JPH05217590A - Fuel cell for teaching material - Google Patents
Fuel cell for teaching materialInfo
- Publication number
- JPH05217590A JPH05217590A JP4064372A JP6437292A JPH05217590A JP H05217590 A JPH05217590 A JP H05217590A JP 4064372 A JP4064372 A JP 4064372A JP 6437292 A JP6437292 A JP 6437292A JP H05217590 A JPH05217590 A JP H05217590A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- electrolyte
- container
- electrode
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Instructional Devices (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、マンガン乾電池などのように使い捨て電池
と異なり、使い終えたら新たに燃料となる液体や気体を
容器に補充することで、直接、電気エネルギーを継続的
に取り出す装置である。現在、実験室ではおこなわれて
いるが、教材として実用化されていない。教材化できな
い問題点をあげると、
(1)気体の循環装置を必要として、電池容器が大型に
なるなどの欠点がある。
(2)電極に必要な触媒が高価であり、製作にも難点が
ある。電極が取り替えられない。
(3)充電が大変ゆるやかすぎて、負荷が作動せず教材
に不向きである。などの欠点があって、教材として価値
が認められていながら実用化できていない。
問題点を具体的に説明する。
(1)の電池容器上の問題点
ア.電極を気密性の箱の中に封じ込めるため、電極を取
り替えることができない。このため、物質の違いにより
起電力、電流密度等の相違を検証することができない。
イ.従来の実験室的装置では、燃料を連続的に流すた
め、その装置が別に必要となり大仕掛けになる。
ウ.実験的には、試験管の底をカットして容器とする、
太いビニール製のパイプをカットし容器とするなど電池
容器の工夫をおこなうが、実験室でおこなう場合でも、
安定性がなく教材に適しない。
エ.他に電池容器として、ビーカーなどを用いることが
あるが、陽極、陰極を挿入した燃料入り二本のくだを、
大量の電解液の入ったビーカー中に立るために、危険を
伴う。
オ.ビーカー等の容器は、電解液が大量に必要である。
カ.ウやエの容器を使用した場合、燃料がイオンになっ
た後一度くだの外に出てから回路を結ぶので、放電・充
電効率が落ちる。などの欠点がある。
(2)の電極の問題点
ア.従来は合成といしを岩石カッターで薄く切断し、そ
の上に接着剤を塗り、電気メッキをおこなうなど実験室
での製作が容易でない。
イ.電極が大型になる割りに、あまり電流が得られな
い。
ウ.電極に、白金金網や白金黒などの触媒を使用し、大
変高価である。
エ.いままでの方法は、電極を燃料容器内に封じ込めて
しまい、電極の違いによる電流の強弱、電圧の相違など
が簡便に測定できない。
オ.他に電極として、多孔質のセラミック板に触媒を密
着させることや陽イオン交換膜を触媒に密着させるなど
の方法があるが、実験室での製作は大変難しい。
(3)の充電が大変ゆるやかである。
実験室におけるいままでの燃料電池は電流を一度に、た
くさんとりだせない。したがって、負荷をかけても思う
ように作動しない。以上の点から、教材用としての燃料
電池は存在しない。本発明は、上記の種々の欠点を除
き、簡便な装置で、現在大企業のみが先端技術を駆使し
て実証プラントを建設し、検証をつんでいる燃料電池発
電の基礎を、児童・生徒にわかりやすく理解させるため
の装置である。同時に、廃棄されるマンガン乾電池等が
環境公害の元にもなるといわれている今日、燃料電池は
無公害電池でもあることから環境教育への導入教材とし
ても価値ある教材として、利用できる。いま、その構造
を(1)電池容器の発明(2)カセット式電極の発明
(3)ハニカム構造電解液吸い上げ膜について説明す
る。全体はH字型をしており、電解液補助タンクを持っ
ている。電極は、取り替えることができる。また、全体
の装置は、薬品に侵されにくく、圧力に耐える素材を使
用し、安全性も高く何より簡便である。
(1)電池容器の発明
(ア)底蓋8を外す。
(イ)底から、電極3スチール製板線に、燃料になる液
体や気体をイオン化しやすい触媒をメッキした電極を電
池容器内2に挿入する。
(ウ)底蓋8を締める。
(エ)燃料注入口1から、イオン化した燃料を移動させ
る物質である電解液を容器一杯に充填する。
(オ)電解液補助タンク7に、連結用パイプ9を、電解
液調節用口6に接続管10をもちいて接続する。
(カ)燃やされる物質をH型の一方の、燃料注入口1を
開け、連通管5の上部まで充填する。このとき、押し出
される電解液は6,10,9を通り、電解液補助タンク
7に集められる。注入口1を閉じる。
(キ)同様に、燃やす物質をH型のもう一方に、連通管
5の上部まで充填する。このときも、押し出される電解
液は、6,10,9を通り、電解液補助タンク7に集め
られる。注入口1を閉じる。したがって、電解液補助タ
ンク7は、H型部分の容積とほぼ等しい体積を持つ。
(ク)導線4に負荷(ラジオ等)を接続すると作動す
る。
(ケ)燃やされる物質、燃やす物質が消費されるにつ
れ、電池容器2内が減圧される。このとき、電解液補助
タンク7から電解液がサイフオンの原理で9,10,6
を通り自動的に電池容器2内を満たす。
(コ)燃料が無くなったときは(カ)(キ)の操作を繰
り返す。
必要に応じて(カ)(キ)を繰り返せば、燃料の補充を
おこなうだけで、使い捨てのマンガン乾電池より相当な
長時間、6ケ月、1年でも電流を流し続ける。容器も使
用に耐え、資源を有効に活用することからも価値があ
る。
(2)カセット式電極の発明
この発明は、教材用燃料電池の電極に関するものであ
る。実験室での電極は封入型であった。カセット式のも
のはない。また、触媒として、白金金網、ニッケル金網
に白金メッキしたものを用いるなど大変高価のものであ
る。スチールウールにパラジウムメッキしたもを用いる
ときもあるが耐久性がない。これらの点を改良するた
め、次ぎのような素材を用い、構造を考案した。いま、
その構造を説明すると、
(ア)電極3にスチール製板線を用いる。その板線に燃
料をイオン化しやすい触媒をメッキする。
(イ)電極の芯11は薬品に侵されない物質を選択す
る。
(ウ)ハニカム構造電解液吸い上げ膜12を組み込む。
膜には電解液を吸い上げやすい素材を用いる。
(エ)11,12を接着して、その上から3を巻きつけ
る。
(オ)(エ)は容器2に出し入れ自由な大きさとする。
以上なような構造にすると、電極のみ交換することによ
り、物質ごとに異なる電流密度、起電力がたやすく測定
でき、従前に無く、物理化学分野での実験検証に大変効
果的である。
(3)ハニカム構造電解液吸い上げ膜
燃料電池の充電が大変ゆるやかである、とした欠点が飛
躍的に改善できる。負荷(ラジオ等)を接続しても減極
がゆるやかで、教材として実験・検証をおこなうに充分
耐え得る燃料電池となる。これは、電解液を上部まで吸
い上げることにより、気体、電解液、触媒の三相界面の
接触面積を大幅に改善したためである。以上のことか
ら、教材用燃料電池は、負荷をかけた時(ラジオ接続
等)聞こえる時間が長時間になり実用電池への道を開く
ものと思う。スチール製板線は丈夫であり、耐久性にも
優れている。なお、電池容器2の実施態様とハニカム構
造カセット式電極3の実施態様にはつぎのようなものが
ある。
(a)容器2が箱型をしており、連通管5に当る部分を
容器うち側全体に拡大し、半透膜、電解液吸い上げ膜、
電極をパッキン等で囲み、陰陽両燃料室の間に挿入、マ
ウント方式で仕切る容器。
(b)容器2が円形で、連通管5に当る部分を容器うち
側全体に拡大し、半透膜、電解液吸い上げ膜、電極をパ
ッキン等で囲み、陰陽両燃料室の間に挿入、マウント方
式で仕切り、容器を必要に応じて増やして、高電力を得
る方法。
(c)扁平なスチール製板線にパラジウムメッキする方
法
(d)扁平なスチール製板線にニッケルメキする方法
(e)扁平なスチール製板線に白金黒メッキする方法DETAILED DESCRIPTION OF THE INVENTION The present invention is different from a disposable battery such as a manganese dry battery, in which a container is replenished with a liquid or a gas as a fuel after use, so that electric energy can be continuously taken out directly. It is a device. At present, it is carried out in the laboratory, but has not been put to practical use as a teaching material. The problems that cannot be made into teaching materials are: (1) The gas circulation device is required, and the battery container becomes large. (2) The catalyst required for the electrode is expensive and there is a problem in manufacturing. Electrodes cannot be replaced. (3) Charging is too slow and the load does not work, making it unsuitable for teaching materials. However, it has not been put to practical use even though it has been recognized as a valuable material as a teaching material. The problem will be specifically explained. Problem of battery container of (1) a. The electrodes cannot be replaced because they are enclosed in an airtight box. Therefore, it is not possible to verify the difference in electromotive force, current density, etc. due to the difference in substance. I. In the conventional laboratory device, since the fuel is continuously flowed, the device is separately required, which is a large device. C. Experimentally, cut the bottom of the test tube into a container,
We devise a battery container such as cutting a thick vinyl pipe to make it a container, but even when doing it in the laboratory,
Not stable and not suitable for teaching materials. D. In addition, a beaker may be used as the battery container.
Standing in a beaker containing a large amount of electrolyte is dangerous. E. A container such as a beaker requires a large amount of electrolytic solution. F. When the container of c or d is used, the discharge and charge efficiency is lowered because the circuit is connected after the fuel has turned into ions and then once outside the container. There are drawbacks such as. Problems of the electrode of (2) a. Conventionally, it is not easy to fabricate a synthetic wheel in a laboratory by thinly cutting it with a rock cutter, applying an adhesive on it, and performing electroplating. I. Despite the large size of the electrode, it does not provide much current. C. It uses a catalyst such as platinum wire mesh or platinum black for the electrodes and is very expensive. D. In the conventional methods, the electrodes are enclosed in the fuel container, and the strength of current and the difference in voltage due to the difference in electrodes cannot be easily measured. E. Other methods such as adhering a catalyst to a porous ceramic plate as an electrode or adhering a cation exchange membrane to a catalyst are difficult to manufacture in a laboratory. Charging in (3) is very gentle. Conventional fuel cells in the laboratory cannot draw a lot of electric current at one time. Therefore, it does not work as expected when loaded. From the above points, there is no fuel cell for teaching materials. The present invention is a simple device that eliminates the above-mentioned various drawbacks.At present, only large companies are constructing a demonstration plant by making full use of cutting-edge technology, and verifying the basis of fuel cell power generation for children and students. It is a device to make it easy to understand. At the same time, it is said that discarded manganese dry batteries and the like are also sources of environmental pollution, and fuel cells are also pollution-free batteries, so they can be used as valuable teaching materials for environmental education. Now, the structure will be described as follows: (1) Invention of battery container (2) Invention of cassette type electrode (3) Honeycomb structure electrolyte absorption membrane. The whole is H-shaped and has an electrolyte auxiliary tank. The electrodes can be replaced. In addition, the entire device uses a material that is resistant to chemicals and withstands pressure, has high safety, and is most convenient. (1) Invention of Battery Container (a) Remove the bottom lid 8. (A) From the bottom, the electrode 3 is inserted into the battery case 2 on the steel plate wire, which is plated with a catalyst that easily ionizes a liquid or gas serving as a fuel. (C) Tighten the bottom cover 8. (D) From the fuel injection port 1, a container is filled with an electrolytic solution which is a substance for moving the ionized fuel. (E) The connecting pipe 9 is connected to the electrolytic solution auxiliary tank 7 and the connecting pipe 10 is connected to the electrolytic solution adjusting port 6. (F) One of the H-shaped fuel injection ports 1 is opened to fill the combustible substance up to the upper part of the communication pipe 5. At this time, the electrolytic solution pushed out passes through 6, 10 and 9 and is collected in the electrolytic solution auxiliary tank 7. Close inlet 1. (G) Similarly, the combustible substance is filled into the other of the H type up to the upper part of the communication pipe 5. Also at this time, the electrolytic solution pushed out passes through 6, 10 and 9 and is collected in the electrolytic solution auxiliary tank 7. Close inlet 1. Therefore, the electrolytic solution auxiliary tank 7 has a volume substantially equal to the volume of the H-shaped portion. (H) It operates when a load (radio or the like) is connected to the lead wire 4. (V) As the burned substance and the burnable substance are consumed, the pressure inside the battery container 2 is reduced. At this time, the electrolyte solution from the electrolyte solution auxiliary tank 7 is 9, 10, 6 by the principle of sifon.
And the inside of the battery container 2 is automatically filled. (K) When the fuel is exhausted, repeat steps (F) and (K). By repeating (F) and (K) as needed, the fuel can be replenished only for a considerably longer time than a disposable manganese dry cell for 6 months or 1 year. Containers are also valuable because they can withstand use and make effective use of resources. (2) Invention of cassette type electrode The present invention relates to an electrode of a fuel cell for teaching material. The electrodes in the laboratory were encapsulated. There is no cassette type. In addition, the catalyst is very expensive, such as platinum wire mesh or nickel wire mesh plated with platinum. Steel wool is sometimes plated with palladium, but it is not durable. In order to improve these points, we devised a structure using the following materials. Now
To explain the structure, (a) a steel plate wire is used for the electrode 3. The plate wire is plated with a catalyst that easily ionizes the fuel. (A) For the core 11 of the electrode, a substance that is not attacked by chemicals is selected. (C) The honeycomb structure electrolyte absorbing film 12 is incorporated.
Use a material that easily absorbs the electrolyte solution. (D) Glue 11 and 12 and wrap 3 from above. (E) and (d) have a size that allows them to be put in and taken out from the container 2 freely. With the above structure, it is possible to easily measure different current densities and electromotive forces for each substance by exchanging only the electrodes, which is unprecedented, and it is very effective for experimental verification in the field of physical chemistry. (3) The drawback that the charging of the honeycomb structure electrolyte wicking membrane fuel cell is very slow can be dramatically improved. Even if a load (radio etc.) is connected, the depolarization will be gentle, and it will be a fuel cell that can withstand experiments and verifications as teaching materials. This is because the contact area of the three-phase interface of gas, electrolyte and catalyst was greatly improved by sucking up the electrolyte to the upper part. From the above, it is believed that the fuel cell for teaching materials paves the way for a practical battery because it will be heard for a long time when a load is applied (radio connection etc.). Steel plate wire is strong and durable. The following is an example of the embodiment of the battery container 2 and an embodiment of the honeycomb structure type cassette electrode 3. (A) The container 2 has a box shape, and a portion corresponding to the communication pipe 5 is enlarged to the entire inside of the container to form a semipermeable membrane, an electrolyte suction membrane,
A container that encloses the electrodes with packing, etc., inserts them between the Yin and Yang fuel chambers, and partitions them with a mount system. (B) The container 2 has a circular shape, and the portion corresponding to the communication pipe 5 is enlarged to the entire inside of the container, and the semipermeable membrane, the electrolyte solution suction membrane, the electrodes are surrounded by packing, etc. A method to obtain high power by partitioning with a method and increasing the number of containers as needed. (C) Method of palladium plating on flat steel plate wire (d) Method of nickel plating on flat steel plate wire (e) Method of platinum black plating on flat steel plate wire
【図面の簡単な説明】 【図1】本発明の正面図である。 【図2】本発明のカセット式電極の拡大正面図である。 【図3】本発明の電極の拡大断面図である。 【符号の説明】 (1)は燃料注入口 (2)は電池容器 (3)はカセット式電極 (4)は導線 (5)は連通管 (6)は電解液排出・吸入パイプ (7)は電解液補助タンク (8)は底蓋 (9)は補助タンクへの電解液排出・吸入用パイプ (10)は(6)と(9)の接続管 (11)はカセット式電極の芯 (12)はハニカム構造電解液吸い上げ膜[Brief description of drawings] FIG. 1 is a front view of the present invention. FIG. 2 is an enlarged front view of the cassette type electrode of the present invention. FIG. 3 is an enlarged sectional view of an electrode of the present invention. [Explanation of symbols] (1) is the fuel inlet (2) is a battery container (3) is a cassette type electrode (4) is a conductor (5) is a communication pipe (6) is an electrolyte discharge / suction pipe (7) is an electrolyte auxiliary tank (8) is the bottom lid (9) is a pipe for draining / suctioning the electrolyte into the auxiliary tank (10) is a connecting pipe of (6) and (9) (11) is the core of the cassette-type electrode (12) is a honeycomb structure electrolyte absorption membrane
Claims (1)
を燃料室4のわきに設置する。 (イ)ハニカム構造電解液吸い上げ膜3を組み込むカセ
ット式電極とする。 (ウ)ハニカム構造カセット式電極3はスチール製板線
を使用し、触媒は燃料をイオン化しやすい物質を用い
る。 (エ)電池容器図1は薬品に侵されにくい素材を用い
る。 (オ)電池容器図1は圧力に耐える素材を用いる。 【請求項2】電池容器図1に、 【請求項1】の(ア)(イ)(ウ)(エ)(オ)を含め
た特許請求範囲 【請求項1】の教材用燃料電池Claims: (a) Cartridge type electrolyte auxiliary tank 7
Is installed beside the fuel chamber 4. (A) A cassette-type electrode in which the honeycomb structure electrolyte wicking film 3 is incorporated. (C) The honeycomb structure cassette type electrode 3 uses a steel plate wire, and the catalyst uses a substance that easily ionizes fuel. (D) Battery container In FIG. 1, a material that is not easily attacked by chemicals is used. (E) Battery container FIG. 1 uses a material that withstands pressure. 2. A battery container. A fuel cell for teaching material according to claim 1, wherein (a), (b), (c), (d), and (e) of (1) are included in FIG.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4064372A JP2707388B2 (en) | 1992-02-04 | 1992-02-04 | Teaching material fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4064372A JP2707388B2 (en) | 1992-02-04 | 1992-02-04 | Teaching material fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05217590A true JPH05217590A (en) | 1993-08-27 |
JP2707388B2 JP2707388B2 (en) | 1998-01-28 |
Family
ID=13256397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4064372A Expired - Fee Related JP2707388B2 (en) | 1992-02-04 | 1992-02-04 | Teaching material fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2707388B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101908292A (en) * | 2010-06-28 | 2010-12-08 | 淮安市清河中学 | Hydrogen-oxygen fuel cell demonstration instrument |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107731070A (en) * | 2017-11-23 | 2018-02-23 | 佛山索弗克氢能源有限公司 | Fuel cell instruments used for education |
-
1992
- 1992-02-04 JP JP4064372A patent/JP2707388B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101908292A (en) * | 2010-06-28 | 2010-12-08 | 淮安市清河中学 | Hydrogen-oxygen fuel cell demonstration instrument |
Also Published As
Publication number | Publication date |
---|---|
JP2707388B2 (en) | 1998-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100886293B1 (en) | Bipolar electrochemical battery of stacked wafer cells | |
US4482614A (en) | Zinc-bromine battery with long term stability | |
US4425215A (en) | Gas generator | |
US3402077A (en) | Storage batteries and method of manufacturing the same | |
JPS61161676A (en) | Metal-gas battery for lightweight dipole | |
WO1990011626A1 (en) | A nickel-hydrogen battery with oxygen and electrolyte management features | |
CN117291124B (en) | Performance prediction method of all-vanadium redox flow battery | |
US2842607A (en) | Hermetically-sealed storage battery | |
CN105609898A (en) | Air battery | |
US3102058A (en) | Inert voltaic batteries | |
JPH05217590A (en) | Fuel cell for teaching material | |
JP3510582B2 (en) | 3D battery | |
CN205335398U (en) | Air battery | |
US3560264A (en) | Fuel cell with electrolyte or fuel distributor | |
EP0051349B1 (en) | A lead - acid battery construction | |
US3836398A (en) | Electrochemical generators of the metal-air or metal-oxygen type | |
US6042964A (en) | Thermally regenerative battery with intercalatable electrodes and selective heating means | |
CN112447266A (en) | All-vanadium redox flow battery capacity attenuation modeling method considering water molecule migration | |
GB2054249A (en) | Electric storage batteries | |
JPS61279069A (en) | Constitution of fuel cell | |
JPH0286073A (en) | Thin, ribbon-shaped, flexible and chargeable zinc/halide battery | |
Harris et al. | Electrochemical flow cell to detect li-ion battery crosstalk reactions | |
US3484292A (en) | Electrochemical generators utilizing gaseous fuels and/or gaseous oxidizers | |
CN221486630U (en) | Magnesium battery and magnesium battery pack | |
RU2387053C1 (en) | Method to produce fuel-cell battery with solid polymer electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |