JPH05217117A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPH05217117A
JPH05217117A JP4042441A JP4244192A JPH05217117A JP H05217117 A JPH05217117 A JP H05217117A JP 4042441 A JP4042441 A JP 4042441A JP 4244192 A JP4244192 A JP 4244192A JP H05217117 A JPH05217117 A JP H05217117A
Authority
JP
Japan
Prior art keywords
sialon
magnetic head
thin film
tin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4042441A
Other languages
Japanese (ja)
Inventor
Otojiro Kida
音次郎 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP4042441A priority Critical patent/JPH05217117A/en
Publication of JPH05217117A publication Critical patent/JPH05217117A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thin film magnetic head excellent in machinability and abrasion resistance against sliding friction by employing beta-SiAlON and TiN as main components of basic material. CONSTITUTION:A basic material 1 for supporting magnetic films 3, 6, an induction coil 4, an insulation layer 2, a protective film 7, and the like is composed of such material as containing beta-SiAlON and TiN as main components. The insulation layer 2 and the protective layer 7 are composed of such material as containing beta-SiAlON or alpha-SiAlON as a main component. Since beta-SiAlON excellent in lubricity, abrasion resistance, strength, and rigidity is dispersed with TiN for imparting conductivity to produce a sintered body excellent in sliding characteristics, abrasion resistance, and machinability, a preferable basic material for thin film magnetic head can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐久性,耐摩耗性等に
優れた薄膜磁気ヘッドに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnetic head having excellent durability and wear resistance.

【0002】[0002]

【従来の技術】近年、磁気ディスク装置の分野において
増大する高記録,高密度化の要請に応えるため、磁気ヘ
ッド特に薄膜磁気ヘッドが急速に普及しつつある。薄膜
磁気ヘッドは基板となるセラミックス製スライダーの後
端面に磁気信号の記録再生を行う薄膜素子が形成された
構造を有しており、スライダーが磁気ディスクの高速回
転(20〜40m/s )によって発生する空気層流に乗って磁
気ディスク面上にわずかに浮上( 0.2〜4 μm )するこ
とを利用し、磁気ディスクに対して記録の書き込み読み
取りを行う機能を有する。
2. Description of the Related Art In recent years, magnetic heads, particularly thin-film magnetic heads, are rapidly becoming popular in order to meet the increasing demands for higher recording and higher density in the field of magnetic disk devices. The thin-film magnetic head has a structure in which a thin-film element for recording and reproducing magnetic signals is formed on the rear end surface of a ceramic slider that serves as a substrate. The slider is generated by high-speed rotation (20-40m / s) of a magnetic disk. It has a function to write and read data to and from the magnetic disk by utilizing the fact that it slightly floats above the surface of the magnetic disk (0.2 to 4 μm) by riding on the laminar air flow.

【0003】したがってスライダーは磁気ディスク回転
の起動、停止時には充分な空気層流が得られないため、
必ず磁気ディスクと摺動しいわゆるCSS(コンタクト
・スタート・ストップ)動作を行う。さらにスライダー
は定常浮上中であっても振動や塵埃の介入などの外的要
因によって浮上高さや浮上姿勢が乱れることが避けられ
ない。記録密度を大きくするためには浮上高さは一層小
さくなりつつあり、このような乱れによりスライダーが
高速回転中の磁気ディスクと衝突する回数がますます増
大してきている。
Therefore, the slider cannot obtain a sufficient air laminar flow when starting and stopping the rotation of the magnetic disk.
It always slides on the magnetic disk to perform so-called CSS (contact start stop) operation. Further, even if the slider is flying normally, it is inevitable that the flying height and the flying posture are disturbed by external factors such as vibrations and the intervention of dust. The flying height is becoming smaller in order to increase the recording density, and such disturbance causes the slider to collide with the magnetic disk rotating at a high speed more and more times.

【0004】これらのことからCSS性能を向上させる
ためには磁気ヘッドのスライダーの摺動性を高めること
が重要である。更にスライダーの表面が平滑で気孔が存
在しないこと、耐摩耗性が良いことが必須である。また
磁気ヘッドは前述の如く磁気ディスクと接触摺動する時
に摩擦帯電する。この帯電量が過度に大きくなると磁気
トランジュサー信号巻線にノイズが発生し、磁気ヘッド
の浮上量が変わったりする恐れがある。そこで摩擦帯電
のできるだけ生じない材料で磁気ヘッドのスライダーを
構成することが望ましい。
From these points, it is important to improve the slidability of the slider of the magnetic head in order to improve the CSS performance. Furthermore, it is essential that the surface of the slider is smooth, has no pores, and has good wear resistance. Further, the magnetic head is frictionally charged when it comes into contact with and slides on the magnetic disk as described above. If the charge amount becomes excessively large, noise may occur in the magnetic transducer signal winding, and the flying height of the magnetic head may change. Therefore, it is desirable to configure the slider of the magnetic head with a material that does not cause frictional charging as much as possible.

【0005】磁気ヘッドスライダーは例えば特開昭55
−163665に示されているように極めて複雑な構造
をしているのであるが、この磁気ヘッドを生産性良く作
るにはスライダー構成材が機械加工性即ち加工時の切削
抵抗の少ないこと、切削ブレードへの目づまりのないこ
と、クラック、チッピングの生じないことが重要であ
る。
A magnetic head slider is disclosed, for example, in JP-A-55.
Although it has an extremely complicated structure as shown in 163665, in order to make this magnetic head with high productivity, the slider constituent material is machinable, that is, the cutting resistance at the time of processing is small, and the cutting blade. It is important that there be no clogging and that neither cracks nor chipping occur.

【0006】従来のスライダー材料としては薄膜素子の
形成性が良好な点から Al2O3系セラミックスが広く知ら
れており、改良提案も多い。例えば特開昭61−158
862、特開昭60−231308、特開昭60−18
3709、特開昭60−179923等に示されたもの
や、一方ZrO2を主成分としたスライダー材料が例えば特
開昭60−171617、特開昭63−278312、
特開昭60−66404に示され、摺動特性,耐摩耗性
の向上が計られている。
As a conventional slider material, Al 2 O 3 based ceramics are widely known from the viewpoint of good formability of thin film elements, and many proposals for improvement have been made. For example, JP-A-61-158
862, JP-A-60-231308, JP-A-60-18
3709, JP-A-60-179923, and slider materials containing ZrO 2 as a main component are disclosed, for example, in JP-A-60-171617 and JP-A-63-278312.
As disclosed in Japanese Patent Laid-Open No. 60-66404, the sliding characteristics and wear resistance are improved.

【0007】[0007]

【発明が解決しようとする課題】しかしながら従来の A
l2O3−TiC 基板の薄膜磁気ヘッドでは下地アルミナ絶縁
膜、下部磁性膜、上部磁性膜、アルミナ膜、導体コイ
ル、フォトレジスト有機絶縁膜およびアルミナ保護膜の
順序で長い薄膜作成工程を経てさらに切断加工研磨され
て作成されているが、次のような問題点を有していた。
[Problems to be Solved by the Invention]
In the thin film magnetic head of the l 2 O 3 -TiC substrate, a long thin film forming process is performed in the order of the base alumina insulating film, the lower magnetic film, the upper magnetic film, the alumina film, the conductor coil, the photoresist organic insulating film and the alumina protective film. Although it was cut and polished, it had the following problems.

【0008】Al2O3 −TiC からなる基板は機械加工性、
耐摩耗性に優れるものの高精度の複雑な形状のスライダ
ーを加工する際にはクラックやチッピングが少なくなく
加工歩留を落としており、破壊靭性、摺動特性の向上が
強く望まれていた。またZrO2を主成分とするスライダー
は Al2O3−TiC と比べ摺動特性は優れるものの耐摩耗性
や機械加工性が劣ると言われている。
Substrates made of Al 2 O 3 —TiC have machinability,
Despite excellent wear resistance, when processing a slider with a high precision and complicated shape, cracks and chipping are not small and the processing yield is reduced, and improvement in fracture toughness and sliding characteristics has been strongly desired. In addition, sliders containing ZrO 2 as the main component are said to have better sliding characteristics than Al 2 O 3 —TiC but poor wear resistance and machinability.

【0009】さらに上記の基板に薄膜を形成する場合に
は一般にはアルミナの絶縁膜や保護膜が用いられるが、
耐薬品性は優れるものの充分な接着力が得られず応力剥
離を発生する可能性があり、また Al2O3はスパッター速
度が遅く工程上も問題が多い等の欠点を有している。
Further, when forming a thin film on the above substrate, an insulating film or protective film of alumina is generally used.
Although it has excellent chemical resistance, sufficient adhesion cannot be obtained and stress peeling may occur, and Al 2 O 3 has drawbacks such as slow sputtering speed and many problems in the process.

【0010】[0010]

【課題を解決するための手段】本発明は前述の問題点を
解決すべくなされたものであり、磁性膜,コイル,絶縁
膜および保護膜等を支持する基板をβ−サイアロン( S
i6-ZAlzOZN8-Z 但し0<Z≦4.2 )とTiN を主成分とす
る材料から構成してなることを特徴とする薄膜磁気ヘッ
ドを提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a substrate for supporting a magnetic film, a coil, an insulating film, a protective film and the like is provided with a β-sialon (S
An object of the present invention is to provide a thin film magnetic head characterized by being composed of a material containing i 6 -Z Al z O Z N 8-Z and 0 <Z ≦ 4.2) and TiN as main components.

【0011】また本発明は前記絶縁膜およびまたは保護
膜をβ−サイアロン( Si6-ZAlZOZN8-Z 但し0<Z≦4.
2 )またはα−サイアロン[ MX(Si,Al)12(O,N)16 但し
0<X≦2、M:Li,Y,Mg,Ca,La ]を主成分とする材料
で構成したことを特徴とする薄膜磁気ヘッドである。
In the present invention, the insulating film and / or the protective film are formed of β-sialon (Si 6-Z Al Z O Z N 8-Z, where 0 <Z ≦ 4.
2) or α-sialon [M X (Si, Al) 12 (O, N) 16 where 0 <X ≦ 2, M: Li, Y, Mg, Ca, La] Is a thin film magnetic head.

【0012】本発明は潤滑性、耐摩耗性、高強度、破壊
靭性に優れたβ−サイアロン( Si6 -ZAlZOZN8-Z 但し0
<Z≦4.2 以下同じ)とこれに導電性付与のためのTiN
を分散した焼結体からなる摺動特性、耐摩耗性、機械加
工性に優れた薄膜磁気ヘッド用に適した基板材料を得る
ことができる。
The present invention provides β-sialon (Si 6 -Z Al Z O Z N 8-Z, which is excellent in lubricity, wear resistance, high strength and fracture toughness, provided that 0
<Z ≤ 4.2) and TiN for conductivity
It is possible to obtain a substrate material composed of a sintered body in which is dispersed, which is excellent in sliding characteristics, wear resistance, and machinability and is suitable for a thin film magnetic head.

【0013】本発明は焼結体としてβ−サイアロン相
(Si-Al-O-N 相)とTiN 相とから本質的になっていれば
よく、配合原料としては予めこれらの結晶相としてそれ
ぞれ用意して使用に供してもよいが焼成によりこれらの
2相を生成する配合として調製しておいてもよい。一般
的には予めβ−サイアロン相として焼成により生成する
原料配合として、またTiN 相源としては予めTiN 粉末と
して調製しておくことが適切である。
In the present invention, the sintered body may essentially consist of a β-sialon phase (Si-Al-ON phase) and a TiN phase. Although it may be used, it may be prepared as a composition that produces these two phases by firing. In general, it is suitable to prepare in advance as a raw material mixture which is produced as a β-sialon phase by firing, and as a TiN phase source in advance as TiN powder.

【0014】まず本発明に用いるβ−サイアロン相をも
たらす原料としては通常α−Si3N4、ALN 、Al2O3 等の
微粉末を主とする混合物が適切である。これらの原料も
可及的に純度の高いもの好ましくは99%以上で微細なも
の好ましくは平均粒径5μm以下特には1μm 以下のも
のが適切である。また同様にTiN 相をもたらすTiN は純
度99%以上、平均粒径5μm 以下特には1μm 以下のも
のがよい。
First, as a raw material for producing the β-sialon phase used in the present invention, a mixture mainly containing fine powder of α-Si 3 N 4 , ALN, Al 2 O 3 and the like is usually suitable. As for these raw materials, those having a purity as high as possible, preferably 99% or more and fine, preferably having an average particle diameter of 5 μm or less, particularly 1 μm or less are suitable. Similarly, the TiN that produces the TiN phase should have a purity of 99% or more and an average particle size of 5 μm or less, particularly 1 μm or less.

【0015】またこれらの原料は全ての混合物としてさ
らに超微粉砕化することも有効である。即ち全ての原料
混合物を粒度5μm 以下好ましくは1μm 以下になるま
で Al2O3ボールなどを用いて粉砕することである。
It is also effective to further finely pulverize these raw materials as a whole mixture. That is, all the raw material mixture is pulverized by using Al 2 O 3 balls or the like until the particle size becomes 5 μm or less, preferably 1 μm or less.

【0016】本発明焼結体はこれらの混合物を例えば黒
鉛型に充填し真空中または Ar,N2等の非酸化性雰囲気下
でホットプレスして得ることができる。なお焼成温度は
1600〜1800℃、焼成時間は通常 0.5〜2 時間程度が適切
である。
The sintered body of the present invention can be obtained, for example, by filling a graphite mold with these mixtures and hot pressing in a vacuum or in a non-oxidizing atmosphere such as Ar or N 2 . The firing temperature is
The appropriate firing time is 1600 to 1800 ° C, and the firing time is usually 0.5 to 2 hours.

【0017】このようにして得られた本発明焼結体は本
質的にβ−サイアロン相とTiN 相からなるものであり、
このようなβ−サイアロン相はこれらをもたらす前述し
たα−Si3N4 、AlN 、Al2O3 の配合量比を適当に選択す
ることで容易に可能である。例えばα−Si3N4 、AlN 、
Al2O3 の量比は2:1:1がよく、好ましくは ALNを若
干多くした2:1.5 :1の量比が強度,破壊靭性に優れ
たものが得られる。
The thus obtained sintered body of the present invention essentially consists of the β-sialon phase and the TiN phase,
Such a β-sialon phase can be easily formed by appropriately selecting the above-mentioned blending ratio of α-Si 3 N 4 , AlN and Al 2 O 3 which brings about these. For example, α-Si 3 N 4 , AlN,
The amount ratio of Al 2 O 3 is preferably 2: 1: 1, and the amount ratio of 2: 1.5: 1, which is slightly higher than that of ALN, provides the excellent strength and fracture toughness.

【0018】なお本発明焼結体でサイアロン相(Si-Al-
O-N 相)がβ−サイアロンであることが望ましい理由は
α−サイアロン相(Si-Al-O-N の Si 、Alの1部に Y、
Ca、Mg、Li、La等を固溶させたもの)より強度,破壊靭
性が高いものが得られるからであり、その根拠は定かで
ないが、α−サイアロンは液相を形成しやすく、ホット
プレス時に液相の滲み出しを発生させ、黒鉛ダイス等の
破損を招く恐れがあり好ましくない。
In the sintered body of the present invention, the sialon phase (Si-Al-
The reason why β-sialon is desirable for the ON phase) is the α-sialon phase (Si in Si-Al-ON, Y in part of Al, Y,
It is possible to obtain a material with higher strength and fracture toughness than a solid solution of Ca, Mg, Li, La, etc.). The basis for this is not clear, but α-sialon easily forms a liquid phase and is hot-pressed. At this time, exudation of the liquid phase may occur, which may cause damage to the graphite die or the like, which is not preferable.

【0019】本発明焼結体においてこれらのβ−サイア
ロン相は少なくとも重量%で30%は必要であるが、それ
以下では緻密化しにくく強度,破壊靭性が充分でなく、
最大70%にすることが必要で70%以上では導電性が不充
分であり、より好ましくは65〜35%が必要である。
In the sintered body of the present invention, at least 30% by weight of these β-sialon phases is necessary, but if the amount is less than 30%, it is difficult to densify and strength and fracture toughness are insufficient.
It is necessary to set the maximum to 70%, and if it is 70% or more, the conductivity is insufficient, and more preferably 65 to 35%.

【0020】これに対しTiN 相は少なくとも30%以上は
必要であるが、これはそれ以下では導電性が不充分であ
り、一方多すぎると焼結しにくくなり、最大70%にとど
めることが必要であり望ましくは35〜65%である。
On the other hand, the TiN phase needs to be at least 30% or more, but if it is less than this, the conductivity is insufficient, while if it is too much, it becomes difficult to sinter, and it is necessary to keep the maximum to 70%. And preferably 35 to 65%.

【0021】本発明はこれらの成分以外の成分が本発明
焼結体の特性を損なわない程度に含まれていても勿論差
し支えないが可及的に少量にとどめることが望ましい。
In the present invention, it is of course possible that components other than these components are contained to the extent that the characteristics of the sintered body of the present invention are not impaired, but it is desirable to keep the amount as small as possible.

【0022】本発明はβ−サイアロン−TiN で構成され
る基板材料を用い表面を研磨し、気孔のない緻密な組織
で表面粗度Rmax 0.02μm 以下が容易に得ることができ
る。このような基板は薄膜磁気ヘッドとして必要な絶縁
膜や保護膜としては種々のものが使用しうるが好ましい
絶縁膜と保護膜としては例えばサイアロン膜がある。即
ち本発明基板の研磨面にβ−サイアロン( Si6-ZAlZOZN
8-Z 但し0<Z≦4.2)またはα−サイアロン[ MX(S
i,Al)12(O,N )16 但し0<X≦2、M:Li,Mg,Y , C
a, La]で構成された絶縁性のターゲットを用い、バイ
アススパッターにより絶縁膜、保護膜を形成する。この
β−サイアロン−TiN 基板に対して同様の性質をもつα
またはβ−サイアロンの絶縁膜や保護膜を薄膜として積
層する事により従来問題となっていた基板材料との密着
性、応力剥離やスパッター速度が著しく改善され、また
摩擦摩耗性、耐薬品性にも優れた薄膜磁気ヘッドが得ら
れる。
In the present invention, the surface is polished by using a substrate material composed of β-sialon-TiN, and a surface roughness Rmax of 0.02 μm or less can be easily obtained with a dense structure having no pores. As such a substrate, various kinds of insulating films and protective films necessary for a thin film magnetic head can be used, but preferable insulating films and protective films include, for example, sialon film. That is, β-sialon (Si 6-Z Al Z O Z N
8-Z where 0 <Z ≤ 4.2) or α-sialon [M X (S
i, Al) 12 (O, N) 16 However, 0 <X ≦ 2, M: Li, Mg, Y, C
a, La] is used to form an insulating film and a protective film by bias sputtering. This β-sialon-TiN substrate has similar properties to α
Alternatively, by laminating an insulating film or a protective film of β-sialon as a thin film, the adhesion to the substrate material, the stress peeling and the sputter rate, which have been problems in the past, are remarkably improved, and the abrasion resistance and the chemical resistance are also improved. An excellent thin film magnetic head can be obtained.

【0023】本発明のこのような非晶質膜の形成につい
て図1を参照して説明する。本発明の薄膜磁気ヘッドの
典型は図1に示すようにβ−サイアロン−TiN セラミッ
クス基板1に公知のフォトリソグラフィー技術およびス
パッターリング法やメッキ法やスパッターエッチング法
等の薄膜形成技術を用いて、絶縁層2、下部磁性層3、
ギャップ層5、コイル4および上部磁性層6を形成した
ヘッド上表面に保護層7を形成して得ることができる。
The formation of such an amorphous film of the present invention will be described with reference to FIG. As shown in FIG. 1, a typical thin film magnetic head of the present invention is an insulating film formed on a β-sialon-TiN ceramic substrate 1 by using a well-known photolithography technique and a thin film forming technique such as a sputtering method, a plating method or a sputter etching method. Layer 2, lower magnetic layer 3,
It can be obtained by forming the protective layer 7 on the upper surface of the head on which the gap layer 5, the coil 4 and the upper magnetic layer 6 are formed.

【0024】本発明はαまたはβ−サイアロンの絶縁性
ターゲットを用いバイアススパッター法によりAr−N2
スを用いて成膜するため、非晶質つまりガラス質であ
り、表面は非常に滑らかで摩擦摩耗性は極めて小さい。
またαまたはβ−サイアロンターゲットは 500Å/min
と成膜速度が早く、工程上も有利である。さらに最近で
は磁気ディスク等の表面保護膜としてαまたはβ−サイ
アロンが用いられており、併せて用いることにより同一
素材同士の摩擦となるのでよりCSS耐久性などの耐摩
耗性は向上すると考えられる。
Since the present invention forms a film using Ar-N 2 gas by the bias sputtering method using an insulating target of α or β-sialon, it is amorphous, that is, vitreous, and the surface is very smooth and frictional. Abrasion is extremely small.
Also, α or β-sialon target is 500Å / min
Thus, the film formation rate is high, which is advantageous in terms of process. Further, recently, α or β-sialon has been used as a surface protective film for magnetic disks and the like, and when used together, it causes friction between the same materials, and therefore wear resistance such as CSS durability is considered to be further improved.

【0025】本発明のαまたはβ−サイアロンの絶縁膜
と保護膜の膜厚はそれぞれ10μm 、20〜50μm 程度が最
適である。
The optimum thicknesses of the insulating film and the protective film of α or β-sialon of the present invention are about 10 μm and 20 to 50 μm, respectively.

【0026】[0026]

【作用】本発明においてβ−サイアロン−TiN 基板は潤
滑性に富み、高強度,高靭性であり、しかも熱伝導率も
Al2O3-TiC ( 0.04 cal/cm・sec・ ℃ )と比べ、0.06 cal
/cm・sec・℃と高い。従って摺動特性も良好で放熱性も優
れ、摺動摩擦に対する耐摩耗性にも優れた薄膜磁気ヘッ
ドが得られるものと考えられる。また比抵抗も低い導電
性材料で、摩擦帯電性にも優れたもので緻密で気孔がな
く表面性も良好である。しかもこのβ−サイアロン−Ti
N 基板に対して同様の性質をもつサイアロンの絶縁膜や
保護膜を薄膜として積層化することにより基板との密着
性も良好で応力剥離もなく、スパッター速度も早く、高
信頼性の薄膜磁気ヘッドが得られるものと考えられる。
In the present invention, the β-sialon-TiN substrate is rich in lubricity, has high strength and high toughness, and has a high thermal conductivity.
Compared with Al 2 O 3 -TiC (0.04 cal / cm ・ sec ・ ° C), 0.06 cal
High at / cm / sec / ° C. Therefore, it is considered that a thin film magnetic head having excellent sliding characteristics, excellent heat dissipation, and abrasion resistance against sliding friction can be obtained. It is also a conductive material having a low specific resistance, is excellent in triboelectrification, is dense, has no pores, and has a good surface property. Moreover, this β-sialon-Ti
By stacking a sialon insulating film and protective film, which have the same properties as the N substrate, as a thin film, the adhesion to the substrate is good, there is no stress delamination, the sputtering speed is fast, and the thin film magnetic head is highly reliable. Is considered to be obtained.

【0027】またこれらの薄膜を積層形成したβ−サイ
アロン−TiN 基板は高靭性、高強度、熱的安定性に優れ
るため、薄膜の欠けや亀裂もなく、また基板の機械加工
性に優れ加工歩留の高い薄膜磁気ヘッドが得られるもの
と考えられる。
Since the β-sialon-TiN substrate formed by laminating these thin films has excellent toughness, high strength and thermal stability, there is no thin film chipping or cracking, and the substrate has excellent machinability and processing steps. It is considered that a thin-film magnetic head with high retention can be obtained.

【0028】[0028]

【実施例】以下本発明を実施例に基づいて説明する。原
料としてα−Si3N4 (α−Si3N4 中に10体積%のβ−Si
3N4 を含む)粉末(純度99 wt %,平均粒径 0.5μm
)、AlN粉末(純度99 wt %、平均粒径1μm )、A
l2O3 粉末(純度99.9 wt %、平均粒径 0.5μm )およ
び TiN粉末(純度99 wt %、平均粒径1μm )を所定の
割合にて充分混合すべくポットミルを使用しエタノール
溶媒中で Al2O3ボールを用い24時間混合粉砕した。この
混合粉末をエバポレーターにて乾燥し軽く解砕した。
EXAMPLES The present invention will be described below based on examples. Α-Si 3 N 4 (10% by volume of β-Si in α-Si 3 N 4
3 N 4 included) powder (purity 99 wt%, average particle size 0.5 μm)
), AlN powder (purity 99 wt%, average particle size 1 μm), A
l 2 O 3 powder (purity 99.9 wt%, average particle size 0.5 μm) and TiN powder (purity 99 wt%, average particle size 1 μm) were mixed in ethanol solvent using a pot mill to mix well at a predetermined ratio. It was mixed and ground for 24 hours using a 2 O 3 ball. This mixed powder was dried with an evaporator and lightly crushed.

【0029】この粉末をホットプレスの黒鉛鋳型内に充
填し、圧力 350 kg/cm2 温度はそれぞれ1600〜1800℃、
窒素雰囲気で1時間ホットプレスし、60 mm φ×厚み 5
mmの焼結体を得た。
This powder was filled in a graphite mold of a hot press, the pressure was 350 kg / cm 2 and the temperature was 1600 to 1800 ° C., respectively.
Hot pressed in a nitrogen atmosphere for 1 hour, 60 mm φ x thickness 5
A mm sintered body was obtained.

【0030】焼結体の物性として密度はアルキメデス法
により測定し理論密度を除して相対密度を求め、曲げ強
度は JIS R 1601 「ファインセラミックスの曲げ試験
法」に従って測定した。また破壊靭性はSEPB法( S
ingle Edge Pre-cracked Beam法)により測定した。即
ち JIS R 1601 に準拠した試料を用意し、ビッカース圧
子圧入により圧痕をつけた後予亀裂を入れるため荷重を
加えてイヤホンでポップイン( Pop-in )を検知した。
続いて予亀裂長さを測定するため着色を行い、そして曲
げ試験を行って破断荷重を測定した。破断試料の予亀裂
長さを測定した後破壊靭性の算出式により破壊靭性を求
めた。
As the physical properties of the sintered body, the density was measured by the Archimedes method and the theoretical density was divided to obtain the relative density, and the bending strength was measured according to JIS R 1601 "Bending test method for fine ceramics". The fracture toughness is SEPB method (S
It was measured by the ingle Edge Pre-cracked Beam method). That is, a sample conforming to JIS R 1601 was prepared, and after applying an indentation by Vickers indentation, a load was applied to create a pre-crack and a pop-in was detected with an earphone.
Subsequently, coloring was performed to measure the precrack length, and a bending test was performed to measure the breaking load. After measuring the pre-crack length of the fractured sample, the fracture toughness was calculated by the fracture toughness calculation formula.

【0031】ビッカース硬度は曲げ試験片の鏡面研磨面
を用い荷重 300 gにてビッカース硬度計により測定し
た。比抵抗の測定は曲げ試験片を用い4端子法にて測定
した。上記と同様な方法にて製作した 60 mmφ×厚み 5
mm の焼結体で磁気ヘッドスライダーとしての評価を行
った。
The Vickers hardness was measured by a Vickers hardness meter with a load of 300 g using a mirror-polished surface of a bending test piece. The specific resistance was measured by a 4-terminal method using a bending test piece. 60 mmφ × thickness 5 manufactured by the same method as above
The magnetic head slider was evaluated using a sintered body of mm 2.

【0032】得られた焼結体を鏡面研磨してダイヤモン
ド切断砥石で切断し、角部の微細なチッピングを顕微鏡
にて観察することにより行った。このチッピング試験は
幅0.28 mm および直径 52 mmのレジノイト砥石( 30 μ
m のダイヤ砥粒を有するカッター)を用い切り込み 0.3
mm 送り量 5 mm/sec で実施した。チッピング深さが2
μm を越えない場合実質的にスライダー品質に影響を及
ぼさず満足すべき品質を維持するものでこれを○で示
し、2 μm を越える場合は△および著しいチッピングの
場合は×として示した。
The obtained sintered body was mirror-polished, cut with a diamond cutting grindstone, and fine chipping at the corners was observed with a microscope. This chipping test was performed using a resino grindstone with a width of 0.28 mm and a diameter of 52 mm (30 μm).
0.3 incision using a cutter with m diamond diamond
mm The feed rate was 5 mm / sec. Chipping depth is 2
When the thickness does not exceed μm, the slider quality is not substantially affected and the satisfactory quality is maintained, and this is indicated by ◯, and when exceeding 2 μm, it is indicated by Δ and marked chipping is indicated by ×.

【0033】また擦動性および耐摩耗性は焼結体から実
際の薄膜磁気ヘッドの形状に切出し磁気ディスクと接触
させてディスクを回転させるCSS試験により特性を評
価した。擦動性はディスクとヘッドのCSS試験により
摩擦係数を求め摩擦係数が 0.5より小さいものを○で示
し、摩擦係数が 0.5より大きいものは△および著しく大
きい場合は×で示した。
The rubbing and abrasion resistance were evaluated by a CSS test in which the sintered body was cut into the shape of an actual thin film magnetic head and brought into contact with a magnetic disk to rotate the disk. The rubbing property was shown by ◯ when the friction coefficient was determined by the CSS test of the disk and the head, and when the friction coefficient was less than 0.5, it was shown by Δ, and when it was significantly large, by x.

【0034】耐摩耗性はCSS試練を 10000回繰返し磁
気ヘッドスライダーの擦動面の傷の有無について評価し
た。比較例として Al2O3-TiC 30 %基板とY2O3 5.2 wt
%で部分安定化されたZrO2-TiC 30 %基板を用い比較し
た。それぞれの結果を表1、表2に示した。
The wear resistance was evaluated by repeating CSS trials 10,000 times and checking for scratches on the rubbing surface of the magnetic head slider. As a comparative example, Al 2 O 3 -TiC 30% substrate and Y 2 O 3 5.2 wt
% ZrO 2 -TiC 30% partially stabilized substrate was used for comparison. The respective results are shown in Tables 1 and 2.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】表1、表2に示されるように本発明は高密
度で比抵抗も小さく、曲げ強度も高く、破壊靭性は Al2
O3−30%TiC 基板と比べ約 1.5倍、ZrO2(Y2O3)-TiC 30
%基板と同等程度を示しており、磁気ヘッドスライダー
としての評価では鏡面研磨した場合の表面の気孔はほと
んど観察されず緻密化しており、耐チッピング性、擦動
性、耐摩耗性に優れたスライダーとして最適なものであ
る。表3に代表的な磁気ヘッド基板の特性を示した。
As shown in Tables 1 and 2, the present invention has a high density, a small specific resistance, a high bending strength, and a fracture toughness of Al 2
O 3 -30% About 1.5 times that of TiC substrate, ZrO 2 (Y 2 O 3 ) -TiC 30
% It shows the same level as the substrate, and in the evaluation as a magnetic head slider, the pores on the surface when mirror-polished were hardly observed and the slider was excellent in chipping resistance, rubbing resistance, and abrasion resistance. Is the best one. Table 3 shows the characteristics of typical magnetic head substrates.

【0038】[0038]

【表3】 [Table 3]

【0039】本発明の磁気ヘッド基板材料は表3に示し
たように Al2O3-TiC、ZrO2-TiC基板と比べ熱伝導率が高
いので磁気記録媒体との擦動により発生する摩擦熱を速
やかに放熱することができる。また高い耐熱衝撃性を有
するため磁気ヘッド製造プロセスにおいて繰り返し熱が
加わっても熱的変化を起こすことなく信頼性の高い薄膜
磁気ヘッドが得られる。
As shown in Table 3, the magnetic head substrate material of the present invention has a higher thermal conductivity than Al 2 O 3 -TiC and ZrO 2 -TiC substrates, so that the friction heat generated by rubbing against the magnetic recording medium is Can be quickly dissipated. Further, since it has a high thermal shock resistance, a highly reliable thin film magnetic head can be obtained without causing a thermal change even if heat is repeatedly applied in the magnetic head manufacturing process.

【0040】次に表3に示した代表的な磁気ヘッド基板
を用い図1に示した構造の薄膜を形成し、絶縁膜、保護
膜を Al2O3、β−サイアロン、α−サイアロンのターゲ
ットを用い、それぞれ基板に対する密着性、亀裂および
剥離性(応力剥離)、耐摩耗性および各ターゲットの成
膜速度を比較した。
Next, using the typical magnetic head substrate shown in Table 3, a thin film having the structure shown in FIG. 1 is formed, and an insulating film and a protective film are targets of Al 2 O 3 , β-sialon and α-sialon. Was used to compare the adhesion to the substrate, cracking and peeling property (stress peeling), wear resistance, and the film forming rate of each target.

【0041】Al2O3 およびβ,αのサイアロンのターゲ
ットを用いバイアススパッター法により Al2O3はAr−
O2、サイアロンはAr−N2ガス雰囲気で全圧 5×10-3Torr
でスパッターを行った。成膜速度はそれぞれ 240、500
、500 Å/minであり、サイアロンターゲットは Al2O3
ターゲットと比べ約2倍速い成膜速度を示した。表4に
その結果を示した。
Al 2 O 3 was Ar-O by the bias sputtering method using Al 2 O 3 and β, α sialon targets.
O 2 and Sialon are at a total pressure of 5 × 10 -3 Torr in Ar-N 2 gas atmosphere.
Was sputtered. Deposition rates are 240 and 500 respectively
, 500 Å / min, Sialon target is Al 2 O 3
The film formation rate was about twice as fast as the target. The results are shown in Table 4.

【0042】[0042]

【表4】 [Table 4]

【0043】表4の結果から従来の Al2O3−TiC ,ZrO2
−TiC 基板には Al2O3絶縁膜や保護膜が密着性や応力剥
離の点で適しているが耐摩耗性は悪い。α,βのサイア
ロンの絶縁膜、保護膜は従来の基板には熱膨張率が小さ
いため密着性が悪く亀裂発生しやすいが、β−サイアロ
ン−TiN 基板では性質も同様なため密着性は良好で応力
剥離もなく、膜が非晶質膜なため耐摩耗性も優れた結果
を示した。
From the results of Table 4, conventional Al 2 O 3 --TiC, ZrO 2
The -TiC substrate Al 2 O 3 insulating film and the protective film is suitable in terms of adhesion and stress peel while wear resistance is poor. The α and β sialon insulation films and protective films have a low coefficient of thermal expansion on conventional substrates and have poor adhesion and are prone to cracking.However, β-sialon-TiN substrates have similar properties and have good adhesion. There was no stress delamination, and the film was an amorphous film, so the abrasion resistance was excellent.

【0044】[0044]

【発明の効果】本発明の薄膜磁気ヘッドはサイアロン−
TiN 基板の優れた潤滑性,高強度,高靭性,低抵抗およ
び高熱伝導度により、磁気記録媒体との間の摺動摩擦に
対する耐摩耗性や機械加工性に優れた薄膜磁気ヘッドを
提供できる。
The thin film magnetic head of the present invention is a sialon-type.
Due to the excellent lubricity, high strength, high toughness, low resistance, and high thermal conductivity of the TiN substrate, it is possible to provide a thin film magnetic head with excellent wear resistance and mechanical workability against sliding friction with the magnetic recording medium.

【0045】また絶縁膜、保護膜としてサイアロン−Ti
N 基板に密着性の高いαまたはβ−サイアロンを用いた
事により高絶縁性、化学的耐久性、緻密性および速い成
膜速度で薄膜集積化工程の効率を向上させ、信頼性の高
い薄膜磁気ヘッドが得られる。
As an insulating film and a protective film, Sialon-Ti is used.
A highly reliable thin film magnetic head that improves the efficiency of the thin film integration process with high insulation, chemical durability, compactness and fast film formation rate by using α or β-sialon with high adhesion to the N substrate. Is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の薄膜磁気ヘッドの一実施例を説明する
断面図
FIG. 1 is a sectional view illustrating an embodiment of a thin film magnetic head of the present invention.

【符号の説明】[Explanation of symbols]

1 β−サイアロン−TiN セラミックス基板 2 サイアロン絶縁層 3 下部磁性層 4 誘導コイル 5 ギャップ 6 上部磁性層 7 サイアロン保護層 1 β-sialon-TiN ceramics substrate 2 sialon insulating layer 3 lower magnetic layer 4 induction coil 5 gap 6 upper magnetic layer 7 sialon protective layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基材材料がβ−サイアロンとTiN を主成分
とすることを特徴とする薄膜磁気ヘッド。
1. A thin film magnetic head characterized in that a base material is composed mainly of β-sialon and TiN.
【請求項2】請求項1において、β−サイアロンとTiN
の割合は、重量%で、前者が70〜30%、後者が30〜70%
である薄膜磁気ヘッド。
2. The β-sialon and TiN according to claim 1.
The ratio of the former is 70 to 30% and the latter is 30 to 70%
Is a thin film magnetic head.
【請求項3】請求項1または2において、薄膜磁気ヘッ
ドは、基板が磁性膜、コイル、絶縁膜および保護膜を支
持しておりかつ絶縁膜およびまたは保護膜の主成分がサ
イアロンからなっていることを特徴とする薄膜磁気ヘッ
ド。
3. The thin film magnetic head according to claim 1 or 2, wherein the substrate supports the magnetic film, the coil, the insulating film and the protective film, and the insulating film and / or the protective film is mainly composed of sialon. A thin film magnetic head characterized in that
【請求項4】請求項3においてサイアロンはβ−サイア
ロン( Si6-ZAlzOzN8-Z ただし0<Z≦4.2 )またはα
−サイアロン[ MX(Si,Al)12(O,N)16 ただし0<X≦
2、M:Li,Y,Mg,Ca,La ]である薄膜磁気ヘッド。
4. The sialon in claim 3 is β-sialon (Si 6-Z Al z O z N 8-Z, where 0 <Z ≦ 4.2) or α.
− Sialon [M X (Si, Al) 12 (O, N) 16 where 0 <X ≦
2, M: Li, Y, Mg, Ca, La].
JP4042441A 1992-01-31 1992-01-31 Thin film magnetic head Withdrawn JPH05217117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4042441A JPH05217117A (en) 1992-01-31 1992-01-31 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4042441A JPH05217117A (en) 1992-01-31 1992-01-31 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPH05217117A true JPH05217117A (en) 1993-08-27

Family

ID=12636167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4042441A Withdrawn JPH05217117A (en) 1992-01-31 1992-01-31 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPH05217117A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012696A1 (en) * 1996-09-20 1998-03-26 Hitachi, Ltd. Magnetic head slider and method of production thereof
CN108610057A (en) * 2018-04-09 2018-10-02 中国科学院兰州化学物理研究所 It is a kind of width temperature range antifriction antiwear have both grand based composites of match of high-ductility and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012696A1 (en) * 1996-09-20 1998-03-26 Hitachi, Ltd. Magnetic head slider and method of production thereof
CN108610057A (en) * 2018-04-09 2018-10-02 中国科学院兰州化学物理研究所 It is a kind of width temperature range antifriction antiwear have both grand based composites of match of high-ductility and preparation method thereof

Similar Documents

Publication Publication Date Title
US4796127A (en) Recording head slider
US4681813A (en) Ceramic substrate for a thin layer magnetic head
EP0153141B1 (en) Thin film magnetic heads
JP3933523B2 (en) Ceramic substrate materials for thin film magnetic heads
US4859638A (en) Magnetic head sliders, materials therefor, and the process for the production thereof
US6028750A (en) Thin film magnetic head substrate with improved heat radiation
JPH05217117A (en) Thin film magnetic head
US5916655A (en) Disk substrate
JPH05217118A (en) Thin film magnetic head
US5914285A (en) Substrate material for a magnetic head
JPH05246763A (en) Ceramic sintered compact
JPH05254938A (en) Ceramic sintered compact
JP2001056919A (en) Substrate for magnetic head and magnetic head using the same
WO1995028703A1 (en) Improved disk substrate
JP3085623B2 (en) Non-magnetic ceramics for recording / reproducing head and method for producing the same
JP5093948B2 (en) Magnetic head substrate and manufacturing method thereof
JP2003248907A (en) Substrate for thin magnetic head, and its manufacturing method
JPH05109023A (en) Substrate for magnetic head
JPH05213674A (en) Ceramic material
EP0377462A1 (en) Magnetic disc file, thin film magnetic head and wafer for making thin film magnetic head
JPH0120523B2 (en)
JPH0543311A (en) Ceramics material and ceramics substrate for thin film magnetic head
JPH05105505A (en) Ceramic material
JPS6323641B2 (en)
JPH05258241A (en) Ceramic sintered compact for thin film magnetic head

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408