy high intensity ion beam
JPH01232651A (en) Radical beam generating device
JPH02173361A (en) Rf type ion thruster
JPH0822789A (en) Multicusp type microwave ion source