JPH05213674A - Ceramic material - Google Patents

Ceramic material

Info

Publication number
JPH05213674A
JPH05213674A JP4042444A JP4244492A JPH05213674A JP H05213674 A JPH05213674 A JP H05213674A JP 4042444 A JP4042444 A JP 4042444A JP 4244492 A JP4244492 A JP 4244492A JP H05213674 A JPH05213674 A JP H05213674A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbide particles
ceramic material
sintered body
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4042444A
Other languages
Japanese (ja)
Inventor
Otojiro Kida
音次郎 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP4042444A priority Critical patent/JPH05213674A/en
Publication of JPH05213674A publication Critical patent/JPH05213674A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a ceramic material suitable for use as a substrate material for a magnetic head and having slidability, wear resistance, high toughness, high heat conductivity, excellent machinability and such electrical properties as low specific resistance and low triboelectric chargeability. CONSTITUTION:This ceramic material contains 3-40wt.% silicon carbide particles in the base consisting of 25-60wt.% TiN and the balance beta-Si3N4 or beta-sialon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックス材料特には
耐久性、耐摩耗性に優れた薄膜磁気ヘッドに適した基板
セラミックス材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic material, and more particularly to a substrate ceramic material suitable for a thin film magnetic head having excellent durability and wear resistance.

【0002】[0002]

【従来の技術】近年、磁気ディスク装置の分野において
増大する高記録、高密度化の要請に応えるため、磁気ヘ
ッド特に薄膜磁気ヘッドが急速に普及しつつある。薄膜
磁気ヘッドは基板となるセラミックス製スライダーの後
端面に磁気信号の記録再生を行う薄膜素子が形成された
構造を有しており、スライダーが磁気ディスクの高速回
転(20〜40 m/s)によって発生する空気層流に乗って磁
気ディスク面上にわずかに浮上( 0.2〜4 μm )するこ
とを利用し、磁気ディスクに対して記録の書き込み読み
取りを行う機能を有する。
2. Description of the Related Art In recent years, magnetic heads, especially thin-film magnetic heads, are rapidly becoming popular in order to meet the increasing demand for higher recording and higher density in the field of magnetic disk devices. The thin-film magnetic head has a structure in which a thin-film element for recording and reproducing magnetic signals is formed on the rear end surface of a ceramic slider that serves as a substrate, and the slider is driven by a high-speed rotation (20-40 m / s) of a magnetic disk. It has a function of writing and reading data on and from the magnetic disk by utilizing the fact that it slightly floats above the surface of the magnetic disk (0.2 to 4 μm) by riding on the generated air laminar flow.

【0003】したがってスライダーは磁気ディスク回転
の起動、停止時には充分な空気層流が得られないため、
必ず磁気ディスクと摺動しいわゆるCSS(コンタクト
・スタート・ストップ)動作を行う。さらにスライダー
は定常浮上中であっても振動や塵埃の介入などの外的要
因によって浮上高さや浮上姿勢が乱れることが避けられ
ない。記録密度を大きくするためには浮上高さは一層小
さくなりつつあり、このような乱れによりスライダーが
高速回転中の磁気ディスクと衝突する回数がますます増
大してきている。
Therefore, the slider cannot obtain a sufficient air laminar flow when starting and stopping the rotation of the magnetic disk.
It always slides on the magnetic disk to perform so-called CSS (contact start stop) operation. Further, even if the slider is flying normally, it is inevitable that the flying height and the flying posture are disturbed by external factors such as vibrations and the intervention of dust. The flying height is becoming smaller in order to increase the recording density, and such disturbance causes the slider to collide with the magnetic disk rotating at a high speed more and more times.

【0004】これらのことからCSS性能を向上させる
ためには磁気ヘッドのスライダーの摺動性を高めること
が重要である。更にスライダーの表面が平滑で気孔が存
在しないこと、耐摩耗性が良いことが必須である。
From these points, it is important to improve the slidability of the slider of the magnetic head in order to improve the CSS performance. Furthermore, it is essential that the surface of the slider is smooth, has no pores, and has good wear resistance.

【0005】また磁気ヘッドは前述の如く磁気ディスク
と接触摺動する時に摩擦帯電する。この帯電量が過度に
大きくなると磁気トランジュサー信号巻線にノイズが発
生し、磁気ヘッドの浮上量が変わったりする恐れがあ
る。そこで摩擦帯電のできるだけ生じない材料で磁気ヘ
ッドのスライダーを構成することが望ましい。
The magnetic head is frictionally charged when it comes into contact with and slides on the magnetic disk as described above. If the charge amount becomes excessively large, noise may occur in the magnetic transducer signal winding, and the flying height of the magnetic head may change. Therefore, it is desirable to configure the slider of the magnetic head with a material that does not cause frictional charging as much as possible.

【0006】磁気ヘッドスライダーは例えば特開昭55
−163665に示されているように極めて複雑な構造
をしているのであるが、この磁気ヘッドを生産性良く作
るにはスライダー構成材が機械加工性即ち加工時の切削
抵抗の少ないこと、切削ブレードへの目づまりのないこ
と、クラック、チッピングの生じないことが重要であ
る。
A magnetic head slider is disclosed, for example, in JP-A-55.
Although it has an extremely complicated structure as shown in 163665, in order to make this magnetic head with high productivity, the slider constituent material is machinable, that is, the cutting resistance at the time of processing is small, and the cutting blade. It is important that there be no clogging and that neither cracks nor chipping occur.

【0007】従来のスライダー材料としては薄膜素子の
形成性が良好な点から Al2O3系セラミックスが広く知ら
れており、改良提案も多い。例えば特開昭61−158
862、特開昭60−231308、特開昭60−18
3709、特開昭60−179923等に示されたもの
や、一方ZrO2を主成分としたスライダー材料が例えば特
開昭60−171617、特開昭63−278312、
特開昭60−66404に示され、摺動特性、耐摩耗性
の向上が計られている。
As a conventional slider material, Al 2 O 3 based ceramics are widely known from the viewpoint of good formability of a thin film element, and there are many proposals for improvement. For example, JP-A-61-158
862, JP-A-60-231308, JP-A-60-18
3709, JP-A-60-179923, and slider materials containing ZrO 2 as a main component are disclosed, for example, in JP-A-60-171617 and JP-A-63-278312.
As shown in JP-A-60-66404, improvement of sliding characteristics and wear resistance is attempted.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記の A
l2O3−TiC からなるスライダーは機械加工性や耐摩耗性
に優れるものの高精度の複雑な形状のスライダーを加工
する際クラックやチッピングも少なくなく加工歩留を落
としており、より破壊靭性、摺動特性の向上が強く望ま
れている。
[Problems to be Solved by the Invention] However, the above A
A slider made of l 2 O 3 -TiC has excellent machinability and wear resistance, but when processing a slider with a high precision and complicated shape, it does not have many cracks and chippings, which reduces the processing yield, resulting in higher fracture toughness, There is a strong demand for improvement in sliding characteristics.

【0009】またZrO2を主成分とするスライダーは Al2
O3−TiC と比べ摺動特性に優れているが耐摩耗性や機械
加工性が劣ると言われている。このように種々のスライ
ダー材料が提案されているが、摺動特性、耐摩耗性、破
壊靭性の高い機械加工性に優れた材料が強く望まれてい
る。
A slider containing ZrO 2 as a main component is Al 2
Compared to O 3 -TiC, it has better sliding characteristics, but is said to have poor wear resistance and machinability. As described above, various slider materials have been proposed, but there is a strong demand for a material having excellent sliding properties, wear resistance, and fracture toughness and excellent machinability.

【0010】[0010]

【課題を解決するための手段】本発明は前述の問題点を
解決すべくなされたものでありセラミックス材料特には
スライダーとして好適な薄膜磁気ヘッド用基板材料を提
供するものである。即ち本発明は本質的には、重量%で
TiN を25〜60%含み残部がβ−Si3N4 およびまたはβ−
サイアロンを主成分としさらに大きさが 5〜20μm の炭
化珪素粒子およびまたは最大径が 5〜50μm 厚さが最大
径の1/3以下である板状炭化珪素粒子を含むことを特
徴とするセラミックス材料を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems and provides a substrate material for a thin film magnetic head, which is suitable as a ceramic material, particularly as a slider. That is, the present invention is essentially
25-60% TiN and balance β-Si 3 N 4 and / or β-
A ceramic material containing sialon as a main component and further containing silicon carbide particles having a size of 5 to 20 μm and / or plate-like silicon carbide particles having a maximum diameter of 5 to 50 μm and a thickness of 1/3 or less of the maximum diameter. Is provided.

【0011】本発明の好ましい態様は炭化珪素粒子の含
有量が焼結体である材料中に重量%(以下同じ)で 3〜
40%であることであり、他の好ましい態様は磁気ヘッド
用基板材料としての用途である。即ち本発明は潤滑性、
耐摩耗性、高強度、高靭性に優れたβ−Si3N4 およびま
たはβ−サイアロンを主構成相とし導電性付与のための
TiN および高靭性に優れた特性の炭化珪素粒子を分散し
た焼結体からなるセラミックス材特には薄膜磁気ヘッド
用基板材料である。
A preferred embodiment of the present invention is such that the content of silicon carbide particles in the material which is a sintered body is 3% by weight (hereinafter the same).
40%, and another preferable embodiment is the use as a substrate material for a magnetic head. That is, the present invention is lubricity,
For imparting conductivity with β-Si 3 N 4 and / or β-sialon, which are excellent in wear resistance, high strength and high toughness, as the main constituent phase
It is a ceramic material composed of a sintered body in which TiN and silicon carbide particles having excellent characteristics of high toughness are dispersed, particularly a substrate material for a thin film magnetic head.

【0012】本発明に好ましく用いられる炭化珪素粒子
の定義を図1にて説明する。まず球状の粒状粒子は径が
5〜20μm であり、やや長尺の粒状粒子1の炭化珪素粒
子は図1(a)に示すように短軸径(2本の平行線で挟
み最小間隔となる時の間隔d)が 5〜20μm のものとし
て定義される。また板状炭化珪素粒子1も本発明におい
て好ましいものであり、図1(b)に基づいて説明する
と最大径φ 5〜50μmは粒子の大きさを示し厚みtがそ
の最大径の1/3以下のものとして定義されるものであ
る。
The definition of the silicon carbide particles preferably used in the present invention will be explained with reference to FIG. First, spherical granular particles
5 to 20 μm, and the silicon carbide particles of the slightly long granular particles 1 have a minor axis diameter (distance d when sandwiched between two parallel lines to be the minimum distance) as shown in FIG. 1 (a). Defined as 20 μm. Further, the plate-like silicon carbide particles 1 are also preferable in the present invention, and when explained based on FIG. 1 (b), the maximum diameter φ 5 to 50 μm indicates the size of the particles and the thickness t is 1/3 or less of the maximum diameter. Is defined as

【0013】なおこの板状炭化珪素粒子はSiO2とカーボ
ンの混合物をアチソン法により充分時間をかけて単結晶
化することにより得ることができる。本発明において主
成分は(1)TiN とともに(2)β−Si3N4 およびまた
はβ−サイアロンであるが、これらについて以下説明す
る。
The plate-shaped silicon carbide particles can be obtained by single-crystallizing a mixture of SiO 2 and carbon by the Acheson method for a sufficient time. In the present invention, the main components are (1) TiN and (2) β-Si 3 N 4 and / or β-sialon, which will be described below.

【0014】本発明において主成分であるTiN は焼結体
に25〜60%が好ましく、これはTiNは導電性付与のため
必要であり、さらに(2)成分がβ−Si3N4 の場合には
β−Si3N4 の微細な柱状結晶の生成や高靭性化のために
必要であり、25%以下では導電性が不充分であり、60%
以上では焼結しにくく、高靭性化が充分発揮できないか
らである。望ましくはTiN 30〜50%である。
In the present invention, TiN which is the main component is preferably 25 to 60% in the sintered body, which is necessary for imparting conductivity, and when (2) the component is β-Si 3 N 4 . Is necessary for the formation of fine columnar crystals of β-Si 3 N 4 and toughness. If it is less than 25%, the electrical conductivity is insufficient and 60%.
This is because if it is above, it is difficult to sinter and the toughness cannot be sufficiently exhibited. Desirably, TiN is 30 to 50%.

【0015】つぎに(2)成分であるβ−Si3N4 または
β−サイアロンについて説明するが、共通してこれらの
成分の焼結体中での好ましい含有量は、(1)成分であ
るTiN と(3)成分である炭化珪素(SiC )粒子との関
係で20〜60%であり、望ましくは30〜50%である。
Next, β-Si 3 N 4 or β-sialon which is the component (2) will be described. In general, the preferable content of these components in the sintered body is the component (1). The relationship between TiN and the silicon carbide (SiC) particles as the component (3) is 20 to 60%, preferably 30 to 50%.

【0016】まず本発明に用いられるβ−Si3N4 をもた
らす原料としてはα−Si3N4 の微粉末を用いるのが適切
であるが、このα−Si3N4 原料粉末としてはその中に 5
〜40体積%のβ−Si3N4 が含まれてもよく、好ましくは
5〜20体積%である。これは40体積%以上ではαからβ
への変態に伴なう微細な柱状結晶の生成が少なく高強
度、高靭性が得られず、また 5体積%以下のβ−Si3N4
を含むα−Si3N4 は製造できないからであり、5 〜40体
積%がαからβへの変態に伴なう微細な柱状結晶相が生
成し、高強度、高靭性が得られるからである。この原料
は可及的に純度の高いもの好ましくは99%以上で微細な
もの好ましくは平均粒度 5μm 以下特には1 μm 以下の
ものが適切である。
[0016] First As the raw material leads to β-Si 3 N 4 used in the present invention is appropriate to use a fine powder of α-Si 3 N 4, as the α-Si 3 N 4 raw material powder thereof 5 in
~ 40 vol% β-Si 3 N 4 may be included, preferably
It is 5 to 20% by volume. This is from α to β at 40 volume% or more
The formation of fine columnar crystals due to the transformation to γ is low, high strength and high toughness are not obtained, and β-Si 3 N 4 content of 5% by volume or less
The reason is that α-Si 3 N 4 containing α cannot be produced, and 5 to 40% by volume produces a fine columnar crystal phase associated with the transformation from α to β, so that high strength and high toughness can be obtained. is there. It is suitable that the raw material has a purity as high as possible, preferably 99% or more and fine, preferably an average particle size of 5 μm or less, particularly 1 μm or less.

【0017】また同様にTiN 相をもたらすTiN は純度99
%以上平均粒度 5μm 以下特には 1μm 以下のものがよ
い。また本発明に用いられるβ−サイアロン相をもたら
す原料としては、通常α−Si3N4 、AlN、Al2O3 等の
微粉末を主とする混合物が適切である。これらの原料は
可及的に純度の高いもの好ましくは99%以上で微細なも
の好ましくは平均粒径 5μm 以下特には 1μm 以下のも
のが適切である。また同様にTiN 相をもたらすTiN は純
度99%以上、平均粒計 5μm 以下特には 1μm 以下のも
のがよい。
TiN, which also gives the TiN phase, has a purity of 99
% Or more and average particle size 5 μm or less, especially 1 μm or less is preferable. Further, as a raw material for producing the β-sialon phase used in the present invention, a mixture mainly containing fine powder of α-Si 3 N 4 , AlN, Al 2 O 3 or the like is usually suitable. It is appropriate that these raw materials have a purity as high as possible, preferably 99% or more and fine, preferably an average particle diameter of 5 μm or less, particularly 1 μm or less. Similarly, the TiN that produces the TiN phase should have a purity of 99% or more and an average particle size of 5 μm or less, particularly 1 μm or less.

【0018】本発明において一つの本焼結体はβ−サイ
アロン相とTiN 相とが主成分にて構成されたものであ
り、この場合のようなβ−サイアロンは、これらをもた
らす前述したα−Si3N4 、AlN、Al2O3 の配合比を適
切に選択することで容易に可能である。例えばα−Si3N
4 、AlN、Al2O3 の量比は2:1:1がよく、好まし
くはAlNを若干多くした2:1.5 :1の量比が強度、
破壊靭性に優れたものが得られる。
In the present invention, one of the present sintered bodies is composed of a β-sialon phase and a TiN phase as main components, and the β-sialon in this case has the above-mentioned α-sialon. This is easily possible by appropriately selecting the compounding ratio of Si 3 N 4 , AlN, and Al 2 O 3 . For example α-Si 3 N
4 , the amount ratio of AlN and Al 2 O 3 is preferably 2: 1: 1, and preferably the amount ratio of 2: 1.5: 1 with slightly increased AlN is strength,
A material with excellent fracture toughness can be obtained.

【0019】なお本発明焼結体でサイアロン(Si-Al-O-
N )がβ−サイアロンであることが望ましい理由はα−
サイアロン(Si-Al-O-N のSi、Al の1部に Y、Ca、Mg、
Li、La等を固溶させたもの)より強度、破壊靭性が高い
ものが得られるからであり、その根拠は定かでないが、
α−サイアロンが液相を生成しやすいためと考えられ
る。
In the sintered body of the present invention, sialon (Si-Al-O-
The reason why N) is preferably β-sialon is α-
Sialon (Si, Al of Si-Al-ON part of Y, Ca, Mg,
This is because the strength and fracture toughness are higher than those obtained by solid solution of Li, La, etc.).
It is considered that α-sialon easily forms a liquid phase.

【0020】本発明焼結体を得るためには原料配合とし
て(1)成分であるTiN と(2)成分であるβ−サイア
ロンまたはβ−Si3N4 をもたらす原料を主成分とし、こ
れに(3)成分である大きさが 5〜20μm の炭化珪素粒
子を 3〜40%好ましくは10〜30%となるように添加して
混合粉末を形成し、また最大径が 5〜50μm 好ましくは
10〜40μm 厚さが最大径の1/3以下で板状をなす炭化
珪素粒子を 3〜40%好ましくは10〜30%となるように添
加して混合粉末を形成することが望ましい。
In order to obtain the sintered body of the present invention, as a main ingredient, a raw material which provides TiN which is the component (1) and β-sialon or β-Si 3 N 4 which is the component (2) is used as the main component. (3) Silicon carbide particles having a size of 5 to 20 μm as a component are added so as to be 3 to 40%, preferably 10 to 30% to form a mixed powder, and the maximum diameter is preferably 5 to 50 μm.
It is desirable to form a mixed powder by adding plate-like silicon carbide particles having a thickness of 10 to 40 μm and 1/3 or less of the maximum diameter so as to be 3 to 40%, preferably 10 to 30%.

【0021】ここで炭化珪素粒子の大きさや添加量は大
きさが 5μm より小さいと破壊靭性の改善効果が認めら
れず、20μm より大きいと得られるセラミックス焼結体
の密度は低く緻密化は達成されない。また板状炭化珪素
粒子の大きさや添加量は炭化珪素粒子と同様に 5μm よ
り小さいと破壊靭性の効果が認められず、50μm より大
きいとセラミックス焼結体の密度が低く緻密化しないた
め、好ましくは10〜40μm が望ましい。
If the size and amount of silicon carbide particles are smaller than 5 μm, the effect of improving fracture toughness is not recognized, and if it is larger than 20 μm, the density of the obtained ceramic sintered body is low and densification cannot be achieved. .. If the size and addition amount of the plate-shaped silicon carbide particles are smaller than 5 μm, the effect of fracture toughness is not recognized, and if it is larger than 50 μm, the density of the ceramics sintered body is low and it is not densified. 10-40 μm is desirable.

【0022】炭化珪素粒子または板状炭化珪素粒子の添
加量は 3%より少ないと破壊靭性の効果が十分には認め
られず、また薄膜磁気ヘッド用基板として用いるとそれ
に必要な耐摩耗性がやや劣るものとなる。一方40%より
多いと得られるセラミックス焼結体の密度が低く、充分
な緻密化は達成されない。
If the amount of silicon carbide particles or plate-shaped silicon carbide particles added is less than 3%, the effect of fracture toughness is not sufficiently recognized, and if it is used as a substrate for a thin film magnetic head, the abrasion resistance required therefor is rather a little. Will be inferior. On the other hand, if it exceeds 40%, the density of the obtained ceramic sintered body is low and sufficient densification cannot be achieved.

【0023】本発明はこれらの成分以外に特に(2)成
分がSi3N4 の場合には焼結助剤として MgO、Al2O3 、Mg
O・Al2O3 、Y2O3等の1種または1種以上がβ−Si3N4
TiNおよび炭化珪素粒子または板状炭化珪素粒子の合量
に対して 1〜10%添加することが有用であり、焼結体の
特性の高強度、高靭性の向上を計ることができる。焼結
助剤を 1〜10%と限定するのは 1%以下では焼結促進に
効果がなく、10%以上の添加では局部的な粒成長が発生
し、微細で均一な組織を得ることができないためであ
り、好ましくは 2〜8 %とすることである。本発明はこ
れらの成分以外の成分が本発明焼結体の特質を損なわな
い程度に含まれていても勿論差支えないが、可及的に少
量にとどめることが望ましい。
In addition to these components, the present invention uses MgO, Al 2 O 3 , Mg as a sintering aid especially when the component (2) is Si 3 N 4.
One or more of O.Al 2 O 3 and Y 2 O 3 is β-Si 3 N 4 ,
It is useful to add 1 to 10% of the total amount of TiN and silicon carbide particles or plate-shaped silicon carbide particles, and it is possible to improve the high strength and high toughness of the properties of the sintered body. Limiting the amount of sintering aid to 1-10% is not effective in promoting sintering if it is 1% or less, and if it is added 10% or more, local grain growth occurs and a fine and uniform structure can be obtained. This is because it cannot be done, and it is preferably set to 2 to 8%. In the present invention, components other than these components may be contained to the extent that the characteristics of the sintered body of the present invention are not impaired, of course, but it is desirable to keep the amount as small as possible.

【0024】本発明は以上の構成によりなるが、本発明
の焼結体を製造するにはこれらの構成成分によって形成
された混合粉末を充分混合して乾燥し、これらの混合物
を黒鉛型に充填し、真空中または中性還元性雰囲気下で
ホットプレスを使用し焼結体を得ることができる。また
上記の混合粉末に少量のバインダーを添加してスプレイ
ドライヤーにて送粒しこの造粒物をCIP成形し、真空
または非酸化雰囲気中で常圧焼結や予備焼成HIP(si
nyter HIP)やカプセルHIP(カプセル中に封入)
しても同様の効果が得られる。このホットプレスやHI
Pを行う場合の焼成温度は1600〜1800℃焼成時間は 0.5
〜2 時間程度が適当である。
Although the present invention has the above-mentioned constitution, in order to produce the sintered body of the present invention, the mixed powder formed by these constituents is thoroughly mixed and dried, and the mixture is filled in a graphite mold. However, a sintered body can be obtained by using hot pressing in a vacuum or in a neutral reducing atmosphere. Also, a small amount of binder is added to the above-mentioned mixed powder and granulated by a spray dryer, and the granulated product is subjected to CIP molding, and pressureless sintering or pre-firing HIP (si) in a vacuum or non-oxidizing atmosphere.
nyter HIP) and capsule HIP (encapsulated in capsule)
Even if the same effect is obtained. This hot press and HI
When P is used, the firing temperature is 1600-1800 ℃ and the firing time is 0.5
~ 2 hours is appropriate.

【0025】[0025]

【作用】本発明においてβ−Si3N4 −TiN −特定粒子の
炭化珪素粒子で構成された基板はα−Si3N4 焼結中にα
−Si3N4 からβ−Si3N4 に変態してアスペクト比の高い
微細な柱状結晶相を生成させ、その組織中に導電性のTi
N が均一に分散された組織であり、β−サイアロン−Ti
N −特定粒子の炭化珪素粒子で構成された基板は潤滑性
に富み、高強度、高靭性のβ−サイアロンの組織内に導
電性のTiN を均一に分散した組織であって、いずれもさ
らにこの組織内にアスペクト比の高い長い棒状の炭化珪
素粒子や板状炭化珪素粒子が均一に分散した組織を呈す
るものである。これらの組織によってあらゆる方向の亀
裂をくい止め破壊靭性が著しく向上するものと考えられ
る。
In the present invention, the substrate composed of β-Si 3 N 4 -TiN-specific particles of silicon carbide particles has an α-Si 3 N 4 content of α-Si 3 N 4 during sintering.
-Si 3 N 4 is transformed to β-Si 3 N 4 to form a fine columnar crystal phase with a high aspect ratio, and conductive Ti is contained in the structure.
A structure in which N is uniformly dispersed, and β-sialon-Ti
The substrate composed of N-specific particles of silicon carbide particles is a structure in which conductive TiN is uniformly dispersed in the structure of β-sialon having high lubricity, high strength, and high toughness. It has a structure in which long rod-shaped silicon carbide particles or plate-shaped silicon carbide particles having a high aspect ratio are uniformly dispersed in the structure. It is considered that these structures significantly prevent cracks in all directions and significantly improve fracture toughness.

【0026】本発明を薄膜磁気ヘッド用基板材料とする
事によって潤滑性に富み高強度、高靭性でしかも熱伝導
率が高い、従って機械加工性や摺動特性も良好で放熱
性、摺動摩擦に対する耐摩耗性に優れ、また比抵抗も小
さいので摩擦帯電性にも優れたものが得られると考えら
れる。
By using the present invention as a substrate material for a thin-film magnetic head, it is rich in lubricity, has high strength and high toughness, and has high thermal conductivity. Therefore, it has good machinability and sliding characteristics, and has good heat dissipation and sliding friction. It is considered that it is possible to obtain a material having excellent abrasion resistance and a low specific resistance, and thus having excellent triboelectricity.

【0027】[0027]

【実施例】以下本発明を実施例に基づいて説明する。EXAMPLES The present invention will be described below based on examples.

【0028】(実施例1〜19)原料としてα−Si3N4
(α−Si3N4 中に10体積%のβ−Si3N4 を含む)粉末
(純度99 wt %、平均粒径 0.5μm )、TiN 粉末(純度
99 wt %、平均粒径1μm)、炭化珪素粉末(純度99.9
wt %大きさが 5〜20μm )または板状炭化珪素粒子
(純度99 wt %最大径 5〜50μm 厚みが最大径の1/3
以下)粉末と、助剤としてAl2O3 粉末(純度99.9 wt
%、平均粒径 0.5μm )、Y2O3粉末(純度99.9 wt %、
平均粒径 0.5μm )、MgO 粉末(純度99 wt %平均粒径
1μm )、MgO・Al2 O3粉末(純度99 wt %平均粒径1μ
m )を所定の割合にて配合しボールミルにてエタノール
溶媒でナイロンボールを用い 2時間混合した。この混合
粉末をエバポレーターにて乾燥しエタノールを抽出し
た。乾燥粉末を解砕し篩目間隙 150μm の大きさの篩に
かけて成形用粉末とした。
(Examples 1 to 19) As a raw material, α-Si 3 N 4 was used.
(Α-Si 3 N 4 contains 10% by volume of β-Si 3 N 4 ) powder (purity 99 wt%, average particle size 0.5 μm), TiN powder (purity
99 wt%, average particle size 1 μm, silicon carbide powder (purity 99.9
wt% size 5 to 20 μm) or plate-like silicon carbide particles (purity 99 wt% maximum diameter 5 to 50 μm thickness 1/3 of maximum diameter)
Powder) and Al 2 O 3 powder as auxiliary agent (purity 99.9 wt
%, Average particle size 0.5 μm), Y 2 O 3 powder (purity 99.9 wt%,
Average particle size 0.5 μm), MgO powder (purity 99 wt% average particle size 1 μm), MgO · Al 2 O 3 powder (purity 99 wt% average particle size 1 μm)
m) was blended at a predetermined ratio and mixed for 2 hours with a nylon ball using an ethanol solvent in a ball mill. This mixed powder was dried with an evaporator to extract ethanol. The dry powder was crushed and passed through a sieve having a sieve mesh size of 150 μm to obtain a molding powder.

【0029】この粉末をホットプレスの黒鉛型内に充填
し、圧力 350 kg/cm2 温度はそれぞれ1600〜1800℃、窒
素雰囲気で1時間ホットプレスし、60 mm φ×厚み 5 m
m の焼結体を得た。
This powder was filled in a hot pressing graphite mold, and the pressure was 350 kg / cm 2 at a temperature of 1600 to 1800 ° C., and hot pressing was performed for 1 hour in a nitrogen atmosphere.
A sintered body of m 2 was obtained.

【0030】焼結体の物性として密度はアルキメデス法
により測定し理論密度を除して相対密度を求め、曲げ強
度は JIS R 1601 「ファインセラミックスの曲げ試験
法」に従って測定した。また破壊靭性はSEPB法(Si
ngle Edge Pre-cracked Beam法)により測定した。即ち
JIS R 1601 に準拠した試料を用意し、ビッカース圧子
圧入により圧痕をつけた後予亀裂を入れるため荷重を加
えイヤホンでポップイン(Pop-in)を検知した。続いて
予亀裂長さを測定するため着色を行い、そして曲げ試験
を行って破断荷重を測定した。破断試料の予亀裂長さを
測定した後破壊靭性の算出式により破壊靭性を求めた。
As the physical properties of the sintered body, the density was measured by the Archimedes method and the theoretical density was divided to obtain the relative density, and the bending strength was measured according to JIS R 1601 "Bending test method for fine ceramics". The fracture toughness is SEPB method (Si
ngle Edge Pre-cracked Beam method). I.e.
A sample conforming to JIS R 1601 was prepared, and after applying an indentation by Vickers indenter pressurization, a load was applied to create a precrack and a pop-in (Pop-in) was detected with an earphone. Subsequently, coloring was performed to measure the precrack length, and a bending test was performed to measure the breaking load. After measuring the pre-crack length of the fractured sample, the fracture toughness was calculated by the fracture toughness calculation formula.

【0031】ビッカース硬度は曲げ試験片の鏡面研磨面
を用い荷重 300 gにてビッカース硬度計により測定し
た。比抵抗の測定は曲げ試験片を用い4端子法にて測定
した。上記と同様な方法にて製作した 60 mmφ×厚み 5
mm の焼結体で磁気ヘッドスライダーとしての評価を行
った。
The Vickers hardness was measured by a Vickers hardness meter with a load of 300 g using a mirror-polished surface of a bending test piece. The specific resistance was measured by a 4-terminal method using a bending test piece. 60 mmφ × thickness 5 manufactured by the same method as above
The magnetic head slider was evaluated using a sintered body of mm 2.

【0032】得られた焼結体を鏡面研磨してダイヤモン
ド切断砥石で切断し、角部の微細なチッピングを顕微鏡
にて観察する事により行った。このチッピング試験は幅
0.28mmおよび直径52mmのレジノイト砥石(30μm のダイ
ヤ砥粒を有するカッター)を用い切り込み0.3 mm送り量
5mm/secで実施した。チッピング深さが 2μm を越えな
い場合実質的にスライダー品質に影響を及ぼさず満足す
べき品質を維持するものでこれを○で示し、2 μm を越
える場合は△および著しいチッピングの場合は×として
示した。
The obtained sintered body was mirror-polished, cut with a diamond cutting grindstone, and fine chipping at the corners was observed with a microscope. This chipping test is wide
0.3 mm feed amount with 0.28 mm and 52 mm diameter resinoite grindstone (cutter with 30 μm diamond abrasive grains)
It was carried out at 5 mm / sec. When the chipping depth does not exceed 2 μm, the slider quality is not substantially affected and the satisfactory quality is maintained, and this is indicated by ○, and when it exceeds 2 μm, it is indicated by △ and marked chipping is indicated by ×. It was

【0033】また擦動性および耐摩耗性は焼結体から実
際の薄膜磁気ヘッドの形状に切出し磁気ディスクと接触
させてディスクを回転させるCSS試験により特性を評
価した。擦動性はディスクとヘッドのCSS試験により
摩擦係数を求め摩擦係数が 0.5より小さいものを○で示
し、摩擦係数が 0.5より大きいものは△および著しく大
きい場合は×で示した。
The rubbing and abrasion resistance were evaluated by a CSS test in which the sintered body was cut into the shape of an actual thin film magnetic head and brought into contact with a magnetic disk to rotate the disk. The rubbing property was shown by ◯ when the friction coefficient was determined by the CSS test of the disk and the head, and when the friction coefficient was less than 0.5, it was shown by Δ, and when it was significantly large, by x.

【0034】耐摩耗性はCSS試練を 10000回繰返し磁
気ヘッドスライダーの擦動面の傷の有無について評価し
た。比較例として Al2O3-TiC 30 %基板とY2O3 5.2 wt
%で部分安定化されたZrO2-TiC 30 %基板を用い比較し
た。それぞれの結果を表1、表2に示した。
The wear resistance was evaluated by repeating CSS trials 10,000 times and checking for scratches on the rubbing surface of the magnetic head slider. As a comparative example, Al 2 O 3 -TiC 30% substrate and Y 2 O 3 5.2 wt
% ZrO 2 -TiC 30% partially stabilized substrate was used for comparison. The respective results are shown in Tables 1 and 2.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】表1、表2に示されるように本発明は高密
度で比抵抗も小さく、硬度、曲げ強度も高く、破壊靭性
は Al2O3−TiC 30%基板と比べ 2.3〜3 倍、ZrO2-TiC 3
0 %基板と比べ 1.2〜1.6 倍と高くなっており、磁気ヘ
ッドスライダーとしての評価では鏡面研磨した場合の表
面の気孔はほとんど観察されず緻密化しており、耐チッ
ピング性,擦動性かつ実施例19以外は耐摩耗性に優れた
スライダーとして最適なものである。
As shown in Tables 1 and 2, according to the present invention, the density is high, the specific resistance is low, the hardness and the bending strength are high, and the fracture toughness is 2.3 to 3 times that of the Al 2 O 3 --TiC 30% substrate. ZrO 2 -TiC 3
It is 1.2 to 1.6 times higher than that of the 0% substrate, and in the evaluation as a magnetic head slider, there are few pores on the surface when mirror-polished, and it is densified. Other than 19 are the best sliders with excellent wear resistance.

【0038】また熱伝導率は0.12 cal/cm・sec・℃(実施
例15)と高く、磁気記録媒体との摺動により発生する摩
擦熱を速やかに放熱することができ、耐熱衝撃性も高い
ので繰返し熱サイクルが加わっても熱的変化を起こすこ
となく、信頼性の高い薄膜磁気ヘッドが得られる。
Further, the thermal conductivity is as high as 0.12 cal / cm.sec..degree. C. (Example 15), the frictional heat generated by sliding with the magnetic recording medium can be quickly dissipated, and the thermal shock resistance is also high. Therefore, a highly reliable thin film magnetic head can be obtained without causing a thermal change even if repeated thermal cycles are applied.

【0039】(実施例21〜39)原料としてα−Si3N4
(α−Si3N4 中に10体積%のβ−Si3N4 を含む)粉末
(純度99 wt %平均粒径 0.5μm )、AlN粉末(純度
99 wt %平均粒径 1μm )、Al2O3 粉末(純度99.9 wt
%平均粒径 0.5μm )、TiN 粉末(純度99 wt %平均粒
径 1μm )と炭化珪素粉末(純度99.9 wt %大きさが 5
〜20μm )または板状炭化珪素粒子(純度99 wt %最大
径 5〜50μm 厚みが最大径の1/3以下)粉末を所定の
割合にて配合し、ボールミルにてエタノール溶媒でナイ
ロンボールを用い 2時間混合した。この混合粉末をエバ
ポレーターにて乾燥しエタノールを抽出した。乾燥粉末
を解砕し篩目間隙 150μm の大きさの篩にかけて成形用
粉末とした。
(Examples 21 to 39) α-Si 3 N 4 as a raw material
(Α-Si 3 N 4 contains 10% by volume of β-Si 3 N 4 ) powder (purity 99 wt% average particle size 0.5 μm), AlN powder (purity
99 wt% average particle size 1 μm), Al 2 O 3 powder (purity 99.9 wt
% Average particle size 0.5 μm), TiN powder (purity 99 wt% average particle size 1 μm) and silicon carbide powder (purity 99.9 wt% size 5
~ 20 μm) or plate-like silicon carbide particles (purity 99 wt% maximum diameter 5 to 50 μm thickness is 1/3 or less of the maximum diameter) are mixed in a predetermined ratio, and nylon balls are used in an ethanol solvent in a ball mill. Mixed for hours. This mixed powder was dried with an evaporator to extract ethanol. The dry powder was crushed and passed through a sieve having a sieve mesh size of 150 μm to obtain a molding powder.

【0040】この粉末をホットプレスの黒鉛型に充填し
圧力 350 kg/cm2 温度はそれぞれ1600〜1800℃窒素雰囲
気で 1時間ホットプレスし60 mm φ×5 mmの焼結体を得
た。焼結体の物性を前記と同じ方法で測定し、その結果
を表3、表4、表5に示した。
This powder was filled in a hot pressing graphite mold and hot pressed at a pressure of 350 kg / cm 2 in a nitrogen atmosphere at 1600 to 1800 ° C. for 1 hour to obtain a sintered body of 60 mmφ × 5 mm. The physical properties of the sintered body were measured by the same methods as described above, and the results are shown in Tables 3, 4, and 5.

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【表5】 [Table 5]

【0044】表3、表4、表5に示されるように本発明
は高密度で比抵抗も小さく硬度、曲げ強度も高く破壊靭
性も Al2O3−TiC 30%基板と比べて 1.8〜2.6 倍、ZrO2
−TiC 30%基板と比べ同等以上と高くなっており、磁気
ヘッドスライダーとしての評価では鏡面研磨した場合の
表面の気孔はほとんど観察されず緻密化しており、耐チ
ッピング性、摺動性かつ実施例39以外は耐摩耗性にも優
れたスライダーとして最適なものである。
As shown in Tables 3, 4, and 5, the present invention has a high density, a small specific resistance, a high hardness, a high bending strength, and a high fracture toughness as compared with the Al 2 O 3 --TiC 30% substrate. Double, ZrO 2
-TiC is 30% higher than that of the substrate, and when evaluated as a magnetic head slider, pores on the surface when mirror-polished were hardly observed, and it was densified. Except for 39, it is the best slider as it has excellent wear resistance.

【0045】熱伝導率は0.08 cal/cm・sec・℃(実施例3
6)と高く、磁気記録媒体との摺動により発生する摩擦
熱を速やかに放熱する事ができ、また耐熱衝撃性も高い
ので繰返し熱サイクルが加わっても熱的変化を起こすこ
となく、信頼性の高い薄膜磁気ヘッドが得られる。
The thermal conductivity is 0.08 cal / cm · sec · ° C. (Example 3
6), the frictional heat generated by sliding with the magnetic recording medium can be quickly radiated, and the thermal shock resistance is also high, so no thermal change occurs even if repeated thermal cycles are applied, and reliability is high. It is possible to obtain a thin film magnetic head with high efficiency.

【0046】[0046]

【発明の効果】本発明は薄膜磁気ヘッド用基板として好
適なセラミックス材料であり、摺動性、高強度、高靭
性、高熱伝導度、低抵抗に優れたβ−Si3N4 またはβ−
サイアロンとTiN を主相とし、これにさらに靭性強化材
としての特定の炭化珪素粒子を組織内に均一に分散した
ものであり、磁気記録媒体との間の摺動摩擦に対する耐
摩耗性、機械加工性に優れかつ放熱性、摩擦帯電性に優
れた技術的長所を有するものである。
INDUSTRIAL APPLICABILITY The present invention is a ceramic material suitable as a substrate for a thin film magnetic head, and is excellent in slidability, high strength, high toughness, high thermal conductivity and low resistance β-Si 3 N 4 or β-.
It consists of sialon and TiN as the main phase, and specific silicon carbide particles as a toughness-reinforcing material are dispersed uniformly in the structure. It has wear resistance and mechanical workability against sliding friction with the magnetic recording medium. It has the technical advantages of excellent heat dissipation and triboelectrification.

【0047】本発明の焼結体は表1ないし表5に示す特
性の他耐熱性、耐磁化性、耐食性、耐薬品性に優れるの
で耐熱構造部材、電気部材、精密機械部材、耐食部材等
としても使用できるものである。
Since the sintered body of the present invention is excellent in heat resistance, magnetization resistance, corrosion resistance and chemical resistance in addition to the characteristics shown in Tables 1 to 5, it is used as a heat resistant structural member, electric member, precision machine member, corrosion resistant member and the like. Can also be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明材料中の炭化珪素粒子および板状炭化珪
素粒子の寸法を定義する説明図。
FIG. 1 is an explanatory diagram that defines the dimensions of silicon carbide particles and plate-shaped silicon carbide particles in a material of the present invention.

【符号の説明】 1 炭化珪素粒子[Explanation of symbols] 1 Silicon carbide particles

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】焼結体として(1)TiN (2)β−Si3N4
およびまたはβサイアロンを主成分としかつ(3)炭化
珪素粒子を含有することを特徴とするセラミックス材
料。
1. A sintered body comprising (1) TiN (2) β-Si 3 N 4
And / or (3) a ceramic material containing β-sialon as a main component and (3) silicon carbide particles.
【請求項2】請求項1において、炭化珪素粒子は 3〜40
重量%であるセラミックス材料。
2. The silicon carbide particles according to claim 1, wherein the number of silicon carbide particles is 3 to 40.
A ceramic material that is% by weight.
【請求項3】請求港2において炭化珪素粒子は大きさが
5〜20μm の粒状または最大径が 5〜50μm 厚さが最大
径の1/3以下の板状であるセラミックス材料。
3. The size of the silicon carbide particles in the billing port 2 is
Ceramic material in the form of granules of 5 to 20 μm or a plate with a maximum diameter of 5 to 50 μm and a thickness of 1/3 or less of the maximum diameter.
【請求項4】請求項1、2または3のいずれかにおい
て、(1)成分であるTiN は焼結体中重量%で25〜60%
であるセラミックス材料。
4. The TiN as the component (1) according to claim 1, 2 or 3, wherein 25% to 60% by weight in the sintered body.
Is a ceramic material.
【請求項5】請求項1、2、3または4のいずれかにお
いて(2)成分であるβ−Si3N4 およびまたはβ−サイ
アロンは焼結体中重量%で20〜60重量%であるセラミッ
クス材料。
5. The β-Si 3 N 4 and / or β-sialon which is the component (2) in any one of claims 1, 2, 3 and 4 is 20 to 60% by weight in the sintered body. Ceramic material.
【請求項6】請求項4において焼結体は薄膜磁気ヘッド
用基板であるセラミックス材料。
6. The ceramic material according to claim 4, wherein the sintered body is a substrate for a thin film magnetic head.
JP4042444A 1992-01-31 1992-01-31 Ceramic material Withdrawn JPH05213674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4042444A JPH05213674A (en) 1992-01-31 1992-01-31 Ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4042444A JPH05213674A (en) 1992-01-31 1992-01-31 Ceramic material

Publications (1)

Publication Number Publication Date
JPH05213674A true JPH05213674A (en) 1993-08-24

Family

ID=12636249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4042444A Withdrawn JPH05213674A (en) 1992-01-31 1992-01-31 Ceramic material

Country Status (1)

Country Link
JP (1) JPH05213674A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060276A (en) * 2000-08-21 2002-02-26 Toshiba Corp Sintered silicon nitride compact as well as sliding member and bearing ball using the same
WO2022049935A1 (en) * 2020-09-03 2022-03-10 Jx金属株式会社 Sputtering target, manufacturing method therefor, and manufacturing method for magnetic recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060276A (en) * 2000-08-21 2002-02-26 Toshiba Corp Sintered silicon nitride compact as well as sliding member and bearing ball using the same
JP4567853B2 (en) * 2000-08-21 2010-10-20 株式会社東芝 Sintered silicon nitride
WO2022049935A1 (en) * 2020-09-03 2022-03-10 Jx金属株式会社 Sputtering target, manufacturing method therefor, and manufacturing method for magnetic recording medium
CN116134002A (en) * 2020-09-03 2023-05-16 Jx金属株式会社 Sputtering target, method for producing the same, and method for producing magnetic recording medium

Similar Documents

Publication Publication Date Title
JPS6323643B2 (en)
JPH0622053B2 (en) Substrate material
JPS61158862A (en) Magnetic head slider material
JPS62278164A (en) Material for magnetic head slider
JP3933523B2 (en) Ceramic substrate materials for thin film magnetic heads
JP2008084520A (en) Substrate for magnetic head, magnetic head, and recording medium-drive
US4859638A (en) Magnetic head sliders, materials therefor, and the process for the production thereof
WO2007105477A1 (en) Magnetic head substrate, magnetic head and recording medium driving device
JPH05213674A (en) Ceramic material
JPH05254938A (en) Ceramic sintered compact
JPH05246763A (en) Ceramic sintered compact
US5648303A (en) Non-magnetic ceramics for recording/reproducing heads and method of producing the same
JP3085623B2 (en) Non-magnetic ceramics for recording / reproducing head and method for producing the same
JPH05109023A (en) Substrate for magnetic head
JPH05250638A (en) Ceramic sintered compact for thin film magnetic head
JP2006347798A (en) Ceramic sintered compact, method of of manufacturing the same, and substrate for magnetic head
JP5093948B2 (en) Magnetic head substrate and manufacturing method thereof
JP2008243354A (en) Magnetic head substrate, its manufacturing method, magnetic head using this, and recording medium driving apparatus
JPH05105505A (en) Ceramic material
US20090068498A1 (en) Material of ceramic substrate for thin-film magnetic head
JPH05105510A (en) Ceramic material
JP5020210B2 (en) Substrate for magnetic head, magnetic head, and magnetic recording apparatus
JPH05217118A (en) Thin film magnetic head
JPH05258241A (en) Ceramic sintered compact for thin film magnetic head
JP4090771B2 (en) Semiconductive ceramic, and magnetic disk substrate holding member and jig using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408