JPH05217537A - Photographing device for transmission type electron microscope - Google Patents

Photographing device for transmission type electron microscope

Info

Publication number
JPH05217537A
JPH05217537A JP4020984A JP2098492A JPH05217537A JP H05217537 A JPH05217537 A JP H05217537A JP 4020984 A JP4020984 A JP 4020984A JP 2098492 A JP2098492 A JP 2098492A JP H05217537 A JPH05217537 A JP H05217537A
Authority
JP
Japan
Prior art keywords
focus
electron microscope
phase contrast
condition
photograph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4020984A
Other languages
Japanese (ja)
Other versions
JP2908927B2 (en
Inventor
Toshikazu Honda
本田敏和
Hisayuki Tsuno
津野久幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2098492A priority Critical patent/JP2908927B2/en
Publication of JPH05217537A publication Critical patent/JPH05217537A/en
Application granted granted Critical
Publication of JP2908927B2 publication Critical patent/JP2908927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently take in information having high resolving power by using the through focus function, in photographing a transmission type electron microscope image. CONSTITUTION:As for a transmission type electron microscope which possesses the through focus function for taking photograph by varying the defocus quantity in stepwise form, taking a through focus photograph is carried out, setting the defocus condition to (mcslambda)<1/2> (m: odd number, cs: spherical aberration coefficient, lambda: wave length). Accordingly, a through focus photograph which the condition for making the phase contrast constant can be obtained for the space frequency in a wide range, and the image information having the higher resolving power can be obtained by combining these photographs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高分解能像を得るための
透過型電子顕微鏡の撮影装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission electron microscope photographing apparatus for obtaining a high resolution image.

【0002】[0002]

【従来の技術】透過型電子顕微鏡の撮影装置において、
特に高倍率、高分解能像のコントラストは物体を透過す
る電子線の僅かな位相のずれに基づく位相コントラスト
(Phase contrast transfer
function)により生じている。位相コントラス
トをBとすると、Bは(1)式により与えられる。
2. Description of the Related Art In a photographic device of a transmission electron microscope,
In particular, the contrast of a high-magnification, high-resolution image is a phase contrast transfer based on a slight phase shift of an electron beam passing through an object.
function). When the phase contrast is B, B is given by the equation (1).

【0003】 B=Bc・Gα・Gε ……(1) ここにBcはコヒーレント伝達函数、Gαは可干渉性係
数、Gεは色収差係数である。コヒーレント伝達函数B
cは(2)式で与えられる。
B = Bc · Gα · Gε (1) where Bc is a coherent transfer function, Gα is a coherence coefficient, and Gε is a chromatic aberration coefficient. Coherent transfer function B
c is given by the equation (2).

【0004】 Bc=−sin(π/2λ)・(cS θ4 −2Δfθ2 )=−sinφ(θ) ……(2) ここにcS はレンズの球面収差係数、Δfはデフォーカ
ス量、θは空間周波数である。
Bc = −sin (π / 2λ) · (c S θ 4 −2Δf θ 2 ) = − sin φ (θ) (2) where c S is the spherical aberration coefficient of the lens, Δf is the defocus amount, θ is a spatial frequency.

【0005】ところで、空間周波数θに対する可干渉性
係数Gα、色収差係数Gε、コヒーレント伝達函数B
c、位相コントラストBは、図5に示すような特性を示
す。この特性から分かるように、試料照射電子線の開き
角のエンベロープファンクションであるGα、高圧変動
に対する色収差のエンベロープファンクションであるG
εの減衰が比較的早く、位相コントラストBはコヒーレ
ント伝達函数Bcが最初に0になる点から急速に減衰し
てしまう。分解能は空間周波数θに対応し、高分解能像
とは大きな空間周波数θに対しても所定の位相コントラ
ストが得られることである。位相コントラストが得られ
なければ像として確認できないわけであるので、透過型
電子顕微鏡の分解能はこのコントラストが得られる範囲
内で議論されねばならない。この点、従来の高分解能像
は、後述するスルーフォーカスで撮影された写真の中か
らシュルツァーフォーカス条件を満たすもの、即ちコヒ
ーレント伝達函数Bcが最初に0となる点を探すことに
より得ており、それが限界であった。
Incidentally, the coherence coefficient Gα, the chromatic aberration coefficient Gε, and the coherent transfer function B with respect to the spatial frequency θ.
The c and the phase contrast B show the characteristics as shown in FIG. As can be seen from this characteristic, Gα which is the envelope function of the opening angle of the sample irradiation electron beam and G which is the envelope function of the chromatic aberration with respect to the high pressure fluctuation
The attenuation of ε is relatively fast, and the phase contrast B is rapidly attenuated from the point where the coherent transfer function Bc first becomes zero. The resolution corresponds to the spatial frequency θ, and a high resolution image means that a predetermined phase contrast can be obtained even for a large spatial frequency θ. The resolution of the transmission electron microscope must be discussed within the range where this contrast can be obtained, because the image cannot be confirmed unless the phase contrast is obtained. In this respect, the conventional high-resolution image is obtained by searching for a Schulzer focus condition, that is, a point at which the coherent transfer function Bc becomes 0 first, from among photographs taken in through focus described later, That was the limit.

【0006】現在、透過型電子顕微鏡の理論分解能とし
て一般的に用いられているものは、 Δf=1.2(cS λ)1/2 の時の位相コントラスト伝達函数が最初に0になる点、
すなわち図5のP点であり、写真撮影時にはフォーカス
条件を選んでこれを探していた。この手法の1つとして
スルーフォーカスがあり、これはシェルツァーフォーカ
ス条件と思われる近傍で、ある一定のフォーカスステッ
プで対物レンズの焦点位置を変化させた何枚かの写真の
中にシェルツァーフォーカス条件を満たすものが入って
いるであろうという予測のもとに手動または自動的に数
枚の写真撮影を行うものである。
What is generally used as the theoretical resolution of a transmission electron microscope at present is that the phase contrast transfer function becomes 0 first when Δf = 1.2 (c S λ) 1/2. ,
That is, it is the point P in FIG. 5, and when the photograph was taken, the focus condition was selected and searched for. One of the methods is through focus, which is considered to be the Scherzer focus condition. In the vicinity of what seems to be the Scherzer focus condition, the Sherzer focus condition is included in some photographs in which the focus position of the objective lens is changed in a certain focus step. It takes a few photos manually or automatically with the expectation that there will be something that meets the requirements.

【0007】これについて図7、図8により説明する。
図7において、電子銃1からの電子線2を集束レンズ3
を介して試料6に照射し、対物レンズ4により試料像を
結像し、投影レンズ5を介して螢光板7に像を投影す
る。この時励磁電流可変機構8により対物レンズ4に対
する励磁電流を、図8に示すようにステップ状に変化さ
せることによりデフォーカス量を階段的に変化させ、各
ステップ毎に撮影を行うものである。このようなスルー
フォーカス機能によりステップ分だけの写真を撮影し、
その中からシェルツァーフォーカス条件を満たすもの探
すようにしていた。
This will be described with reference to FIGS. 7 and 8.
In FIG. 7, an electron beam 2 from an electron gun 1 is focused on a focusing lens 3
The sample 6 is irradiated with the light through the, the sample image is formed by the objective lens 4, and the image is projected on the fluorescent plate 7 through the projection lens 5. At this time, the exciting current varying mechanism 8 changes the exciting current to the objective lens 4 stepwise as shown in FIG. 8 to change the defocus amount stepwise, and an image is taken at each step. With the through focus function like this, you can take a picture of only the number of steps,
I tried to find the one that meets the Sherzer focus condition.

【0008】[0008]

【発明が解決しようとする課題】ところで、電界放出タ
イプのエミッタの使用や超高感度記録装置(イメージン
グプレート)の出現により、1桁小さい試料照射電子線
の開き角や半分以下のエネルギ幅が実現可能になった。
その結果図6に示すように、GαまたはGεの減衰によ
って規定されていた位相コントラストが得られる限界
が、従来ではほぼシェルツァーフォーカス条件であるコ
ヒーレント伝達函数Bcの一回目の折り返し点程度であ
ったものが大幅に改善され、大きい空間周波数の領域ま
でコントラストの低下に影響を及ぼさないようになって
きた。このような場合、従来のように単にシェルツァー
フォーカス条件を満たす写真を得るだけでなく、様々な
フォーカス像を組合わせることによって、より高分解能
な情報を得られる可能性がでてくる。
The use of field emission type emitters and the advent of ultra-sensitive recording devices (imaging plates) have realized an aperture angle of the sample irradiation electron beam that is one digit smaller and an energy width of less than half. It became possible.
As a result, as shown in FIG. 6, the limit at which the phase contrast defined by the attenuation of Gα or Gε can be obtained is about the first folding point of the coherent transfer function Bc which is the Sherzer focus condition in the related art. However, it has been improved so much that it does not affect the contrast reduction even in the region of large spatial frequency. In such a case, it is possible to obtain information with higher resolution by combining various focus images in addition to simply obtaining a photograph that satisfies the Sherzer focus condition as in the past.

【0009】本発明はかかる事情に鑑みてなされたもの
で、より高分解能な試料の情報を能率よくとり込むこと
ができる透過型電子顕微鏡の撮影装置を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an imaging apparatus for a transmission electron microscope capable of efficiently taking in information of a sample with higher resolution.

【0010】[0010]

【課題を解決するための手段】本発明は、デフォーカス
量をステップ状に変化させて写真撮影するスルーフォー
カス機能を有する透過型電子顕微鏡において、デフォー
カス条件を (mcS λ)1/2 (m:奇数,cS :球面収差係数,
λ:波長)としてスルーフォーカス写真撮影を行うよう
にしたことを特徴とする。
According to the present invention, a defocus condition is set to (mc S λ) 1/2 (in a transmission electron microscope having a through focus function for taking a photograph while changing a defocus amount in steps. m: odd number, c S : spherical aberration coefficient,
It is characterized in that through-focus photography is performed as (λ: wavelength).

【0011】[0011]

【作用】本発明はスルーフォーカス機能により、Δf=
(mcS λ)1/2 (m:奇数)の条件でステップ状にデ
フォーカス量を変化させて写真撮影をすることにより、
空間周波数のより広範囲な領域で位相コントラストがほ
ぼ一定となる条件を満たしたスルーフォーカスの写真を
得ることができ、これらを組み合わせることにより、よ
り高分解な像情報を得ることが可能となる。
In the present invention, the through focus function allows Δf =
By taking a photograph while changing the defocus amount stepwise under the condition of (mc S λ) 1/2 (m: odd number),
It is possible to obtain a through-focus photograph that satisfies the condition that the phase contrast is substantially constant in a wider range of spatial frequencies, and by combining these, it is possible to obtain higher resolution image information.

【0012】[0012]

【実施例】以下本発明の実施例を説明する。前述したよ
うに、実質的に位相コントラストBを決定するBcは
(2)式のように表されるので、位相コントラストが一
定の領域が生じる理由は、θの函数であるφが、θの小
さい領域では−2Δfθ2 の項が大きいために単調に減
少し、θの増大に伴いcS θ4 の項が大きくなり、 φ=−π/2−nπ(nは自然数)のところで0となっ
て単調増加に転じることによって生ずることが分かる。
EXAMPLES Examples of the present invention will be described below. As described above, since Bc that substantially determines the phase contrast B is expressed by the equation (2), the reason why a region where the phase contrast is constant occurs is that φ, which is a function of θ, has a small θ. In the region, the term −2Δfθ 2 is large and therefore decreases monotonically, and the term of c S θ 4 increases as θ increases, and becomes 0 at φ = −π / 2−nπ (n is a natural number). It can be seen that this is caused by a monotonic increase.

【0013】そこで、φ=φ(θ)を調べてみると、 φ(θ)=(π/2λ)・(cS θ4 −2Δfθ2 ) において、Δf=k(cS λ)1/2 と変数変換(cS λ
=定数)すると、 φ(θ)=(π/2λ)・(cS θ4 −2k(cS λ)1/2 ・θ2 ) φ´(θ)=(2π/λ)・(cS θ3 −k(cS λ)1/2 ・θ) =(2π/λ)・cS θ(θ2 −k(λ/cS 1/2 ) したがって、φ´(θ)=0を満たすθは、 θ=k1/2 ・cS -1/4・λ1/4 となり、この時単調減少が単調増加に転じることが分か
る。
Therefore, when φ = φ (θ) is examined, Δf = k (c S λ) 1/2 in φ (θ) = (π / 2λ)  (c S θ 4 -2Δf θ 2 ). And variable conversion (c S λ
= (Constant), φ (θ) = (π / 2λ) · (c S θ 4 −2k (c S λ) 1/2 · θ 2 ) φ ′ (θ) = (2π / λ) · (c S θ 3 −k (c S λ) 1/2 · θ) = (2π / λ) · c S θ (θ 2 −k (λ / c S ) 1/2 ) Therefore, φ ′ (θ) = 0 The satisfied θ is θ = k 1/2 · c S -1/4 · λ 1/4 , and it can be seen that the monotonic decrease turns into a monotonic increase at this time.

【0014】そこで、θ=k1/2 ・cS -1/4・λ1/4
代入すると、 φ(θ)=(π/2)・k2 となり、kのみの函数となる。従ってφ=−π/2−n
πを満たすkは k=(m)1/2 (mは奇数)であることが分かる。従っ
てΔf=(mcS λ)1/2 (mは奇数)の条件でデフォ
ーカス量を変化させて写真を撮れば、位相コントラスト
がほぼ一定の条件を満たしたスルーフォーカス写真を得
ることが可能となる。
Then, by substituting θ = k 1/2 · c S −1/4 · λ 1/4 , φ (θ) = (π / 2) · k 2 , and a function of only k is obtained. Therefore φ = −π / 2−n
It can be seen that k satisfying π is k = (m) 1/2 (m is an odd number). Therefore, if a photograph is taken while changing the defocus amount under the condition of Δf = (mc S λ) 1/2 (m is an odd number), it is possible to obtain a through-focus photograph satisfying the condition that the phase contrast is almost constant. Become.

【0015】図1はm=1の場合の位相コントラストを
示し、θが0〜0.53の領域において得られる情報は
位相が全てそろっており、これがシェルツァーフォーカ
ス条件を満たすものである。図2はm=5の場合であ
り、図のA1の領域(θが0.45〜0.7)におい
て、位相コントラストが一定の領域が得られ、空間周波
数の大きいより高分解能な情報が得られる。図3はm=
9の場合であり、図の領域A(θが0.55〜0.7
8)において位相コントラストがほぼ一定となり、一層
高分解能な情報が得られる。図4はm=13の場合であ
り、領域A3(θが0.62〜0.83)において位相
コントラストがほぼ一定となり、さらに高分解能な情報
が得られる。
FIG. 1 shows the phase contrast in the case of m = 1, and the information obtained in the region of θ of 0 to 0.53 has all the phases, which satisfies the Sherzer focus condition. FIG. 2 shows the case where m = 5. In the area A1 (θ is 0.45 to 0.7) in the figure, an area with a constant phase contrast is obtained, and higher resolution information with a large spatial frequency is obtained. Be done. In FIG. 3, m =
9 and the area A (θ is 0.55 to 0.7).
In 8), the phase contrast becomes almost constant, and higher resolution information can be obtained. FIG. 4 shows the case where m = 13, and the phase contrast is almost constant in the region A3 (θ is 0.62 to 0.83), and higher resolution information can be obtained.

【0016】このように(mcS λ)1/2 において、m
を奇数としてその値を大きくすることにより、より高分
解能側において位相コントラストがほぼ一定な領域が得
られるので、これらの領域の写真を撮影して合成するこ
とにより、単にシェルツァー条件を満たす従来のものに
比して、より一層高分解能な像情報を得ることが可能と
なる。
Thus, at (mc S λ) 1/2 , m
By making the value an odd number and increasing the value, areas where the phase contrast is almost constant on the higher resolution side can be obtained, so by taking photographs of these areas and synthesizing them, the conventional Sherzer condition is satisfied. It is possible to obtain image information with higher resolution than that of the image information.

【0017】[0017]

【発明の効果】以上のように本発明によれば、Δf=
(mcS λ)1/2 (mは奇数)のデフォーカス条件でス
ルーフォーカスを行うことにより電界放出タイプのエミ
ッタあるいはイメージングプレートを使用した場合に、
より広範囲な空間周波数に対して位相コントラストが一
定となる条件を満たしたスルーフォーカスの写真を得る
ことができ、これらを組み合わせることにより、より高
分解能な試料の情報を能率良く取り込むことが可能とな
る。
As described above, according to the present invention, Δf =
When a field emission type emitter or an imaging plate is used by performing through focus under a defocus condition of (mc S λ) 1/2 (m is an odd number),
Through-focus photographs that satisfy the condition that the phase contrast is constant over a wider range of spatial frequencies can be obtained, and by combining these, it is possible to efficiently capture information of higher resolution samples. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】 m=1の場合の位相コントラストを示す図で
ある。
FIG. 1 is a diagram showing a phase contrast when m = 1.

【図2】 m=5の場合の位相コントラストを示す図で
ある。
FIG. 2 is a diagram showing a phase contrast when m = 5.

【図3】 m=9の場合の位相コントラストを示す図で
ある。
FIG. 3 is a diagram showing a phase contrast when m = 9.

【図4】 m=13の場合の位相コントラストを示す図
である。
FIG. 4 is a diagram showing a phase contrast when m = 13.

【図5】 シェルツァーフォーカス条件を説明するため
の図である。
FIG. 5 is a diagram for explaining Schelzer focus conditions.

【図6】 Gα、Gεの減衰と位相コントラストの関係
を示す図である。
FIG. 6 is a diagram showing the relationship between the attenuation of Gα and Gε and the phase contrast.

【図7】 スルーフォーカス機能を説明する図である。FIG. 7 is a diagram illustrating a through focus function.

【図8】 スルーフォーカス機能を説明する図である。FIG. 8 is a diagram illustrating a through focus function.

【符号の説明】[Explanation of symbols]

B…位相コントラスト、Bc…コヒーレント伝達函数、
Gα…可干渉性係数、Gε…色収差係数、cS …球面収
差係数、θ…空間周波数。
B ... phase contrast, Bc ... coherent transfer function,
Gα ... Coherence coefficient, Gε ... Chromatic aberration coefficient, c S ... Spherical aberration coefficient, θ ... Spatial frequency.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 デフォーカス量をステップ状に変化させ
て写真撮影するスルーフォーカス機能を有する透過型電
子顕微鏡において、デフォーカス条件を (mcS λ)1/2 (m:奇数,cS :球面収差係数,
λ:波長)としてスルーフォーカス写真撮影を行うよう
にしたことを特徴とする透過型電子顕微鏡の撮影装置。
1. In a transmission electron microscope having a through-focus function for taking a photograph by changing the defocus amount in steps, the defocus condition is (mc S λ) 1/2 (m: odd number, c S : spherical surface). Aberration coefficient,
An image pickup apparatus for a transmission electron microscope, which is configured to perform through-focus photography as (λ: wavelength).
JP2098492A 1992-02-06 1992-02-06 Imaging equipment for transmission electron microscope Expired - Fee Related JP2908927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2098492A JP2908927B2 (en) 1992-02-06 1992-02-06 Imaging equipment for transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2098492A JP2908927B2 (en) 1992-02-06 1992-02-06 Imaging equipment for transmission electron microscope

Publications (2)

Publication Number Publication Date
JPH05217537A true JPH05217537A (en) 1993-08-27
JP2908927B2 JP2908927B2 (en) 1999-06-23

Family

ID=12042421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2098492A Expired - Fee Related JP2908927B2 (en) 1992-02-06 1992-02-06 Imaging equipment for transmission electron microscope

Country Status (1)

Country Link
JP (1) JP2908927B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012822A1 (en) * 2001-07-31 2003-02-13 Iatia Imaging Pty Ltd Phase retrieval from focused and defocused electron beam images
JP2008112643A (en) * 2006-10-30 2008-05-15 Hitachi Ltd Information transmission limit measuring method of transmission electron microscope, and transmission electron microscope with the measuring method applied

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012822A1 (en) * 2001-07-31 2003-02-13 Iatia Imaging Pty Ltd Phase retrieval from focused and defocused electron beam images
JP2008112643A (en) * 2006-10-30 2008-05-15 Hitachi Ltd Information transmission limit measuring method of transmission electron microscope, and transmission electron microscope with the measuring method applied

Also Published As

Publication number Publication date
JP2908927B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
JP3133103B2 (en) X-ray microscope and method of forming x-ray image
JP3284045B2 (en) X-ray optical apparatus and device manufacturing method
US5499137A (en) Exposure method and apparatus therefor
US2959105A (en) Phase noise filter and its application to photography and photolithography
JPH05217537A (en) Photographing device for transmission type electron microscope
US7413831B2 (en) Reflective exposure mask, and method for producing and using the same
Voss et al. Grazing incidence optics for soft x‐ray microscopy
JPS5847826B2 (en) Method of imaging poetry at low magnification using a particle beam device
Fiedler Kawaguchi et al. Improved imaging using Mn He-α x rays at OMEGA EP
JPH08106065A (en) Projection device and focusing method of projection device
JP2001084938A (en) Transmission electron microscope and method for observing image thereof
JPS6336108B2 (en)
JPS6385620A (en) Original image density detector
JP2632033B2 (en) Laser micro-area photoelectron spectroscopy and apparatus
JPS6029187B2 (en) electronic microscope
JP2004055143A (en) Transmission electron microscope and focusing method
JPH0843757A (en) Scanning type image forming device
JP3182285B2 (en) Electronic camera device
Dijkstra et al. X-ray transmission gratings.
JPS643167Y2 (en)
JPH0760656B2 (en) electronic microscope
Schelokov et al. Two-dimensional X-ray focusing by grazing incidence phase Fresnel zone plates in Kirkpatrick-Baez scheme
JPH07283105A (en) X-ray reflection mask and x-ray projection aligner
JPH04256944A (en) Illuminator and projection exposing device
JP2002196502A (en) Exposure method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990309

LAPS Cancellation because of no payment of annual fees