JPH0521676B2 - - Google Patents

Info

Publication number
JPH0521676B2
JPH0521676B2 JP1939285A JP1939285A JPH0521676B2 JP H0521676 B2 JPH0521676 B2 JP H0521676B2 JP 1939285 A JP1939285 A JP 1939285A JP 1939285 A JP1939285 A JP 1939285A JP H0521676 B2 JPH0521676 B2 JP H0521676B2
Authority
JP
Japan
Prior art keywords
coating material
core wire
welding
amount
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1939285A
Other languages
Japanese (ja)
Other versions
JPS61180695A (en
Inventor
Akira Hirano
Hisao Maeda
Takeshi Koshio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1939285A priority Critical patent/JPS61180695A/en
Publication of JPS61180695A publication Critical patent/JPS61180695A/en
Publication of JPH0521676B2 publication Critical patent/JPH0521676B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 9%Cr−1〜2%Mo鋼は、560〜600℃で十分
な耐酸化性と高い高温強度をもつため、近年、オ
ーステナイトステンレス鋼に代り火力発電用ボイ
ラー設備、原子力工業用高温高圧容器などに用い
られている。最近、これらの構造物はさらに高温
で使用される傾向にある。本発明は、これらの構
造物の溶接においてクリープ特性、耐割れ性に優
れた9%Cr−1〜2%Mo溶接金属を得る低水素
系被覆アーク溶接棒に関するものである。 従来の技術 これまで9%Cr−1〜2%Mo鋼の溶接に使用
される被覆アーク溶接棒について種々検討されて
来たが、600〜650℃の使用においては、従来の9
%Cr−1〜2%Mo系溶接棒による溶接金属はク
リープ強度が低いため設計応力を低目にしなけれ
ばならず、溶接構造物の耐久性を短かくしてい
た。しかも、板厚10mm以上の鋼板の溶接では、
175℃以上の予熱をしなければ割れが停止しない
など、現場施工の面からも問題があつた。 これらの問題を解決するため、特開昭58−
58995号公報では、被覆剤及び/又は心線中のC、
Mn、Si、Cr、Mo、Al、N、Niの添加量を限定
し、種極的にAl、Nを加えることにより1〜3
%Cr−1/2〜1%Mo鋼溶接金属の低温靭性及び
焼戻し脆化の改良を行なつている。また、特開昭
58−86997号公報においては、さらに被覆剤の金
属炭酸塩、金属弗化物、金属酸化物の限定により
高温強度や溶接作業性などの向上を計つている
が、いずれも大幅なクリープ強度の向上及び耐割
れ性の改良には至つていない。 また、特開昭58−141892号公報には9Cr−2Mo
鋼の溶接構造物として、C、Si、Mn、Cr、Mo、
Ni、Al、N、Ti、O、Nb、Vを含む溶接金属が
記載されているが、Ni、Al、N、Ti、O、Nb、
Vを積極的に添加して大幅にクリープ強度を向上
しようとするものではなく、且つ、溶接金属中に
含有せしめる金属組成が示されるだけで各合金元
素の溶接材料への添加方法や添加範囲が明示され
ておらず、クリープ強度や耐割れ性にすぐれる9
%Cr−1〜2%Mo鋼用被覆アーク溶接棒を提供
するに至つていない。 更に、特開昭58−16792号公報にはNbおよびV
がフエライト層と侵炭層の発生を防止するためク
リープ強度向上に有効であることが記載されてい
るが、Cr含有量の異なる母材を溶接する溶接材
料に関するものであつて、クリープ特性、耐割れ
性に優れた9%Cr−1〜2%Mo鋼用被覆アーク
溶接棒を提供するには至つていない。 発明が解決しようとする問題点 本発明は、9%Cr−1〜2%Mo鋼の溶接にお
いて高いクリープ破断強度を有し、かつ溶接金属
の耐割れ性の優れた低水素系被覆アーク溶接棒を
提供するものである。 (問題点を解決するための手段) 本発明の要旨とするところは、心線または被覆
剤のいずれか一方あるいは両方にV,Nb,Cr,
Moあるいは更にNiを重量%で 0.02≦心線中(V)+被覆剤中(V)×0.28≦0.22 0.02≦心線中(Nb)+被覆剤中(Nb)×0.20≦
0.11 8.5≦心線中(Cr)+被覆剤中(Cr)×0.35≦11 0.8≦心線中(Mo)+被覆剤中(Mo)×0.35≦
2.5 0.05≦心線中(Ni)+被覆剤中(Ni)+0.35≦
1.9 の範囲で添加し、Mg0.8〜4.5%、炭酸塩10〜70
%、ふつ素化合物5〜30%、その外に上記以外の
脱酸剤、アーク安定剤、粘結剤を含む被覆剤を心
線の周囲に被覆塗装したことを特徴とする低水素
系被覆アーク溶接棒である。 なお、本発明で用いる心線は、Nb、V、Cr、
Mo、Ni以外の化学成分がC0.10%以下、Si0.3%
以下、Mn1.0%以下、P0.02%以下、S0.02%以
下、Cu0.10%以下、残部がFeおよび不可避不純
物から成るものである。 9%Cr−1〜2%Mo鋼の溶接における溶接金
属のクリープ強度の低下原因は、溶接金属が高温
に加熱されることによりまず溶接金属中のCと
Feが結合してFe3Cを析出し、さらに長時間加熱
されることによりこの炭化物がM23C6、M6C(M
は金属元素を指す)に変化し、炭化物が粗大化す
ることによるものとされている。 そこで、本発明者らは長年の研究の結果、溶接
棒に適量のV、Nbを共存添加することにより溶
接金属に微細なV4C3、NbCを析出させ、M23C6
M6Cの析出状態を長時間にわたつて粗大化しな
いようにコントロールしてクリープ破断強度を格
段に高め得ることを見出した。 更に、高強度になることにより劣化する溶接金
属の耐割れ性を改良するためには、被覆剤中に適
量のMgを添加することが有効であることを見出
した。Mgは強脱酸元素であるため、被覆剤中に
添加すると溶接金属中のO量を大幅に低下し、介
在物の生成を抑えて溶接金属の延性を向上させる
と共に、V、Nbの酸化を防止するため、V4O3
NbCの微細炭化物の析出を促進し、Cを固定す
ることによつてCによる割れ感受性を低下させる
ことによるものである。 (作 用) 本発明はかかる知見に基づいてなされたもので
あり、以下に作用を詳細に説明する。 本発明の特徴の一つは、溶接棒にVおよびNb
を共存添加し、その相乗効果により、溶接して得
られる9%Cr−1〜2%Mo溶接金属にV4C3
NbCの微細炭化物を析出させて、600〜650℃の
温度におけるクリープ破断強度を格段に高めるこ
とにある。 第1表はルチール2.4%、炭酸石灰42%、ほた
る石14%、炭酸バリウム5%、Fe−Si(45%Si)
11%、金属Mn0.5%、Fe−Ti(45%Ti)1.5%、
金属Cr7.1%、Fe−Mo(61%Mo)4.7%、Fe−V
(53%V)0〜1.6%、Fe−Nb(67%Nb)0〜1.0
%、粘結剤8.2%、残部が鉄粉からなる被覆剤を、
C0.02〜0.05%、Si0.01〜0.03%、Mn0.43〜0.52
%、Cr6.7〜7.1%、Mo0.47〜0.52%、V0.002〜
0.232%、Nb0.003〜0.126%の直径4.0mm、長さ400
mmの心線に被覆外径6.3mmに被覆塗装した後、乾
燥、焼成して20種類の溶接棒を作成し、AWS
A5.4に従つて溶接し、クリープ試験を実施した
結果を示すものである。なお、この場合、予熱パ
ス間温度175℃、電流160A、溶接入熱21kJ/cmな
る条件で溶着金属を作成し、750℃、50分の後熱
処理を施した後にクリープ試験片を採取し、600
℃でクリープ試験を行ない、1000hrのときの破断
強度を求めた。
Industrial applications 9%Cr-1~2%Mo steel has sufficient oxidation resistance and high high temperature strength at 560~600℃, so it has recently been used in place of austenitic stainless steel for boiler equipment for thermal power generation and in the nuclear power industry. It is used in high-temperature, high-pressure containers, etc. Recently, there has been a trend for these structures to be used at even higher temperatures. The present invention relates to a low-hydrogen coated arc welding rod that produces a 9% Cr-1 to 2% Mo weld metal with excellent creep properties and crack resistance when welding these structures. Conventional technology Until now, various studies have been conducted on coated arc welding rods used for welding 9%Cr-1~2%Mo steel, but when used at 600~650℃, the conventional 9%
Since the weld metal using a %Cr-1 to 2%Mo welding rod has low creep strength, the design stress must be kept low, which shortens the durability of the welded structure. Moreover, when welding steel plates with a thickness of 10 mm or more,
There were also problems with on-site construction, such as the cracking not stopping unless preheated to 175°C or higher. In order to solve these problems,
58995, C in the coating and/or core wire,
By limiting the amounts of Mn, Si, Cr, Mo, Al, N, and Ni added, and adding Al and N selectively,
We are working to improve the low temperature toughness and temper embrittlement of %Cr-1/2 to 1%Mo steel weld metal. Also, Tokukai Akira
Publication No. 58-86997 further attempts to improve high-temperature strength and welding workability by limiting the amount of metal carbonate, metal fluoride, and metal oxide in the coating material. No improvement in cracking resistance has been achieved. In addition, 9Cr−2Mo
For steel welded structures, C, Si, Mn, Cr, Mo,
Weld metals containing Ni, Al, N, Ti, O, Nb, and V are listed, but Ni, Al, N, Ti, O, Nb,
It does not attempt to significantly improve creep strength by actively adding V, and it merely indicates the metal composition to be included in the weld metal, and does not indicate the method and range of addition of each alloy element to the welding material. Not specified, but has excellent creep strength and cracking resistance 9
A coated arc welding rod for %Cr-1 to 2%Mo steel has not yet been provided. Furthermore, Japanese Patent Application Laid-Open No. 16792/1983 describes Nb and V.
It has been stated that ferrite layer and carburized layer are prevented from forming and thus are effective in improving creep strength. However, it has not yet been possible to provide a coated arc welding rod for 9% Cr-1 to 2% Mo steel with excellent properties. Problems to be Solved by the Invention The present invention provides a low-hydrogen coated arc welding rod that has high creep rupture strength and excellent cracking resistance of the weld metal when welding 9% Cr-1 to 2% Mo steel. It provides: (Means for Solving the Problems) The gist of the present invention is that V, Nb, Cr,
Mo or further Ni in weight% 0.02≦(V) in the core + (V) in the coating material x 0.28≦0.22 0.02≦(Nb in the core) + (Nb in the coating material) x 0.20≦
0.11 8.5 ≦ Core wire (Cr) + Coating material (Cr) × 0.35 ≦ 11 0.8 ≦ Core wire (Mo) + Coating material (Mo) × 0.35 ≦
2.5 0.05≦ Core wire (Ni) + Coating agent (Ni) + 0.35≦
Added in the range of 1.9, Mg0.8-4.5%, carbonate 10-70
%, a fluorine compound of 5 to 30%, and a coating material containing a deoxidizing agent, an arc stabilizer, and a binder other than those mentioned above, coated around the core wire. It is a welding rod. Note that the core wire used in the present invention includes Nb, V, Cr,
Chemical components other than Mo and Ni are C0.10% or less, Si0.3%
Below, Mn is 1.0% or less, P is 0.02% or less, S is 0.02% or less, Cu is 0.10% or less, and the balance is Fe and unavoidable impurities. The cause of the decrease in the creep strength of the weld metal during welding of 9%Cr-1~2%Mo steel is that the weld metal is heated to a high temperature, which causes the C and carbon in the weld metal to decrease.
Fe combines to precipitate Fe 3 C, and by further heating for a long time, this carbide becomes M 23 C 6 , M 6 C (M
refers to a metallic element), and the carbide becomes coarser. Therefore, as a result of many years of research, the present inventors have found that by co-adding appropriate amounts of V and Nb to the welding rod, fine V 4 C 3 and NbC are precipitated in the weld metal, and M 23 C 6 ,
We have discovered that creep rupture strength can be significantly increased by controlling the precipitation state of M 6 C so that it does not become coarse over a long period of time. Furthermore, we have found that it is effective to add an appropriate amount of Mg to the coating material in order to improve the cracking resistance of the weld metal, which deteriorates as the strength increases. Since Mg is a strong deoxidizing element, when added to the coating material, it significantly reduces the amount of O in the weld metal, suppresses the formation of inclusions, improves the ductility of the weld metal, and prevents the oxidation of V and Nb. To prevent, V 4 O 3 ,
This is because it promotes the precipitation of NbC fine carbides and fixes C, thereby reducing the susceptibility to cracking caused by C. (Function) The present invention has been made based on this knowledge, and the function will be explained in detail below. One of the features of the present invention is that V and Nb are used in the welding rod.
V 4 C 3 , V 4 C 3 ,
The purpose is to precipitate fine carbides of NbC to significantly increase creep rupture strength at temperatures of 600 to 650°C. Table 1 shows 2.4% rutile, 42% lime carbonate, 14% fluorite, 5% barium carbonate, and Fe-Si (45% Si).
11%, metal Mn0.5%, Fe-Ti (45%Ti) 1.5%,
Metal Cr7.1%, Fe-Mo (61%Mo) 4.7%, Fe-V
(53%V) 0~1.6%, Fe-Nb (67%Nb) 0~1.0
%, binder 8.2%, and the remainder is iron powder.
C0.02~0.05%, Si0.01~0.03%, Mn0.43~0.52
%, Cr6.7~7.1%, Mo0.47~0.52%, V0.002~
0.232%, Nb0.003~0.126% diameter 4.0mm, length 400
20 types of welding rods were created by coating coated core wire with an outer diameter of 6.3 mm, drying and firing, and created 20 types of welding rods.
This shows the results of welding and creep testing in accordance with A5.4. In this case, the weld metal was prepared under the following conditions: preheating pass temperature 175℃, current 160A, and welding heat input 21kJ/cm, and after post-heat treatment at 750℃ for 50 minutes, a creep test piece was taken.
A creep test was conducted at ℃ to determine the breaking strength after 1000 hours.

【表】 その結果、被覆アーク溶接棒として、心線また
は被覆剤のいずれか一方あるいは両方にVおよび
Nbを一定の割合で添加すれば、良好なクリープ
破断強度が得られることを見い出した。また、溶
接棒の心線おやび被覆剤中のVおよびNb量は、
(1)および(2)式で表わすことによりよくクリープ破
断強度との関係を把握できることがわかつた。 V量(重量%)=心線中(V)+被覆剤中(V)×0.28
……(1) Nb量(重量%)=心線中(Nb)+被覆剤中
(Nb)×0.20 ……(2) (1)、(2)式において被覆剤中のV、Nbにそれぞ
れ0.28,0.20の係数を乗じたのは、それによつて
心線中のそれぞれの含有量と等価になることがわ
かつたためである。 第1表より明らかな如く、溶接棒心線または被
覆剤のいずれか一方あるいは両方に添加する(1)式
で定めるV量が0.02%未満の溶接棒No.1、3、
10、11及び23のクリープ破断強度は、Nbの添加
量にかかわらず10Kgf/mm2未満である。 また、(2)式で定めるNb量が0.02%未満の溶接
棒No.1、2、14のクリープ破断強度は、Vの添加
量にかかわらずやはり10Kgf/mm2未満である。 一方、(1)式のV量0.02〜0.22%、(2)式のNb量
0.02〜0.11%の溶接棒No.4、5、6、12、13、
15、16、18、19、21及び24のクリープ破断強度
は、V,Nbの相乗効果による微細炭化物の析出
により10Kgf/mm2以上になり、特にV量が0.12
%、Nb量が0.07%近傍の溶接棒No.6,13,16,
18は格段に高いクリープ破断強度が得られた。 しかし、V量が0.22%を越えた溶接棒No.7、
9、17、20、22、26およびNb量が0.11%を越え
た溶接棒No.8、9、17、25、26のクリープ破断強
度は、V、Nbの相乗効果による微細炭化物の析
出が期待出来ず、10Kgf/mm2未満と低かつた。 以上の結果より、溶接棒の心線または被覆剤の
いずれか一方あるいは両方に添加するV、Nbを
重量%で 0.02≦心線中(V)+被覆剤中(V)×0.28≦0.22 0.02≦心線中(Nb)+被覆剤中(Nb)×0.20≦
0.11 の範囲とした。 すなわち、心線のみに添加する場合Vは0.02〜
0.22%、Nbは0.02〜0.11%であり、被覆剤のみに
添加する場合Vは0.07〜0.79%、Nbは0.1〜0.55%
である。 心線および被覆剤のいずれか一方あるいは両方
から添加する場合、VおよびNbは上記範囲内で
あれば任意の割合で選定できる。 次に、本発明は、被覆剤中にMgを添加し、溶
接金属中のO量低下による延性の向上と、V、
Nbの微細炭化物の析出促進によるCの固定によ
り、溶接金属の耐割れ性を大きく向上させる。 第1図は、溶接棒中のVを0.103%、Nbを0.052
%、Crを9.04%、Moを1.12%とし、被覆剤中の
Mg添加量を変化させて棒径4mmの9%Cr−1%
Mo鋼用溶接棒11種類を試作し、板厚20mmの9%
Cr−1%Mo鋼を用い、JIS Z3157に準拠して温
度20℃、相対湿度60%の雰囲気下で、溶接電流
160A、溶接入熱17kJ/cmの条件にてU形溶接剤
割れ試験を行ない、割れ停止予熱温度を求めた結
果を示すものである。第1図から明らかなよう
に、Mgを添加することによつて割れ停止予熱温
度が次第に低下し、Mgを添加しない溶接棒の割
れ停止温度が200℃であるのに体し、Mgを3%
程度添加した溶接棒では50℃まで低下している。
Mg0.8%未満では耐割れ性の改善効果が十分でな
く、また4.5%を越えて添加しても耐割れ性は向
上せず、逆に溶接時のアークが不安定になり、ス
パツタが増加し、溶接作業性が悪くなるので、
Mgの添加範囲を0.8〜4.5%とした。 なお、被覆剤に添加するMgは、Mg単体の他、
Al−Mg,Ni−Mgなどの合金として添加するこ
ともできる。この場合、合金中のMgの量が上記
範囲内であれば同様の効果を示すことを確認して
いる。 次に、9%Cr−1〜2%Mo鋼用溶接棒として
十分なクリープ破断強度と耐酸化性を有する溶接
金属を得るための溶接棒中のCr量は(3)式によつ
て整理できることを見出した。 Cr量(重量%)=心線中(Cr)+被覆剤中(Cr)
×0.35 ……(3) 第2図は溶接棒中のVが0.136%、Nbが0.086
%、Moが1.52%、さらに被覆剤中のMgを2.8%
とし、Cr量を変化させてクリープ破断強度、割
れ停止予熱温度との関係を調査した結果を示すも
のである。 第2図より明らかな如く、(3)式による溶接棒中
のCrが8.5%未満では、溶接金属のクリープ破断
強度が十分でない。一方、Cr量を8.5%以上有せ
しめるとクリープ破断強度は上昇し、約10%のと
ころで最大となり、それ以上になると再びクリー
プ破断強度が低下する。また、溶接金属の割れ停
止温度は、Cr量が10.9%までは125℃以下である
が、11%を越えると急激に上昇して175℃以上に
なつた。 従つて、本発明溶接棒の心線または被覆剤のい
ずれか一方あるいは両方に添加するCr量を重量
%で次の範囲とした。 8.5≦心線中(Cr)+被覆剤中(Cr)×0.35≦11 すなわち、Crを心線のみに添加する場合は8.5
〜11%、被覆剤のみに添加する場合は24.3〜31.4
%、心線と被覆剤の両方から添加する場合は、上
記範囲内であれば任意の割合で選定できる。 また、9%Cr−1〜2%Mo鋼用溶接棒として
十分なクリープ強度と耐割れ性を有する溶接金属
を得るための溶接棒中のMo量は、(4)式によつて
整理できることを見出した。 Mo量(重量%)=心線中(Mo)+被覆剤中
(Mo)×0.35 ……(4) 第3図は溶接棒中のVを0.118%、Nbを0.072
%、Crを8.92%、さらに被覆剤中のMgを3.2%と
し、Mo量を変化させてクリープ破断強度、割れ
停止予熱温度との関係を調査した結果を示すもの
である。 第3図より明らかなように、(4)式による溶接棒
中のMo量が0.8%未満であると、溶接金属のクリ
ープ破断強度が低い。一方、Mo量を0.8%以上添
加せしめるとクリープ破断強度はしだいに上昇す
るが、2.5%を越えて添加してもクリープ破断強
度は添加量に対する向上効果が少なく、むしろ溶
接金属の耐割れ性が劣化し、2.68%以上のところ
では溶接金属の割れ停止予熱温度は175℃以上と
なつた。 従つて、本発明溶接棒の心線または被覆剤のい
ずれか一方あるいは両方に添加するMo量を重量
%で次の範囲とした。 0.8≦心線中(Mo)+被覆剤中(Mo)×0.35≦
2.5 すなわち、Moを心線のみに添加する場合は0.8
〜2.5%、被覆剤のみに添加する場合は2.3〜7.1
%、心線と被覆剤の両方から添加する場合は上記
範囲内であれば、任意の割合で選定できる。 次に、本発明の溶接棒は被覆剤中にCaCO3
BaCO3,MgCO3,MnCO3などの炭酸塩を10〜70
%含有する。これらの炭酸塩はアーク中で分解
し、CO2ガスを発生し、溶融メタルを大気からし
や断し、アーク雰囲気中の水素、窒素のガス分圧
を下げると共に、塩基性のスラグを生成する効果
を有する。 これらの添加量が10%未満ではスラグの融点が
低下し、スラグの被包性が悪くなつて良好なビー
ドを得ることができない。また、大気をしや断す
るガス発生量が不足するため、ピツトやブローホ
ールが発生したり、溶接金属の水素量が増加し、
耐割れ性が劣化する。一方、70%を超えて添加し
た場合はガス発生量が過剰となり、ピツトが多発
すると共に、スラグの融点が上昇してスラグの流
動性が悪くなり、溶接母材とのなじみが不均一と
なり、ビード形状が悪くなる。従つて、本発明溶
接棒の被覆剤に添加する炭酸塩の範囲を10〜70%
とする。 また、被覆剤中に添加するCaF2、BaF2
MgF2、MnF2、LiFなどのふつ素化合物は、いず
れもスラグの融点を下げて流動性の良いスラグを
つくる。また、アーク中で分解したふつ素は溶融
メタルや溶融スラグの水素と反応し、溶接金属の
水素圧を下げて耐割れ性の良好な溶接金属をつく
る。これらの添加量が5%未満では適当なスラグ
の流動性が得られず、ビード形状が悪く、ピツト
が発生したり、溶接金属の水素量が増加して割れ
を発生させたりする。一方、30%を超えて添加す
るとスラグの粘性が不足し、ビード形状が悪くな
つたり、また被覆筒が弱くなり、溶接作業性が劣
つてくる。従つて、本発明溶接棒の被覆剤に添加
するふつ素化合物の範囲を5〜30%とする。 本発明では、さらに心線または被覆剤のいずれ
か一方あるいは両方にNiを添加することにより、
溶接して得られる溶接金属のマルテンサイト生成
量をコントロールして耐割れ性を維持しながらク
リープ強度をさらに高めることができることを見
出した。そして、溶接棒中のNi量を(5)式で表わ
すと、より良くNi量とクリープ破断強度及び耐
割れ性との関係を説明できることがわかつた。 Ni量(重量%)=心線中(Ni)+被覆剤中
(Ni)×0.35 ……(5) 第4図は溶接棒中のVを0.066%、Nbを0.048
%、Crを9.18%、Moを1.52%、さらに被覆剤中
のMgを2.2%とし、Ni量を変化させてクリープ
破断強度、割れ停止予熱温との関係を調査した結
果を示すものである。 この実験結果より明らかな如く、(5)式による
Ni量が0.05%以上になると耐割れ性が維持されな
がら徐々にクリープ破断強度が上昇する。しか
し、Niを1.9%を超えて、添加しても、添加量に
対するクリープ破断強度の上昇効果は少なく、し
かも耐割れ性は徐々に劣化し、2.3%では急激に
割れ停止温度が高くなつた。これは溶接金属中の
マルテンサイト量が急激に増加して割れ感受性を
高めた効果によるものと思われる。また、Ni量
が0.05%未満ではNiによるクリープ破断強度の向
上がほとんど見られない。 従つて、本発明溶接棒の心線または被覆剤のい
ずれか一方あるいは両方に添加するNi量を重量
%で次の範囲とした。 0.05≦心線中(Ni)+被覆剤中(Ni)×0.35≦
1.9 すなわち、Niを心線中のみに添加する場合は
0.05〜1.9%、被覆剤のみに添加する場合は0.15〜
5.4%、心線と被覆剤の両方から添加する場合は
上記範囲内であれば任意の割合で選定できる。 次に、被覆剤に含有せしめる脱酸剤とは、
Mn、Ti、Si、Zr、Alなどの単体金属や、Fe−
Si、Fe−Mn、Fe−Ti、Fe−Al、Fe−Si−Mn、
Fe−REM−Ca−Si、Fe−Ca−Siなどの鉄合金、
Zr−Siなど、それぞれの合金を指すものである。
なお、これら添加される脱酸剤の範囲は特に規定
しないが、7〜25%の範囲が脱酸および溶接作業
性の面で望ましい。 さらに、アーク安定剤とは鉄粉、アルカリ成
分、ルチールなどを指し、その添加範囲は45%以
下が望ましい。 粘結剤とは硅酸ソーダ、硅酸カリで代表される
水ガラスなどのバインダー成分を指すもので、水
ガラス中のSiO2とNa2O、K2Oなどのアルカリ成
分のモル分率で指されるモル比が1.5〜3.5の範囲
の水ガラスを使用することが望ましい。 本発明溶接棒は、以上に述べた被覆剤を心線の
周囲に通常の溶接棒塗装により被覆塗装したあ
と、水分を除去するため300〜550℃で焼成して製
造する。被覆剤重量は溶接棒重量に対し25〜35%
とするのが望ましい。 実施例 次に実施例により本発明の効果をさらに具体的
に説明する。 第2表に本発明溶接棒、比較のために用いた溶
接棒の心線(各4.0mm径)組成、被覆剤組成とこ
れら溶接棒による各種試験結果を示す。
[Table] As a result, as a coated arc welding rod, V and
It has been found that good creep rupture strength can be obtained by adding Nb at a certain ratio. In addition, the amount of V and Nb in the core wire coating material of the welding rod is
It was found that the relationship with creep rupture strength can be better understood by expressing it with equations (1) and (2). V amount (weight%) = core wire (V) + coating material (V) x 0.28
...(1) Amount of Nb (weight%) = Core wire (Nb) + Coating material (Nb) x 0.20 ...(2) In equations (1) and (2), V and Nb in the coating material are respectively The reason for multiplying by coefficients of 0.28 and 0.20 is that it was found that the respective contents in the core wire were equivalent. As is clear from Table 1, welding rods No. 1 and 3 in which the amount of V defined by formula (1) added to either the welding rod core wire or the coating material or both is less than 0.02%;
The creep rupture strength of Nos. 10, 11, and 23 is less than 10 Kgf/mm 2 regardless of the amount of Nb added. Furthermore, the creep rupture strength of welding rods Nos. 1, 2, and 14 with an Nb content of less than 0.02% as determined by equation (2) is still less than 10 Kgf/mm 2 regardless of the amount of V added. On the other hand, the amount of V in equation (1) is 0.02 to 0.22%, and the amount of Nb in equation (2) is
0.02~0.11% welding rod No. 4, 5, 6, 12, 13,
The creep rupture strength of 15, 16, 18, 19, 21 and 24 is 10 Kgf/mm 2 or more due to the precipitation of fine carbides due to the synergistic effect of V and Nb, especially when the V amount is 0.12
%, welding rods No. 6, 13, 16, with Nb content around 0.07%,
18 had significantly higher creep rupture strength. However, welding rod No. 7 with V content exceeding 0.22%,
The creep rupture strength of welding rods No. 9, 17, 20, 22, 26 and welding rods No. 8, 9, 17, 25, and 26 with Nb content exceeding 0.11% is expected to be due to the precipitation of fine carbides due to the synergistic effect of V and Nb. It was not possible, and it was low at less than 10Kgf/mm 2 . From the above results, the amount of V and Nb added to either or both of the core wire and coating material of the welding rod in weight% is 0.02≦(V) in the core wire + (V) in the coating material×0.28≦0.22 0.02≦ Core wire (Nb) + coating material (Nb) x 0.20≦
The range was set to 0.11. In other words, when adding only to the core wire, V is 0.02~
0.22%, Nb is 0.02-0.11%, and when added only to the coating material, V is 0.07-0.79% and Nb is 0.1-0.55%.
It is. When adding V and Nb to either or both of the core wire and the coating material, any ratio of V and Nb can be selected as long as it is within the above range. Next, the present invention adds Mg to the coating material, improves ductility by reducing the amount of O in the weld metal, and improves ductility by adding Mg to the coating material.
By fixing C by promoting the precipitation of fine Nb carbides, the cracking resistance of weld metal is greatly improved. Figure 1 shows V in the welding rod at 0.103% and Nb at 0.052%.
%, Cr 9.04%, Mo 1.12%, in the coating material.
9% Cr-1% with a rod diameter of 4 mm by changing the amount of Mg added
Prototype of 11 types of welding rods for Mo steel, 9% of plate thickness 20mm
Using Cr-1%Mo steel, the welding current was
This figure shows the results of a U-type welding agent cracking test conducted under the conditions of 160A and welding heat input of 17kJ/cm, and the preheating temperature at which cracking stops. As is clear from Figure 1, the cracking stop preheating temperature gradually decreases by adding Mg, and while the cracking stopping temperature of the welding rod without Mg is 200℃, the preheating temperature when Mg is added is 3%.
In the case of welding rods with a certain amount of additive, the temperature drops to 50℃.
If Mg is less than 0.8%, the effect of improving cracking resistance is not sufficient, and if it exceeds 4.5%, cracking resistance will not improve, and on the contrary, the arc during welding becomes unstable and spatter increases. However, welding workability becomes worse.
The Mg addition range was set to 0.8 to 4.5%. In addition, the Mg added to the coating material includes Mg alone,
It can also be added as an alloy such as Al-Mg or Ni-Mg. In this case, it has been confirmed that similar effects can be obtained if the amount of Mg in the alloy is within the above range. Next, in order to obtain a weld metal with sufficient creep rupture strength and oxidation resistance as a welding rod for 9%Cr-1~2%Mo steel, the amount of Cr in the welding rod can be calculated using equation (3). I found out. Cr amount (weight%) = Core wire (Cr) + Coating material (Cr)
×0.35 ……(3) Figure 2 shows that V in the welding rod is 0.136% and Nb is 0.086%.
%, Mo is 1.52%, and Mg in the coating is 2.8%.
This shows the results of investigating the relationship between creep rupture strength and crack arrest preheating temperature by varying the amount of Cr. As is clear from FIG. 2, if the Cr content in the welding rod according to equation (3) is less than 8.5%, the creep rupture strength of the weld metal is insufficient. On the other hand, when the Cr content is 8.5% or more, the creep rupture strength increases and reaches a maximum at about 10%, and when it exceeds that, the creep rupture strength decreases again. Furthermore, the cracking arrest temperature of the weld metal was 125°C or lower when the Cr content was up to 10.9%, but when it exceeded 11%, it rapidly rose to 175°C or higher. Therefore, the amount of Cr added to either or both of the core wire and coating material of the welding rod of the present invention was set to the following range in weight percent. 8.5≦(Cr in the core wire) + (Cr in the coating material)×0.35≦11 In other words, if Cr is added only to the core wire, it is 8.5
~11%, 24.3 to 31.4 when added to coating only
%, and when adding from both the core wire and the coating material, any ratio can be selected as long as it is within the above range. In addition, the amount of Mo in the welding rod to obtain a weld metal with sufficient creep strength and cracking resistance as a welding rod for 9%Cr-1~2%Mo steel can be summarized by equation (4). I found it. Amount of Mo (weight%) = Core wire (Mo) + Coating material (Mo) × 0.35...(4) Figure 3 shows V in the welding rod at 0.118% and Nb at 0.072.
%, Cr is 8.92%, and Mg in the coating is 3.2%, and the relationship between creep rupture strength and crack stop preheating temperature is investigated by varying the amount of Mo. As is clear from FIG. 3, when the amount of Mo in the welding rod according to equation (4) is less than 0.8%, the creep rupture strength of the weld metal is low. On the other hand, when Mo is added in an amount of 0.8% or more, the creep rupture strength gradually increases, but even if it is added in excess of 2.5%, the effect of improving the creep rupture strength relative to the amount added is small, and the cracking resistance of the weld metal is rather reduced. When the weld metal deteriorated to 2.68% or higher, the preheating temperature at which cracking of the weld metal stopped was 175℃ or higher. Therefore, the amount of Mo added to either or both of the core wire and the coating material of the welding rod of the present invention was set to the following range in weight percent. 0.8≦ Core wire (Mo) + Coating material (Mo) x 0.35≦
2.5 In other words, if Mo is added only to the core wire, 0.8
~2.5%, 2.3 to 7.1 when added to coating only
%, and when adding from both the core wire and the coating material, any ratio can be selected as long as it is within the above range. Next, the welding rod of the present invention contains CaCO 3 and
Carbonates such as BaCO 3 , MgCO 3 , MnCO 3 at 10-70%
%contains. These carbonates decompose in the arc, producing CO 2 gas, exfoliating the molten metal from the atmosphere, lowering the gas partial pressure of hydrogen and nitrogen in the arc atmosphere, and producing basic slag. have an effect. If the amount added is less than 10%, the melting point of the slag decreases, the encapsulation properties of the slag deteriorate, and good beads cannot be obtained. In addition, the amount of gas generated to insulate the atmosphere is insufficient, causing pits and blowholes, and an increase in the amount of hydrogen in the weld metal.
Cracking resistance deteriorates. On the other hand, if it is added in excess of 70%, the amount of gas generated will be excessive, resulting in frequent pitting, the melting point of the slag will rise, the fluidity of the slag will deteriorate, and the compatibility with the welding base material will become uneven. Bead shape deteriorates. Therefore, the range of carbonate added to the coating material of the welding rod of the present invention is 10 to 70%.
shall be. In addition, CaF 2 , BaF 2 ,
Fluorine compounds such as MgF 2 , MnF 2 , and LiF all lower the melting point of slag and create slag with good fluidity. In addition, fluorine decomposed in the arc reacts with hydrogen in the molten metal and molten slag, lowering the hydrogen pressure in the weld metal and creating a weld metal with good crack resistance. If the amount of these additives is less than 5%, appropriate slag fluidity cannot be obtained, the bead shape is poor, pits are formed, and the amount of hydrogen in the weld metal increases, causing cracks. On the other hand, if it is added in excess of 30%, the slag will lack viscosity, resulting in poor bead shape, weakening of the sheath, and poor welding workability. Therefore, the range of the fluorine compound added to the coating material of the welding rod of the present invention is 5 to 30%. In the present invention, by further adding Ni to either the core wire or the coating material, or both,
We have discovered that by controlling the amount of martensite produced in the weld metal obtained by welding, it is possible to further increase creep strength while maintaining cracking resistance. It was also found that the relationship between the Ni content and creep rupture strength and cracking resistance can be better explained by expressing the Ni content in the welding rod using equation (5). Ni amount (weight%) = Core wire (Ni) + Coating material (Ni) x 0.35...(5) Figure 4 shows V in the welding rod at 0.066% and Nb at 0.048%.
%, Cr 9.18%, Mo 1.52%, and Mg in the coating material 2.2%, and the amount of Ni varied to investigate the relationship between creep rupture strength and crack stop preheating temperature. As is clear from this experimental result, according to equation (5),
When the Ni content is 0.05% or more, creep rupture strength gradually increases while cracking resistance is maintained. However, even if Ni was added in excess of 1.9%, the effect of increasing the creep rupture strength relative to the amount added was small, and the cracking resistance gradually deteriorated, and at 2.3%, the cracking stop temperature suddenly increased. This is thought to be due to the effect of a rapid increase in the amount of martensite in the weld metal, increasing cracking susceptibility. Further, when the Ni amount is less than 0.05%, almost no improvement in creep rupture strength due to Ni is observed. Therefore, the amount of Ni added to either or both of the core wire and coating material of the welding rod of the present invention was set to the following range in weight percent. 0.05≦ Core wire (Ni) + Coating material (Ni) × 0.35≦
1.9 In other words, when adding Ni only to the core wire,
0.05~1.9%, 0.15~ when added to coating only
5.4%; when adding from both the core wire and the coating material, any ratio can be selected as long as it is within the above range. Next, what is the deoxidizing agent to be included in the coating material?
Single metals such as Mn, Ti, Si, Zr, Al, Fe−
Si, Fe-Mn, Fe-Ti, Fe-Al, Fe-Si-Mn,
Iron alloys such as Fe−REM−Ca−Si and Fe−Ca−Si,
These refer to respective alloys such as Zr-Si.
The range of the deoxidizing agent added is not particularly limited, but a range of 7 to 25% is desirable in terms of deoxidation and welding workability. Furthermore, the arc stabilizer refers to iron powder, alkali components, rutile, etc., and the addition range is preferably 45% or less. Binder refers to binder components such as water glass represented by sodium silicate and potassium silicate. It is desirable to use water glasses with indicated molar ratios ranging from 1.5 to 3.5. The welding rod of the present invention is manufactured by applying the above-mentioned coating material around the core wire using a conventional welding rod coating method, and then firing the coated material at 300 to 550° C. to remove moisture. The weight of the coating material is 25-35% of the weight of the welding rod.
It is desirable to do so. EXAMPLES Next, the effects of the present invention will be explained in more detail using examples. Table 2 shows the core wire (4.0 mm diameter each) composition, coating material composition, and various test results of the welding rods of the present invention and welding rods used for comparison.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第2表において、A1〜A14が本発明溶接棒で
あり、B1〜B8は比較溶接棒である。 これら溶接棒による溶着金属の600℃、1000hr
におけるクリープ破断強度、また一部の溶接棒に
ついては650℃、1000hrにおけるクリープ破断強
度を求めた。また、溶接金属の耐割れ性を調査す
るU形溶接割れ試験(JIS Z3157)、さらに溶接
作業性試験を行なつた。 なお、クリープ破断試験片を採取する溶着金属
は、AWS A5.4にもとづいて溶接電流160A、溶
接入熱21kJ/cmで作成した。また、U形溶接割
れ試験(JIS Z 3157)は板厚20mmの9%Cr−
2%Mo鋼を用い、溶接電流160A、溶接入熱
17kJ/cm、気温20℃、相対湿度60%の条件で実
施し、割れ停止に必要な予熱温度を求めた。 本発明溶接棒による600℃、1000hrにおけるク
リープ破断強度は、V、Nbが0.02%未満、ある
いはV0.22%以上、Nb0.11%以上の溶接棒B2、
B3、B5、B6、B7、B8に比べ、V4C3、NbCの析
出効果によつて著しく向上し、特にNiを0.07%以
上含有した溶接棒A3、A5、A7、A8、A9、A10、
A11、A14、は650℃、1000hrにおいても10Kg
f/mm2以上の高強度を示した。 また、u形溶接割れ試験における割れ停止予熱
温度は、被覆剤中にMgを添加していない溶接棒
B1、B2、B3、B5、B7はいずれも175℃以上であ
るのに対し、Mgを添加している本発明溶接棒は
いずれも125℃以下であり、特にMgを3%程度
添加した溶接棒A2、A10、A12は50℃まで低下し
ている。 さらに、比較棒B1はクリープ破断強度は10Kg
f/mm2以上であつたが、炭酸塩が少ないのでスラ
グの流動性が劣り、溶接作業性が悪く、ガス発生
量が不足したため割れ停止温度も高かつた。ま
た、B2はふつ化物が少ないため、B3はふつ化物
が多すぎるため、いずれもスラグの流動性が悪
く、凹凸の激しいビード形状を呈し、溶接作業性
が悪かつた。B4は炭酸塩とふつ化物が少ないた
めガス発生量が少なく、ピツトが発生したのでク
リープ破断試験およびU形溶接割れ試験を中止し
た。B5は炭酸塩が多く、しかもふつ化物が少な
いため、スラグの流動性が著しく悪く、スラグが
ビードを被包せず、ビード形状が劣つた。B8は
Mgの添加量が多すぎるためアークが不安定にな
り、スパツタが多く、溶接作業性が悪かつた。 (発明の効果) 以上の様に、本発明溶接棒は従来の9%Cr−
1〜2%Mo鋼の溶接棒と比較して600〜650℃に
おけるクリープ破断強度を著しく高め、しかも溶
接金属の耐割れ性を一段と向上させるものであ
る。 これは従来の9%Cr−1〜2%Mo鋼溶接棒で
は到底達成し得ないもので、各種産業の発展に貢
献するところ極めて大である。
[Table] In Table 2, A1 to A14 are welding rods of the present invention, and B1 to B8 are comparative welding rods. Welding metal by these welding rods at 600℃, 1000hr
The creep rupture strength at 650℃ and 1000 hours for some welding rods was determined. In addition, we conducted a U-shaped weld cracking test (JIS Z3157) to investigate the cracking resistance of weld metal, and welding workability testing. The weld metal from which the creep rupture test pieces were taken was prepared based on AWS A5.4 with a welding current of 160 A and a welding heat input of 21 kJ/cm. In addition, the U-shaped weld cracking test (JIS Z 3157) was performed on 9% Cr-
Using 2% Mo steel, welding current 160A, welding heat input
The test was conducted under conditions of 17kJ/cm, temperature of 20℃, and relative humidity of 60%, and the preheating temperature required to stop cracking was determined. The creep rupture strength of the welding rod of the present invention at 600°C for 1000 hours is as follows: Welding rod B2 with V and Nb less than 0.02%, or V0.22% or more and Nb 0.11% or more;
Compared to B3, B5, B6, B7, and B8, welding rods A3, A5, A7, A8, A9, A10, which are significantly improved due to the precipitation effect of V 4 C 3 and NbC, and especially contain 0.07% or more of Ni,
A11, A14, 10Kg even at 650℃ and 1000hr
It exhibited high strength of f/mm 2 or more. In addition, the crack stop preheating temperature in the U-shaped weld cracking test was determined by the welding rod without Mg added to the coating material.
B1, B2, B3, B5, and B7 all have a temperature of 175°C or higher, whereas all of the welding rods of the present invention containing Mg have a temperature of 125°C or lower, especially welding rods containing about 3% Mg. A2, A10, and A12 have dropped to 50℃. Furthermore, comparison bar B1 has a creep rupture strength of 10 kg.
f/mm 2 or more, but since the carbonate content was small, the fluidity of the slag was poor, welding workability was poor, and the cracking stop temperature was high due to the insufficient amount of gas generated. In addition, B2 had a small amount of fluoride, and B3 had too much fluoride, so both had poor slag fluidity and a highly uneven bead shape, resulting in poor welding workability. Since B4 contained less carbonates and fluorides, the amount of gas generated was small, and pitting occurred, so the creep rupture test and U-shaped weld cracking test were discontinued. B5 had a high carbonate content and low fluoride content, so the fluidity of the slag was extremely poor, the slag did not cover the bead, and the bead shape was poor. B8 is
Because the amount of Mg added was too large, the arc became unstable, there were many spatters, and welding workability was poor. (Effects of the invention) As described above, the welding rod of the present invention has a 9% Cr-
Compared to a welding rod made of 1-2% Mo steel, the creep rupture strength at 600-650°C is significantly increased, and the cracking resistance of the weld metal is further improved. This is something that cannot be achieved with conventional 9%Cr-1~2%Mo steel welding rods, and it will greatly contribute to the development of various industries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は被覆剤中のMg量と割れ停止予熱温度
との関係を示す図である。第2図は溶接棒中の
Cr量と、第3図は溶接棒中のMoと、第4図は溶
接棒中のNi量と、それぞれの破断強度及び割れ
停止温度との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the amount of Mg in the coating material and the preheating temperature to stop cracking. Figure 2 shows the inside of the welding rod.
FIG. 3 shows the relationship between the amount of Cr, the amount of Mo in the welding rod (FIG. 3), and the amount of Ni in the welding rod (FIG. 4), and the respective rupture strengths and crack stop temperatures.

Claims (1)

【特許請求の範囲】 1 心線または被覆剤のいずれか一方あるいは両
方にV、Nb、CrおよびMoを下記に示す範囲
(重量%)で添加し、Mg0.8〜4.5%、炭酸塩10〜
70%、ふつ素化合物5〜30%、その外に上記以外
の脱酸剤、アーク安定剤、粘結剤を含む被覆剤を
心線の周囲に被覆塗布したことを特徴とする低水
素系被覆アーク溶解棒。 V:0.02≦心線中(V)+被覆剤中(V)×0.28≦0.22 Nb:0.02≦心線中(Nb)+被覆剤中(Nb)×
0.20≦0.11 Cr:8.5≦心線中(Cr)+被覆剤中(Cr)×0.35
≦11 Mo:0.8≦心線中(Mo)+被覆剤中(Mo)×
0.35≦2.5 2 心線または被覆剤のいずれか一方あるいは両
方にV、Nb、Cr、MoおよびNiを下記に示す範
囲(重量%)で添加し、Mg0.8〜4.5%、炭酸塩
10〜70%、ふつ素化合物5〜30%、その外に上記
以外の脱酸剤、アーク安定剤、粘結剤を含む被覆
剤を心線の周囲に被覆塗装したことを特徴とする
低水素系被覆アーク溶接棒。 V:0.02≦心線中(V)+被覆剤中(V)×0.28≦0.22 Nb:0.02≦心線中(Nb)+被覆剤中(Nb)×
0.20≦0.11 Cr:8.5≦心線中(Cr)+被覆剤中(Cr)×0.35
≦11 Mo:0.8≦心線中(Mo)+被覆剤中(Mo)×
0.35≦2.5 Ni:0.05≦心線中(Ni)+被覆剤中(Ni)×
0.35≦1.9
[Claims] 1 V, Nb, Cr and Mo are added to either or both of the core wire or the coating material in the ranges shown below (wt%), Mg is 0.8 to 4.5%, and carbonate is 10 to 10%.
70% fluorine compound, 5 to 30% fluorine compound, and a coating material containing a deoxidizing agent, an arc stabilizer, and a binder other than those mentioned above, is coated around the core wire. Arc melting stick. V: 0.02 ≦ core wire (V) + coating material (V) × 0.28 ≦ 0.22 Nb: 0.02 ≦ core wire (Nb) + coating material (Nb) ×
0.20≦0.11 Cr: 8.5≦core wire (Cr) + coating material (Cr)×0.35
≦11 Mo: 0.8≦ Core wire (Mo) + Coating material (Mo) ×
0.35≦2.5 2 V, Nb, Cr, Mo, and Ni are added to either or both of the core wire or coating material in the ranges shown below (wt%), Mg0.8 to 4.5%, and carbonate.
10-70% fluorine compound, 5-30% fluorine compound, and a coating material containing a deoxidizing agent, an arc stabilizer, and a binder other than those mentioned above, is coated around the core wire. coated arc welding rod. V: 0.02 ≦ core wire (V) + coating material (V) × 0.28 ≦ 0.22 Nb: 0.02 ≦ core wire (Nb) + coating material (Nb) ×
0.20≦0.11 Cr: 8.5≦core wire (Cr) + coating material (Cr)×0.35
≦11 Mo: 0.8≦ Core wire (Mo) + Coating material (Mo) ×
0.35≦2.5 Ni: 0.05≦core (Ni) + coating material (Ni)×
0.35≦1.9
JP1939285A 1985-02-04 1985-02-04 Low-hydrogen type coated electrode Granted JPS61180695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1939285A JPS61180695A (en) 1985-02-04 1985-02-04 Low-hydrogen type coated electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1939285A JPS61180695A (en) 1985-02-04 1985-02-04 Low-hydrogen type coated electrode

Publications (2)

Publication Number Publication Date
JPS61180695A JPS61180695A (en) 1986-08-13
JPH0521676B2 true JPH0521676B2 (en) 1993-03-25

Family

ID=11998011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1939285A Granted JPS61180695A (en) 1985-02-04 1985-02-04 Low-hydrogen type coated electrode

Country Status (1)

Country Link
JP (1) JPS61180695A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291190A (en) * 1990-04-06 1991-12-20 Nippon Steel Corp Coated arc welding electrode for welding 9cr-1mo steel
JP5066370B2 (en) * 2007-02-01 2012-11-07 日鐵住金溶接工業株式会社 Rare earth metal alloy powder for coated arc welding electrode and low hydrogen-based coated arc welding electrode

Also Published As

Publication number Publication date
JPS61180695A (en) 1986-08-13

Similar Documents

Publication Publication Date Title
US6124569A (en) Flux-cored welding wire with a low nitrogen content
US6340396B1 (en) Flux cored wire for welding duplex stainless steel
JP5977998B2 (en) Ni-base alloy weld metal, strip electrode, and welding method
JP5097499B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
KR101764040B1 (en) Coated electrode
JPH09168891A (en) Low hydrogen covered electrode for high strength cr-mo steel
JP2687006B2 (en) Flux-cored wire for gas shielded arc welding for refractory steel
JP3170165B2 (en) Covered arc welding rod for Ni-based high Cr alloy
KR102197134B1 (en) Ni based alloy flux cored wire
JP3354460B2 (en) Covered arc welding method for high strength steel
JPH0521676B2 (en)
JP4309172B2 (en) Low hydrogen coated arc welding rod for low alloy heat resistant steel
JPS632592A (en) Flux cored wire for low alloy heat resistant steel welding
JP3208556B2 (en) Flux-cored wire for arc welding
JPH04305396A (en) Low hydrogen type coated arc welding rod
JPH09122972A (en) Coated electrode for high-cr ferrite heat resisting steel
JPH069756B2 (en) Low-hydrogen coated arc welding rod
JP7485594B2 (en) Flux-cored wire and gas-shielded arc welding method
JPH03291190A (en) Coated arc welding electrode for welding 9cr-1mo steel
JPH0542390A (en) Low hydrogen type coated electrode for welding 9cr steel
JPH07323392A (en) Low hydrogen type coated arc electrode and welding method
JPS62224497A (en) Low hydrogen coated arc electrode
JP2023081643A (en) Coated electrode, weld metal, coated arc welding method, and manufacturing method of welded joint
JPS63242491A (en) Low hydrogen coated electrode
JPH07266083A (en) Flux for submerged arc welding