JPH05217186A - Optical head device - Google Patents

Optical head device

Info

Publication number
JPH05217186A
JPH05217186A JP3315869A JP31586991A JPH05217186A JP H05217186 A JPH05217186 A JP H05217186A JP 3315869 A JP3315869 A JP 3315869A JP 31586991 A JP31586991 A JP 31586991A JP H05217186 A JPH05217186 A JP H05217186A
Authority
JP
Japan
Prior art keywords
light
order
slit
error signal
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3315869A
Other languages
Japanese (ja)
Other versions
JP2838930B2 (en
Inventor
Yuichi Komatsu
雄一 小松
Yutaka Yamanaka
豊 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3315869A priority Critical patent/JP2838930B2/en
Publication of JPH05217186A publication Critical patent/JPH05217186A/en
Application granted granted Critical
Publication of JP2838930B2 publication Critical patent/JP2838930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To stably obtain a track error signal even if an effective depth of a pit of an optical disk is near to lambda/4. CONSTITUTION:A diffraction grating 2, light screen band 3 and a polarization beam splitter 4 are disposed in a divergent luminous flux from a semiconductor laser 1. It is converted into a parallel luminous flux by a collimator lens 5, and condensed at a plurality of super-resolution spots on a recording surface of an optical disk 8 by an objective lens 7. A light reflected on the surface of the disk 8 is reflected by the splitter 4 and condensed on a slit 11. A transmitting part, a reflecting part and an absorption part are provided on the slit 11. Only a main lobe of a zero-order luminous flux and + or - primary luminous flux are transmitted to a photodetector 12, and a track error signal and a reproduced signal are detected. Only one side of a side lobe of the zero-order luminous flux is reflected, and a focus error signal is detected by a photodetector 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ヘッド装置に関し、特
にレーザ光源を用いた光学式信号記録再生装置に適用す
る光ヘッド装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical head device, and more particularly to an optical head device applied to an optical signal recording / reproducing device using a laser light source.

【0002】[0002]

【従来の技術】光ディスクにデータを記録する場合、回
折限界まで絞り込んだレーザ光束と同程度の大きさのピ
ットを光ディスク上に形成して記録している。従って、
その記録密度はレーザ波長の二乗に逆比例するので、記
録密度を高めるためにはレーザ光源の短波長化が要求さ
れる。しかしながら、光ディスク装置に使用可能な半導
体レーザでは、650nm程度が限界であると考えられ
ている。
2. Description of the Related Art When data is recorded on an optical disk, pits having the same size as a laser beam narrowed down to the diffraction limit are formed and recorded on the optical disk. Therefore,
Since the recording density is inversely proportional to the square of the laser wavelength, it is required to shorten the wavelength of the laser light source in order to increase the recording density. However, the semiconductor laser that can be used in the optical disk device is considered to have a limit of about 650 nm.

【0003】このため回折限界以下のスポットを実現す
るために超解像手法が導入され、ビデオディスクの再生
実験が行われている。この実験については、1991年
春季第38回応用物理学関係連合講演会 講演予稿集,
講演番号29p−C−1によって報告されている。
For this reason, a super-resolution method has been introduced in order to realize a spot below the diffraction limit, and a video disk reproduction experiment has been conducted. About this experiment, Proceedings of 38th Joint Lecture Meeting on Applied Physics, Spring 1991,
Reported by lecture number 29p-C-1.

【0004】この実験報告によれば、図3に示すような
光学系を構成している。ここで、半導体レーザ1からの
出射光はコリメートレンズ5により平行光束になり、整
形プリズム10によって円形に整形される。次に、遮光
帯3によりビームの中心付近の強度を減衰させて、対物
レンズ7により光ディスク8上に超解像スポツトを形成
している。また、光ディスク8からの反射光は、λ/4
板6によりS偏光に変換された後、偏光ビームスプリッ
タ4により検出系の偏光ビームスプリッタ14に導かれ
る。そして、光ディスクからの反射光はすべて偏光ビー
ムスプリッタ14により反射され、平凸レンズ16によ
りスリット17上に焦点を結ぶ。
According to this experimental report, an optical system as shown in FIG. 3 is constructed. Here, the emitted light from the semiconductor laser 1 is made into a parallel light flux by the collimator lens 5, and is shaped into a circle by the shaping prism 10. Next, the intensity near the center of the beam is attenuated by the light-shielding band 3, and the super-resolution spot is formed on the optical disk 8 by the objective lens 7. Further, the reflected light from the optical disk 8 has a wavelength of λ / 4.
After being converted into S-polarized light by the plate 6, it is guided by the polarization beam splitter 4 to the polarization beam splitter 14 of the detection system. Then, all the reflected light from the optical disk is reflected by the polarization beam splitter 14, and is focused on the slit 17 by the plano-convex lens 16.

【0005】このスリット17は、図4に示すように構
成されており、光ディスク反射光のメインローブとサイ
ドローブとを分離するために用いられる。メインローブ
は、スリット17の透過部分を通過して光検出器12に
入射する。また、サイドローブは、片側のみスリット1
7の反射部分で反射され、λ/4板15によりP偏光に
変換された後、偏光ビームスプリッタ14を通過して光
検出器13に入射する。サイドローブの他方側は、スリ
ット17の吸収部分で吸収される。
The slit 17 is constructed as shown in FIG. 4, and is used to separate the main lobe and the side lobe of the optical disk reflected light. The main lobe passes through the transmission part of the slit 17 and is incident on the photodetector 12. The side lobe has slit 1 on only one side.
The light is reflected by the reflection part 7 and converted into P-polarized light by the λ / 4 plate 15, and then passes through the polarization beam splitter 14 and enters the photodetector 13. The other side of the side lobe is absorbed by the absorbing portion of the slit 17.

【0006】光検出器12は、入射したメインローブか
ら再生信号およびトラックエラー信号を検出し、また、
光検出器13は、入射したサイドローブの片側からフォ
ーカスエラー信号を検出している。
The photodetector 12 detects a reproduction signal and a track error signal from the incident main lobe, and
The photodetector 13 detects the focus error signal from one side of the incident side lobe.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た光学系では、フォーカスエラー信号の検出方法がナイ
フエッジ法であり、また、トラックエラー信号の検出方
法がファーフィールド法である。このため、トラックエ
ラー信号の検出においては、光ディスクに形成されたピ
ットの実効的な深さがλ/4に近い場合、反射回折され
た光の位相差がπとなるため、互いに干渉して打消し合
って検出感度が小さくなり、トラックエラー信号の検出
が不安定になるという問題点を有している。
However, in the above-mentioned optical system, the focus error signal detection method is the knife edge method, and the track error signal detection method is the far field method. Therefore, in the detection of the track error signal, when the effective depth of the pits formed on the optical disc is close to λ / 4, the phase difference of the reflected and diffracted light becomes π, so that they interfere with each other and cancel out. However, there is a problem in that the detection sensitivity decreases and the detection of the track error signal becomes unstable.

【0008】本発明の目的は、光ディスクのピットの実
効的深さがλ/4に近い場合でも、安定にトラックエラ
ー信号を検出できる光ヘッド装置を提供することにあ
る。
It is an object of the present invention to provide an optical head device capable of stably detecting a track error signal even when the effective depth of pits on an optical disk is close to λ / 4.

【0009】[0009]

【課題を解決するための手段】本発明の光ヘッド装置
は、レーザ光を発するレーザ光源と、このレーザ光源か
らの発散光束に対して光ビーム断面内で0次光束および
±1次光束を発生させる回折格子と、この回折格子を通
過した光の中心付近の光強度を減少させて前記0次光束
および±1次光束にそれぞれメインローブおよびサイド
ローブを発生させる遮光帯と、この遮光帯を通過した光
を記録媒体面上に複数の超解像スポットとして集光させ
る第1の集光手段と、前記記録媒体面上からの反射光を
集光させる第2の集光手段と、この第2の集光手段の集
光点に配設されて前記0次光束のメインビームおよび前
記±1次光束のみを透過させると共に、前記0次光束の
サイドローブの片側を反射するスリットと、このスリッ
トを透過した光を受けて再生信号およびトラックエラー
信号を検出する第1の光検出手段と、前記スリットで反
射した光を受けてフォーカスエラー信号を検出する第2
の光検出手段とを備えて構成される。
An optical head device of the present invention generates a laser light source for emitting a laser beam, and a zero-order light beam and a ± first-order light beam in a light beam cross section with respect to a divergent light beam from the laser light source. A diffraction grating, a light-shielding band that reduces the light intensity near the center of light passing through the diffraction grating to generate a main lobe and a side lobe in the 0th-order light beam and the ± 1st-order light beams, respectively, and a light-shielding band that passes through this light-shielding band. First condensing means for condensing the generated light on the recording medium surface as a plurality of super-resolution spots, second condensing means for condensing the reflected light from the recording medium surface, and the second condensing means. And a slit for transmitting only the main beam of the 0th-order luminous flux and the ± 1st-order luminous fluxes and reflecting one side of the side lobes of the 0th-order luminous flux. Receive the transmitted light Second detecting a first light detection means for detecting a reproduction signal and a track error signal, a focus error signal by receiving the light reflected by the slit
And a light detecting means.

【0010】[0010]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0011】図1は本発明の一実施例を示す光学系の配
置図である。半導体レーザ1から出射された発散光束が
回折格子2を透過することにより、出射光ビーム断面内
で0次光束および、ある回折角をもつ+1次光束,−1
次光束とに分離される。次に、遮光帯3により発散光束
の中心付近の光の強度を低減して、0次光束および±1
次光束にそれぞれメインローブおよびサイドローブを発
生させる。更に偏光ビームスプリッタ4を透過させ、コ
リメートレンズ5により平行光束にする。P偏光の平行
光束は、λ/4板6により円偏光に変換され、対物レン
ズ7により光ディスク8の記録面に集光されて複数の超
解像スポットを形成する。
FIG. 1 is a layout view of an optical system showing an embodiment of the present invention. The divergent light beam emitted from the semiconductor laser 1 passes through the diffraction grating 2, so that the 0th-order light beam and the + 1st-order light beam having a certain diffraction angle, -1 in the cross section of the emitted light beam.
It is separated into the next luminous flux. Next, the intensity of light near the center of the divergent light flux is reduced by the light-shielding band 3 to reduce the 0th-order light flux and ± 1.
A main lobe and a side lobe are generated in the next light flux. Further, the light is transmitted through the polarization beam splitter 4, and is made into a parallel light flux by the collimator lens 5. The P-polarized parallel light beam is converted into circularly polarized light by the λ / 4 plate 6 and is condensed on the recording surface of the optical disc 8 by the objective lens 7 to form a plurality of super-resolution spots.

【0012】光ディスク8の記録面から情報を読み取っ
たレーザ光は反射され、再び対物レンズ7に入射し平行
光束となり、λ/4板6を透過して円偏光からS偏光に
変換される。偏光ビームスプリッタ4はS偏光を反射す
るので、光ディスク8からの反射光を全て平凹レンズ9
に反射する。平凹レンズ9により焦点距離を延ばされた
反射光は、λ/4板15により円偏光に変換され、スリ
ット11上に集光される。
The laser light from which information has been read from the recording surface of the optical disk 8 is reflected, enters the objective lens 7 again, becomes a parallel light flux, passes through the λ / 4 plate 6, and is converted from circularly polarized light to S polarized light. Since the polarization beam splitter 4 reflects S-polarized light, all the reflected light from the optical disk 8 is projected by the plano-concave lens 9.
Reflect on. The reflected light whose focal length has been extended by the plano-concave lens 9 is converted into circularly polarized light by the λ / 4 plate 15 and condensed on the slit 11.

【0013】さて、スリット11は、図2に示すような
構成となっており、0次光束のメインローブおよび±1
次光束をそれぞれ分離する機能をもっている。すなわ
ち、0次光束のメインローブ,+1次光束および−1次
光束をそれぞれ透過し、0次光束の一方のサイドローブ
を反射し、0次光束の他方のサイドローブを吸収する。
従って、光検出器12には、±1次光束および0次光束
のメインローブがそれぞれ入射する。
The slit 11 has a structure as shown in FIG. 2, and has a main lobe of the 0th-order luminous flux and ± 1.
It has the function of separating the next luminous flux. That is, the main lobe of the 0th-order light beam, the + 1st-order light beam and the -1st-order light beam are respectively transmitted, one side lobe of the 0th-order light beam is reflected, and the other sidelobe of the 0th-order light beam is absorbed.
Therefore, the main lobes of the ± first-order light flux and the zero-order light flux enter the photodetector 12, respectively.

【0014】光検出器12は3分割された光検出面を有
し、0次光束のメインローブから再生信号を検出し、ま
た、+1次光束および−1次光束の光量の差動出力によ
りトラックエラー信号を検出する。
The photodetector 12 has a photodetection surface divided into three parts, detects a reproduction signal from the main lobe of the 0th-order luminous flux, and tracks by the differential output of the light amounts of the + 1st-order luminous flux and the -1st-order luminous flux. Detect an error signal.

【0015】この場合、反射光の位相に関係なく、+1
次光束および−1次光束の光量差がトラックエラー信号
として検出されるので、光ディスクのピットの実効的深
さがλ/4に近い場合でも、検出感度が小さくならず、
従ってトラックエラー信号を安定に検出できる。
In this case, +1 regardless of the phase of the reflected light.
Since the difference in light amount between the secondary light beam and the −1st light beam is detected as a track error signal, the detection sensitivity does not decrease even when the effective depth of the pits on the optical disk is close to λ / 4.
Therefore, the track error signal can be detected stably.

【0016】一方、反射された0次光束の一方のサイド
ローブは、λ/4板15によりP偏光に変換され、偏光
ビームスプリッタ4を透過して反対側に設置されている
光検出器13に入射する。光検出器13は2分割された
光検出面を有し、ナイフエッジ方式の原理によりフォー
カスエラー信号を検出する。
On the other hand, one side lobe of the reflected 0th-order light beam is converted into P-polarized light by the λ / 4 plate 15, passes through the polarization beam splitter 4, and enters the photodetector 13 located on the opposite side. Incident. The photodetector 13 has a photodetection surface divided into two, and detects a focus error signal according to the knife-edge principle.

【0017】[0017]

【発明の効果】以上説明したように本発明は、半導体レ
ーザからの出射光を発散光束のまま、回折格子、遮光
帯、偏光ビームスプリッタを通過させ、その後コリメー
トレンズに達してから平行光束に変換して対物レンズに
より光ディスクの記録面上に集光させることにより、回
折格子により回折された複数の超解像スポットを形成で
き、また、光ディスクの記録面で反射した収束光を、偏
光ビームスプリッタにより反射させてスリット上に集光
させ、このスリットに透過部分と反射部分と吸収部分と
を設けて、0次光束のメインローブおよび±1次光束の
みを透過させて光検出器に入射させ、トラックエラー信
号および再生信号とをそれぞれ検出することにより、+
1次光束,−1次光束および0次光束のメインローブの
3ビーム法とすることができ、+1次光束および−1次
光束の光量差をトラックエラー信号として検出するの
で、光ディスクのピットの実効的深さがλ/4に近い場
合でも、トラックエラー信号を検出感度に影響なく安定
に検出できる。更に、スリットの反射部分で、0次光束
のサイドローブの片側のみを反射させて光検出器に入射
することにより、フォーカスエラー信号を検出できる。
As described above, according to the present invention, the emitted light from the semiconductor laser is passed through the diffraction grating, the light-shielding band, and the polarization beam splitter as it is as a divergent light beam, and after reaching the collimating lens, it is converted into a parallel light beam. Then, by converging on the recording surface of the optical disc with the objective lens, multiple super-resolution spots diffracted by the diffraction grating can be formed, and the converged light reflected on the recording surface of the optical disc is converted by the polarization beam splitter. The light is reflected and condensed on the slit, and the slit is provided with a transmitting portion, a reflecting portion, and an absorbing portion, and only the main lobe of the 0th-order luminous flux and the ± 1st-order luminous flux are transmitted and made incident on the photodetector. By detecting the error signal and the reproduced signal respectively,
The three-beam method of the main lobe of the first-order light flux, the −1st-order light flux, and the 0th-order light flux can be used, and the light amount difference between the + 1st-order light flux and the −1st-order light flux is detected as a track error signal. Even if the target depth is close to λ / 4, the track error signal can be stably detected without affecting the detection sensitivity. Furthermore, the focus error signal can be detected by reflecting only one side lobe of the 0th-order light beam at the reflecting portion of the slit and making it enter the photodetector.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す光学系の配置図であ
る。
FIG. 1 is a layout view of an optical system showing an embodiment of the present invention.

【図2】図1に示したスリット11の構成を示す図であ
る。
FIG. 2 is a diagram showing a configuration of a slit 11 shown in FIG.

【図3】従来の光ヘッド装置の一例を示す光学系の配置
図である。
FIG. 3 is a layout diagram of an optical system showing an example of a conventional optical head device.

【図4】図3に示したスリット17の構成を示す図であ
る。
FIG. 4 is a diagram showing a configuration of a slit 17 shown in FIG.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 回折格子 3 遮光帯 4 偏光ビームスプリツタ 6 λ/4板 8 光デイスク 11 スリット 12,13 光検出器 DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Diffraction grating 3 Light-shielding band 4 Polarization beam splitter 6 λ / 4 plate 8 Optical disk 11 Slit 12, 13 Photodetector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光を発するレーザ光源と、このレ
ーザ光源からの発散光束に対して光ビーム断面内で0次
光束および±1次光束を発生させる回折格子と、この回
折格子を通過した光の中心付近の光強度を減少させて前
記0次光束および±1次光束にそれぞれメインローブお
よびサイドローブを発生させる遮光帯と、この遮光帯を
通過した光を記録媒体面上に複数の超解像スポットとし
て集光させる第1の集光手段と、前記記録媒体面上から
の反射光を集光させる第2の集光手段と、この第2の集
光手段の集光点に配設されて前記0次光束のメインビー
ムおよび前記±1次光束のみを透過させると共に、前記
0次光束のサイドローブの片側を反射するスリットと、
このスリットを透過した光を受けて再生信号およびトラ
ックエラー信号を検出する第1の光検出手段と、前記ス
リットで反射した光を受けてフォーカスエラー信号を検
出する第2の光検出手段とを備えることを特徴とする光
ヘッド装置。
1. A laser light source that emits laser light, a diffraction grating that generates a 0th-order light flux and a ± 1st-order light flux within a light beam cross section for a divergent light flux from the laser light source, and light that has passed through this diffraction grating. A light-shielding band that reduces the light intensity near the center of the beam to generate a main lobe and a side lobe in the 0th-order light flux and the ± 1st-order light fluxes, respectively, and the light passing through the light-shielding band is superposed on a recording medium surface. First condensing means for condensing as an image spot, second condensing means for condensing reflected light from the surface of the recording medium, and a condensing point of the second condensing means are provided. A slit that transmits only the main beam of the 0th-order beam and the ± 1st-order beams, and reflects one side lobe of the 0th-order beam.
First light detecting means for receiving the light transmitted through the slit to detect the reproduction signal and the track error signal, and second light detecting means for receiving the light reflected by the slit and detecting the focus error signal are provided. An optical head device characterized by the above.
JP3315869A 1991-11-29 1991-11-29 Optical head device Expired - Lifetime JP2838930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3315869A JP2838930B2 (en) 1991-11-29 1991-11-29 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3315869A JP2838930B2 (en) 1991-11-29 1991-11-29 Optical head device

Publications (2)

Publication Number Publication Date
JPH05217186A true JPH05217186A (en) 1993-08-27
JP2838930B2 JP2838930B2 (en) 1998-12-16

Family

ID=18070579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3315869A Expired - Lifetime JP2838930B2 (en) 1991-11-29 1991-11-29 Optical head device

Country Status (1)

Country Link
JP (1) JP2838930B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030019692A (en) * 2001-08-30 2003-03-07 삼성전자주식회사 Method of making multi-beams
KR100613564B1 (en) * 2004-12-02 2006-08-16 주식회사 대우일렉트로닉스 Servo device of the holographic rom reader

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030019692A (en) * 2001-08-30 2003-03-07 삼성전자주식회사 Method of making multi-beams
KR100613564B1 (en) * 2004-12-02 2006-08-16 주식회사 대우일렉트로닉스 Servo device of the holographic rom reader

Also Published As

Publication number Publication date
JP2838930B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
JPH07141715A (en) Optical pickup device
JPH07192300A (en) Optical head
JP2838930B2 (en) Optical head device
JPH06251396A (en) Optical head device
JP3109877B2 (en) Optical information reproducing device
JP2817452B2 (en) Optical pickup device
JP3044667B2 (en) Optical reader
JP2636245B2 (en) Optical head for magneto-optical storage
JP2744479B2 (en) Optical pickup device
JP2778296B2 (en) Optical head device
JPH07141681A (en) Optical head
KR100272086B1 (en) Beam adjusted type dual focus optical pickup device
JPH08273187A (en) Optical pickup device
JPH0684223A (en) Optical pickup
JP2655747B2 (en) Optical pickup
KR100272085B1 (en) Beam adjusted type dual focus optical pickup device
JP2647945B2 (en) Optical information recording / reproducing device
JP2000011436A (en) Optical pickup device
JP2616404B2 (en) Optical head device
KR100211819B1 (en) An optical pick up device
JP3401288B2 (en) Light detection unit
JP3294092B2 (en) Optical pickup device
KR19990049993A (en) Dual Focus Optical Pickup Device using Light Control
JPH0317847A (en) Optical head device
JPH09265656A (en) Optical pickup

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980916