JPH0521674B2 - - Google Patents

Info

Publication number
JPH0521674B2
JPH0521674B2 JP5386A JP5386A JPH0521674B2 JP H0521674 B2 JPH0521674 B2 JP H0521674B2 JP 5386 A JP5386 A JP 5386A JP 5386 A JP5386 A JP 5386A JP H0521674 B2 JPH0521674 B2 JP H0521674B2
Authority
JP
Japan
Prior art keywords
wire
welding
grain boundary
weight
boundary oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5386A
Other languages
Japanese (ja)
Other versions
JPS62158595A (en
Inventor
Takeo Matsumoto
Shozaburo Nakano
Noboru Nishama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5386A priority Critical patent/JPS62158595A/en
Publication of JPS62158595A publication Critical patent/JPS62158595A/en
Publication of JPH0521674B2 publication Critical patent/JPH0521674B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、MIG溶接、MAG溶接(CO2溶接を
含む)等の半自動溶接または、自動溶接の際に用
いられる溶接用ワイヤに関し、特に送給性、溶接
作業性に優れたワイヤに関する。 〔従来の技術〕 一般に、MIG溶接、MAG溶接(CO2溶接を含
む)等に用いられる溶接用ワイヤは、合成樹脂等
からなるスプールに10Kgあるいは20Kgを単位とし
て巻かれているか、あるいは大量使用用として、
200Kg以上のペイル缶に収納されている。この溶
接用ワイヤは、それぞれ所定の溶接条件に合致す
るように送給モータによりコンジツトチユーブを
通じて溶接部まで送給される。 近年、溶接分野においても高能率化、省力化の
要請により、従来被覆アーム溶接棒が使用されて
いた個所も半自動化あるいは自動化溶接に変わり
つつある。特に産業機械および自動車の分野で
は、溶接ロボツトの進歩により自動溶接用ワイヤ
の使用量が増大しつつある。また、造船の分野に
おいても半自動溶接が行われる比率が増大し、溶
接用ワイヤの使用量が増大した。造船工程におい
て、溶接ワイヤを用いる際には、溶接部が広範囲
に及ぶため、溶接用ワイヤが長いコンジツトチユ
ーブの中を通過することとなり、最近では、この
コンジツトチユーブが30mにも及ぶ装置も出現し
ている。 このような場合にも良好な溶接を行うために
は、溶接用ワイヤを円滑に送給することが不可欠
の要件である。コンジツトチユーブとの摩擦等に
より溶接用ワイヤの円滑な送給が妨げられると健
全な溶接が困難となり、溶接部の溶け込み不良、
溶接ビードの蛇行、スパツタの増加等の溶接不良
が生ずる。 そこで従来、溶接用ワイヤの送給性を改善する
ために特開昭54−141349、特開昭58−128294号公
報等で溶接用ワイヤの表面に凹部や亀裂を形成
し、潤滑油を塗布するものが提案されている。し
かし送給性の改善が十分でなく、表面状態も不均
一で満足できる品質のものは得られなかつた。 さらに特開昭59−61592ではワイヤ表面に亀甲
状の割れを有し、ワイヤの有効酸素量を限定して
いる。この場合においても短時間の溶接では効果
のあるものの、溶接作業現場のように長時間使用
すると、コンジツトチユーブ内部に銅粉等の残留
物が蓄積し、これがワイヤの送給を阻害し、送給
不良に至る問題があることが分つた。 本発明者らはこの残留銅粉による目詰まりにつ
いて、詳細に調査検討を行つたところ、銅メツキ
素地、つまりワイヤの鉄素地部の表面層における
結晶粒と、粒界酸化層が大きく影響していること
を見い出した。 すなわちワイヤの表面の平均粒界酸化層をワイ
ヤ表面の平均結晶粒径で割つた値(以下、A値と
いう)が大きい場合、結晶粒界が全面的に酸化さ
れ、ワイヤ送給時にコンジツトチユーブ内壁でこ
すられ、銅メツキが剥離することが分つた。 ここで平均粒界酸化層とは、中間焼鈍を行つた
ワイヤを同一チヤージ内でランダムに5個所から
サンプルを採取し、それぞれのワイヤ横断面より
見た粒界酸化層を測定し、平均したものであり、
平均結晶粒径とは上記と同様にサンプルを採取
し、それぞれワイヤ断面方向の表面粒径を測定し
平均したものである。 さらに特開昭58−3797は、ワイヤ表面に活性化
元素すなわちアルカリ金属およびアルカリ土類金
属をワイヤ表面に付着させて、溶接作業性を向上
させようとしているが、塗布方法が明確でなく、
実際に製造した場合、通常のワイヤ表面では、不
均一な付着状況となるため、溶接アークの安定と
不安定のむらが生じた。 すなわち、このような場合には、ワイヤ素地に
大きく影響されており、均一に塗布し得るワイヤ
素地をもつことが必要であることが判明した。 〔発明が解決しようとする問題点〕 本発明はコンジツトチユーブ内に銅粉等の残留
物が蓄積し、ワイヤの送給不良を起す問題を解消
し、さらにアーク安定性を得るために提案された
もので、半自動化溶接または自動化溶接におい
て、コンジツトチユーブが長い場合でも円滑に送
給することができ、長時間の溶接でもコンジツト
チユーブ内での銅粉の発生が少なく、目詰りが少
なく、送給性が良好で、溶接作業性が優れた溶接
用ワイヤを提供することを目的とする。 〔問題点を解決するための手段〕 本発明は、ワイヤ成分中のC量およびTi量を
限定し、ワイヤ製造工程において、中間焼鈍時に
おける焼鈍条件を適正に選定することによつてワ
イヤ表面層の結晶粒径および粒界酸化層を適正範
囲に形成させたものである。すなわちCが0.02〜
0.06重量、Tiが0.03〜0.30重量%を含有する溶接
用ワイヤにおいて、中間焼鈍時ワイヤ表面層に生
じる粒界酸化層と、結晶粒との比Aを、 A=平均粒界酸化層厚(μm)/平均結晶粒径(μ
m)としたとき Aが0.4以上、1.8以下であることを特徴とし、
製品径において、表面に均一に分布する微細な溝
を有し、この溝の内部およびワイヤ表面に潤滑油
およびアルカリ金属、アルカリ土類金属等のアー
ク安定剤を含有させたことを特徴とする送給性に
優れた溶接作業性のよい溶接用ワイヤである。 このような溶接用ワイヤは中間焼鈍条件を適切
に選定することによつて得ることができる。 〔作用〕 上記の問題点を解決するために、下記第1表に
示す条件で改良前のワイヤ100Kgを連続溶接後、
コンジツトチユーブ内の残留銅粉の分析、調査を
行つたところ、ほぼ銅40重量%、鉄60重量%であ
つた。つまりチユーブ内の残留物は、鉄粉と銅粉
の混合されたものであり、しかも詳細に観察する
と、鉄と銅が結合した状態で存在していることが
分つた。これはワイヤがコンジツトチユーブ内で
こすられた場合、ワイヤ素地から銅メツキ層と共
に鉄素地も剥離することを示している。 第1表 ワイヤ:YGW11 線径:1.2mmφ 溶接姿勢:下向き 溶接電流:300A 溶接電圧:30V 溶接速度:20cm/min シールドガス:CO2 20/min コンジツトチユーブ状況 チユーブ長さ:3m ループ径:200mmφ1円 第2図はワイヤ中の炭素量のワイヤ表面の結晶
粒との関係を示したもので、結晶粒は、炭素量が
減少するにつれ増大している。つまりワイヤ中の
炭素量が低い場合、結晶粒が大きくなることを意
味している。すなわちワイヤ成分中の炭素量が
0.06重量%以下であれば、結晶粒が大きいため粒
界酸化されていてもCu粉の脱落が少なくなるこ
と、およびA値のコントロールが容易となる。第
3図は炭素量と銅粉発生量との関係を示すもので
上述の事情が明からである。なお、第3図は炭素
量と銅粉発生量との関係を示したものである。炭
素量が減少するにつれ、結晶粒径が大きくなるこ
とにより、粒界酸化の発生状況が異なり、0.06%
以下で、銅粉の発生が少なくなつている。ところ
でC値の下限として、0.02重量%に限定した理由
として、0.02重量%未満であると、溶着金属部の
性能が低下するため、すなわち引張強度を確保す
るため、最低のレベルであること及び結晶粒が大
きくなり過ぎるため、伸線時のワイヤ表面疵が多
発するためである。 次に、第1図は、雰囲気制御を行つた中間焼鈍
後のA値と、このワイヤを銅メツキし、製品径ま
で伸線した後溶接を行つた場合のコンジツトチユ
ーブ内の銅粉発生量との関係について示したもの
である。第1図に明らかなように、A値が0.4〜
1.8の範囲で銅粉発生が少なくなつている。この
理由を第4図によつて説明する。 第4図にワイヤ表面層の深さ方向断面における
結晶の状況を模式的に示した。a〜d図はそれぞ
れ a図:中間焼鈍後A値=0.7の結晶模式図 b図:a図のものを冷間伸線した後の結晶模式図 c図:中間焼鈍後A値=2.1の結晶模式図 d図:c図のものを冷間伸線した後の結結晶模式
図 である。図中、1は銅メツキを示し、2は粒界酸
化部を示している。 第4図の模式図に示すように、表面層のA値が
1.8を越える場合、粒界酸化が粒界の全面に生じ、
この粒界酸化部が剥離しやすいために銅メツキ後
製品径まで伸線したワイヤを用い溶接した時に、
ワイヤがコンジツトチユーブ内でこすれると、銅
メツキと、それに付着している鉄素地も同時に剥
離するものと考えられる。 しかし、A値が0.4〜1.8の間にある場合、粒界
酸化が結晶粒の全面に及んでいないため、剥離し
にくいものと考えられる。 A値が0.4未満の場合、ワイヤ表面の潤滑油保
油機能が十分に働かないため、送給時に油膜切れ
が生じ、送給不良となり、銅粉の発生が多くなる
ものと考えられる。 このように、A値がCu粉の発生、ワイヤの送
給性、アークの安定性に大きく影響することが確
認できたが、第2図からも明らかなとおり、A値
範囲内への制御を簡便にすること、および銅粉発
生量を減少させることに対し、結晶粒を粗大化さ
せること、すなわちCを減少させることが有効で
あることが検討の結果明確となつた。 Cを減少した場合の現象として露点調整等の雰
囲気制御を行つた場合、粒界酸化の進行をコント
ロールし易いこと、雰囲気調整範囲が広くなるこ
と、結晶粒が大きいため粒の欠落が減少し銅粉の
発生が減少することが挙げられる。 すなわちCが高い場合は、結晶粒が小さくな
り、逆に銅粉の発生が多くなる。これは粒欠落の
効果と考えられ、第3図に裏づけられるものであ
る。 なおワイヤ表面への均一な塗油を保証するもの
として、A値を規定しているが、通常工程では、
5.5φの原線から、中間径2.0φまで1次伸線し、加
工硬化したワイヤを軟化するため焼鈍を施し、後
に銅メツキを行い、製品径まで伸線する。本発明
方式では、伸線途中の軟化焼鈍工程で雰囲気制御
を行い、A値範囲にコントロールした後、伸線す
ることで表面層での酸化層と結晶粒との延性の異
なりにより、粒界部で割れが発生する。これによ
り潤滑油を十分に保油する素地を得る。 次に、Ti量の限定理由について述べる。 溶接ワイヤを用いて溶接をする場合、特に溶接
ロボツトにて溶接を行う場合、短絡移行領域では
A値を満足する程度でも十分使用に耐え得るが、
高電流における粒滴移行領域では、アークの安定
度およびアーク長の変動がスパツタの発生に大き
く影響しており、長時間の溶接時には問題とな
る。 この場合、Tiがスパツタ低減に大きく影響す
ることが確認されている。その範囲として0.03重
量%〜0.30重量%が良好である。0.03重量%未満
では、アーク力を低減する効果が少なくワイヤ溶
融端からの離脱が大粒で不規則となる。これは、
溶滴表面上のTiO2による半導体効果が少なくな
りアーク力が溶滴のごく一部に集中することに起
因する。 Tiが0.30重量%を超えると、溶融メタルの粘性
が高くなり過ぎ、ビード形状が凸気味となるた
め、上限を0.30重量%とする。 次にワイヤ表面上に塗布したり、およびワイヤ
表面の溝に、浸透させる潤滑油中に、アルカリ金
属あるいはアルカリ土類金属等のアーク安定剤を
添加することについては、溶接作業性の改善にお
いて、今までに述べてきた銅粉低減によるワイヤ
送給性向上効果と、Tiの添加によるアーク力の
低減効果だけではなく、アーク発生状況にも検討
を加えたものである。 すなわちワイヤ表面上に、これらの元素すなわ
ち電離電圧が低い元素、例えばK+(K2CO3)、Cs+
(Cs2CO3)等を塗布しておくとイオン化エネルギ
ーが低いため、電子のイオン化が容易となり、ア
ークの発生がスムーズとなる。 つまりワイヤ表面へのアークの這い上がり傾向
が大きくなるため、ワイヤ端へのアークの集中が
少なくなり、スパツタの飛散が少なくなるものと
考えられる。 塗布量は、多すぎるとワイヤ送給性およびワイ
ヤの防錆性に問題となるため、100ppm以下にす
るのが好ましい。塗布方法は、仕上げ伸線におい
て、潤滑油とアーク安定剤の混合液にてスキンパ
ス伸線すればよい。 次に、種々の条件を有するワイヤ100Kgを用い
て前述の第1表に示した条件で溶接を行つた場合
の溶接作業性への影響を調べた結果を第2表に示
した。 なお、スパツタ発生量は300mm×200mmの試験片
上にビードオンプレートにてストリンガビードを
置き、0.5mm以上のスパツタ個数を測定した。 ワイヤ成分がC:0.02〜0.06重量%、Ti:0.03
〜0.30重量%、A値が0.4〜1.8の間で、ワイヤ表
面に均一に分散する微細は溝の中に防錆性を有す
る潤滑油とアルカリ金属あるいはアルカリ土類金
属等のアーク安定剤を含有したワイヤにおいて、
ワイヤのノツキング現象が少なくなり、アーク長
の変動がなくなり、スパツタも少なくなるため、
健全な溶接が可能となることが分つた。
[Industrial Application Field] The present invention relates to a welding wire used in semi-automatic welding such as MIG welding, MAG welding (including CO 2 welding), or automatic welding, and particularly relates to a welding wire used in semi-automatic welding such as MIG welding, MAG welding (including CO 2 welding), or automatic welding. Regarding good wire. [Prior art] Generally, welding wire used for MIG welding, MAG welding (including CO 2 welding), etc. is wound around a spool made of synthetic resin or the like in units of 10 kg or 20 kg, or is used in large quantities. As,
Stored in a pail can weighing over 200Kg. This welding wire is fed to the welding part through the conduit tube by a feed motor so as to meet predetermined welding conditions. In recent years, in the welding field, due to demands for higher efficiency and labor savings, locations where covered arm welding rods were conventionally used are also being replaced by semi-automated or automated welding. Particularly in the fields of industrial machinery and automobiles, the amount of automatic welding wire used is increasing due to advances in welding robots. Furthermore, in the field of shipbuilding, the proportion of semi-automatic welding has increased, leading to an increase in the amount of welding wire used. When welding wire is used in the shipbuilding process, the welding area is spread over a wide area, so the welding wire has to pass through a long conduit tube. It is appearing. In order to perform good welding even in such cases, it is essential to feed the welding wire smoothly. If the smooth feeding of the welding wire is hindered due to friction with the conduit tube, sound welding becomes difficult, resulting in poor penetration of the welded part,
Welding defects such as meandering of the weld bead and increased spatter occur. Conventionally, in order to improve the feedability of welding wire, recesses and cracks are formed on the surface of welding wire and lubricating oil is applied, as disclosed in Japanese Patent Application Laid-open Nos. 54-141349 and 1982-128294. something is proposed. However, the feedability was not sufficiently improved and the surface condition was non-uniform, making it impossible to obtain a product of satisfactory quality. Furthermore, in JP-A-59-61592, the wire surface has a hexagonal crack, which limits the effective oxygen content of the wire. Even in this case, it is effective for short-time welding, but when used for a long time, such as at a welding work site, residues such as copper powder accumulate inside the conduit tube, which obstructs wire feeding and It was discovered that there were problems leading to poor pay. The present inventors conducted a detailed investigation into clogging caused by residual copper powder, and found that the crystal grains and grain boundary oxidation layer in the surface layer of the copper-plated base, that is, the iron base of the wire, have a large influence. I found out that there is. In other words, if the value obtained by dividing the average grain boundary oxidation layer on the wire surface by the average crystal grain size on the wire surface (hereinafter referred to as A value) is large, the grain boundaries will be completely oxidized and the conduit tube will be damaged when the wire is fed. It was found that the copper plating peeled off due to rubbing against the inner wall. Here, the average grain boundary oxidation layer refers to the average of the intergranular oxidation layer obtained by taking samples randomly from five locations within the same charge of a wire that has undergone intermediate annealing, and measuring the grain boundary oxidation layer seen from the cross section of each wire. and
The average crystal grain size is obtained by taking samples in the same manner as above, measuring the surface grain size in the cross-sectional direction of the wire, and averaging the results. Furthermore, JP-A-58-3797 attempts to improve welding workability by attaching activating elements, that is, alkali metals and alkaline earth metals, to the wire surface, but the application method is not clear.
When actually manufactured, the welding arc was unstable and unstable due to non-uniform adhesion on the surface of a normal wire. That is, in such cases, it has been found that the wire base is greatly affected and it is necessary to have a wire base that can be coated uniformly. [Problems to be Solved by the Invention] The present invention has been proposed in order to solve the problem of copper powder and other residues accumulating in a conduit tube and causing poor wire feeding, and to further improve arc stability. This allows for smooth feeding even when the conduit tube is long during semi-automated or automated welding, and there is less copper powder generated in the conduit tube and less clogging even during long welding. The object of the present invention is to provide a welding wire with good feedability and excellent welding workability. [Means for Solving the Problems] The present invention limits the amount of C and Ti in the wire components, and appropriately selects the annealing conditions during intermediate annealing in the wire manufacturing process, thereby improving the surface layer of the wire. The crystal grain size and grain boundary oxidation layer are formed within appropriate ranges. That is, C is 0.02 ~
In a welding wire containing 0.06% by weight and 0.03 to 0.30% by weight of Ti, the ratio A of the grain boundary oxidation layer generated on the wire surface layer during intermediate annealing to the crystal grains is as follows: A = average grain boundary oxidation layer thickness (μm )/average grain size (μ
m), characterized in that A is 0.4 or more and 1.8 or less,
The product diameter has fine grooves uniformly distributed on the surface, and the inside of the grooves and the wire surface contain lubricating oil and an arc stabilizer such as an alkali metal or alkaline earth metal. This is a welding wire with excellent welding properties and good welding workability. Such a welding wire can be obtained by appropriately selecting intermediate annealing conditions. [Operation] In order to solve the above problems, after continuous welding 100 kg of wire before improvement under the conditions shown in Table 1 below,
Analysis and investigation of the residual copper powder in the conduit tube revealed that it was approximately 40% by weight copper and 60% iron. In other words, the residue inside the tube was a mixture of iron powder and copper powder, and upon closer observation, it was found that the iron and copper existed in a combined state. This indicates that when the wire is rubbed in the conduit tube, the iron substrate is peeled off from the wire substrate along with the copper plating layer. Table 1 Wire: YGW11 Wire diameter: 1.2mmφ Welding position: downward Welding current: 300A Welding voltage: 30V Welding speed: 20cm/min Shielding gas: CO 2 20/min Conduit tube status Tube length: 3m Loop diameter: 200mmφ1 Circle Figure 2 shows the relationship between the amount of carbon in the wire and the crystal grains on the surface of the wire, and the crystal grains increase as the amount of carbon decreases. This means that when the amount of carbon in the wire is low, the crystal grains become large. In other words, the amount of carbon in the wire component is
If it is 0.06% by weight or less, the crystal grains are large, so even if grain boundary oxidation occurs, the amount of Cu powder falling off will be reduced, and the A value will be easily controlled. FIG. 3 shows the relationship between the amount of carbon and the amount of copper powder generated, and the above-mentioned circumstances are clear. Note that FIG. 3 shows the relationship between the amount of carbon and the amount of copper powder generated. As the carbon content decreases, the crystal grain size increases, so the occurrence of grain boundary oxidation changes, and the 0.06%
Below, the occurrence of copper powder is decreasing. By the way, the reason why the lower limit of the C value is limited to 0.02% by weight is that if it is less than 0.02% by weight, the performance of the welded metal part will deteriorate. This is because the grains become too large, resulting in frequent occurrence of wire surface flaws during wire drawing. Next, Figure 1 shows the A value after intermediate annealing with atmosphere control, and the amount of copper powder generated in the conduit tube when this wire is copper plated, drawn to the product diameter, and then welded. This shows the relationship between As is clear from Figure 1, the A value is 0.4~
Copper powder generation is reduced within the range of 1.8. The reason for this will be explained with reference to FIG. FIG. 4 schematically shows the state of crystals in a cross section in the depth direction of the wire surface layer. Diagrams a to d are respectively Diagram a: Schematic diagram of crystal with A value = 0.7 after intermediate annealing Diagram b: Schematic diagram of crystal after cold wire drawing of the one in Diagram A Diagram c: Crystal with A value = 2.1 after intermediate annealing Schematic diagram d: This is a schematic diagram of crystalline crystals after cold wire drawing of the one shown in diagram c. In the figure, 1 indicates copper plating, and 2 indicates grain boundary oxidation. As shown in the schematic diagram of Figure 4, the A value of the surface layer is
If it exceeds 1.8, grain boundary oxidation occurs on the entire grain boundary,
This grain boundary oxidation part is easy to peel off, so when welding using wire drawn to the product diameter after copper plating,
It is thought that when the wire rubs inside the conduit tube, the copper plating and the iron base attached to it will peel off at the same time. However, when the A value is between 0.4 and 1.8, grain boundary oxidation does not extend over the entire surface of the crystal grains, so it is considered that peeling is difficult. If the A value is less than 0.4, the lubricating oil retaining function on the wire surface does not work sufficiently, so it is thought that the oil film will run out during feeding, resulting in poor feeding and increased generation of copper powder. In this way, it was confirmed that the A value greatly affects the generation of Cu powder, wire feedability, and arc stability, but as is clear from Figure 2, it is important to control the A value within the range. As a result of the study, it has become clear that it is effective to make the crystal grains coarser, that is, to reduce C, in order to simplify the process and reduce the amount of copper powder generated. When C is reduced, if the atmosphere is controlled such as by adjusting the dew point, it is easier to control the progress of grain boundary oxidation, the range of atmosphere adjustment becomes wider, and because the crystal grains are large, grain loss is reduced and copper An example of this is a reduction in powder generation. That is, when C is high, crystal grains become small and, conversely, more copper powder is generated. This is considered to be the effect of grain loss, and is supported by Fig. 3. The A value is specified to ensure uniform oil application to the wire surface, but in normal processes,
The wire is first drawn from a 5.5φ original wire to an intermediate diameter of 2.0φ, annealed to soften the work-hardened wire, and then copper plated and drawn to the product diameter. In the method of the present invention, the atmosphere is controlled in the softening annealing process during wire drawing, and after controlling the A value range, the wire is drawn, so that the grain boundary area is Cracks occur. This provides a base that sufficiently retains lubricating oil. Next, the reason for limiting the amount of Ti will be described. When welding using a welding wire, especially when welding with a welding robot, it is sufficient to withstand use even if the A value is satisfied in the short circuit transition region, but
In the droplet transfer region at high currents, variations in arc stability and arc length greatly affect the generation of spatter, which becomes a problem during long-term welding. In this case, it has been confirmed that Ti has a large effect on reducing spatter. A good range is 0.03% by weight to 0.30% by weight. If it is less than 0.03% by weight, the effect of reducing the arc force will be small and the separation from the molten end of the wire will be large and irregular. this is,
This is due to the fact that the semiconductor effect due to TiO 2 on the droplet surface is reduced and the arc force is concentrated in a small part of the droplet. If Ti exceeds 0.30% by weight, the viscosity of the molten metal becomes too high and the bead shape becomes convex, so the upper limit is set to 0.30% by weight. Next, adding arc stabilizers such as alkali metals or alkaline earth metals to the lubricating oil that is applied on the wire surface or penetrated into the grooves on the wire surface is recommended to improve welding workability. In addition to the effect of improving wire feedability due to the reduction of copper powder and the effect of reducing arc force due to the addition of Ti, we also considered the conditions of arc occurrence. That is, on the wire surface, these elements, that is, elements with low ionization voltage, such as K + (K 2 CO 3 ), Cs +
(Cs 2 CO 3 ) or the like has a low ionization energy, making it easier to ionize electrons and generate arcs more smoothly. In other words, it is thought that since the tendency of the arc to creep up to the wire surface increases, the concentration of the arc on the wire end is reduced, and the scattering of spatter is reduced. The amount of coating is preferably 100 ppm or less since too much will cause problems with wire feedability and rust prevention properties of the wire. The coating method may be skin pass wire drawing using a mixed liquid of lubricating oil and arc stabilizer during finishing wire drawing. Next, Table 2 shows the results of investigating the effect on welding workability when welding was performed under the conditions shown in Table 1 above using 100 kg of wire having various conditions. The amount of spatter generated was determined by placing a stringer bead on a 300 mm x 200 mm test piece using a bead-on plate, and measuring the number of spatters of 0.5 mm or more. Wire components are C: 0.02 to 0.06% by weight, Ti: 0.03
~0.30% by weight, with an A value between 0.4 and 1.8, the fine particles uniformly distributed on the wire surface contain lubricating oil with rust prevention properties and arc stabilizers such as alkali metals or alkaline earth metals in the grooves. In the wire,
Wire knotting phenomenon is reduced, arc length fluctuations are eliminated, and spatter is reduced.
It was found that sound welding was possible.

【表】【table】

〔実施例〕〔Example〕

以下に本発明の実施例を述べる。 化学成分 C:0.03重量% Si:0.75重量% Mn:1.60重量% Ti:0.09重量% である原線径が5.5mmφの溶接用線材を、冷間伸
線ダイスにて2.0mmφまで伸線し、露点10℃のN2
ガスにて700℃×3時間の焼鈍を行つたところ、
ワイヤ表面層の結晶粒径にばらつきの少ない均一
なワイヤが得られた。このワイヤ表面層の平均結
晶粒径は55μmとなり、粒界酸化層に比べ、結晶
粒が大きく、A値が0.7であつた。このワイヤを
銅メツキを施した後、12mmφまで伸線し、表面に
溝を発生させる。K2CO3およびCs2CO3を含有し
ている潤滑油にてスキンパス伸線し、第1表に示
す条件で溶接試験を行つたところ、送給性がよく
アーク安定性のよい良好な結果を示した。 〔発明の効果〕 以上説明したように、CとTiを規定した溶接
用ワイヤの熱処理条件を適切に選定し、ワイヤ表
面に均一な微細な溝を生成せしめ、この溝にアー
ク安定剤を含む潤滑油を浸透させておくことによ
つて、本発明の溶接用ワイヤは、長時間の溶接に
おいても、コンジツトチユーブ内への銅粉の発生
が少なく、送給性に優れ、スパツタ発生が少な
く、終始安定した溶接性を得ることができる。 従つて、本発明の溶接用ワイヤは最近のロボツ
ト溶接等において極めて利用価値が高い。
Examples of the present invention will be described below. Chemical component C: 0.03% by weight Si: 0.75% by weight Mn: 1.60% by weight Ti: 0.09% by weight A welding wire rod with a raw wire diameter of 5.5 mmφ was drawn to 2.0 mmφ using a cold wire drawing die, N2 with dew point 10℃
After annealing with gas at 700℃ for 3 hours,
A uniform wire with little variation in crystal grain size in the wire surface layer was obtained. The average crystal grain size of this wire surface layer was 55 μm, the crystal grains were larger than those of the grain boundary oxidation layer, and the A value was 0.7. After applying copper plating to this wire, it is drawn to a diameter of 12 mm to create grooves on the surface. Skin-pass wire drawing was performed using a lubricating oil containing K 2 CO 3 and Cs 2 CO 3 , and welding tests were performed under the conditions shown in Table 1. Good results were obtained with good feedability and arc stability. showed that. [Effects of the Invention] As explained above, by appropriately selecting the heat treatment conditions for welding wire with specified C and Ti, uniform fine grooves are generated on the wire surface, and the grooves are coated with lubrication containing an arc stabilizer. By impregnating the welding wire with oil, the welding wire of the present invention generates less copper powder into the conduit tube even during long-time welding, has excellent feedability, and has less spatter. Stable weldability can be obtained from beginning to end. Therefore, the welding wire of the present invention has extremely high utility value in recent robot welding and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はA値(平均粒界酸化層と平均結晶粒径
との比)とコンジツトチユーブ内の銅粉発生量を
示すグラフ、第2図は炭素量と平均結晶粒径との
関係を示すグラフ、第3図は炭素量と、銅粉発生
量を示すグラフ、第4図は中間焼鈍後と、冷間伸
線径における粒界酸化状況を示すワイヤ表面層の
深さ方向の模式断面図である。 1……銅メツキ、2……粒界酸化部。
Figure 1 is a graph showing the A value (ratio of average grain boundary oxidation layer to average grain size) and the amount of copper powder generated in the conduit tube, and Figure 2 is a graph showing the relationship between carbon content and average grain size. 3 is a graph showing the amount of carbon and the amount of copper powder generated. FIG. 4 is a schematic cross section in the depth direction of the wire surface layer showing the grain boundary oxidation state after intermediate annealing and at the cold drawing diameter. It is a diagram. 1...Copper plating, 2...Grain boundary oxidation part.

Claims (1)

【特許請求の範囲】 1 C:0.02〜0.06重量% Ti:0.03〜0.30重量% を含有した溶接用ワイヤで、ワイヤ表面層の粒界
酸化層と、結晶粒との比Aが 0.4≦A≦1.8 ただし、 A=平均粒界酸化層厚(μm)/平均結晶粒径(μ
m) であり、ワイヤ表面上にアーク安定性と防錆性を
有する潤滑油を塗布してなる送給性および溶接作
業性に優れた溶接用ワイヤ。
[Claims] 1 A welding wire containing C: 0.02 to 0.06% by weight Ti: 0.03 to 0.30% by weight, in which the ratio A of the grain boundary oxidation layer of the wire surface layer to the crystal grains is 0.4≦A≦ 1.8 However, A=average grain boundary oxidation layer thickness (μm)/average grain size (μm)
m) A welding wire with excellent feedability and welding workability, which is obtained by coating the wire surface with a lubricating oil having arc stability and rust prevention properties.
JP5386A 1986-01-06 1986-01-06 Welding wire having excellent welding workability Granted JPS62158595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5386A JPS62158595A (en) 1986-01-06 1986-01-06 Welding wire having excellent welding workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5386A JPS62158595A (en) 1986-01-06 1986-01-06 Welding wire having excellent welding workability

Publications (2)

Publication Number Publication Date
JPS62158595A JPS62158595A (en) 1987-07-14
JPH0521674B2 true JPH0521674B2 (en) 1993-03-25

Family

ID=11463500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5386A Granted JPS62158595A (en) 1986-01-06 1986-01-06 Welding wire having excellent welding workability

Country Status (1)

Country Link
JP (1) JPS62158595A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553700B2 (en) * 1989-04-24 1996-11-13 松下電器産業株式会社 Gas shielded arc welding wire and method for producing the same

Also Published As

Publication number Publication date
JPS62158595A (en) 1987-07-14

Similar Documents

Publication Publication Date Title
KR101764519B1 (en) Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint
US6784402B2 (en) Steel wire for MAG welding and MAG welding method using the same
CN110753597A (en) Arc welding method and solid wire
JP4830308B2 (en) Multi-layer carbon dioxide shielded arc welding method for thick steel plates
JP3951593B2 (en) MAG welding steel wire and MAG welding method using the same
JPH0521674B2 (en)
JP4754096B2 (en) Solid wire for pulse MAG welding
JP3584894B2 (en) Steel wire for gas shielded arc welding
JPH09239583A (en) Steel wire for pulse arc welding having excellent continuous weldability
CA3192605A1 (en) Arc welding method
JPH0451274B2 (en)
JP2847581B2 (en) Copper plated steel wire for gas shielded arc welding
JPS58128294A (en) Steel wire of small diameter for welding
JP2528341B2 (en) Solid wire for gas shield arc welding
JP2981928B2 (en) Copper plated steel wire for gas shielded arc welding
JPS5913956B2 (en) welding wire
JPS62296993A (en) Steel wire for mag pulse high speed welding
JPH07100687A (en) Wire for arc welding
JP3546738B2 (en) Steel wire for gas shielded arc welding and method for producing the same
JP4655475B2 (en) Steel wire for carbon dioxide shielded arc welding
KR100501984B1 (en) Steel wire for mag welding in dc-electrode and mag welding method using the same
JPH0242039B2 (en)
JP3941369B2 (en) Steel wire for gas shielded arc welding
JPH0747490A (en) Manufacturing of gas shielded welding solid wire being excellent in welding workability
JP4504115B2 (en) Welding wire for gas shielded arc welding

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term