JPH05216081A - Production of wavelength conversion element - Google Patents

Production of wavelength conversion element

Info

Publication number
JPH05216081A
JPH05216081A JP2276892A JP2276892A JPH05216081A JP H05216081 A JPH05216081 A JP H05216081A JP 2276892 A JP2276892 A JP 2276892A JP 2276892 A JP2276892 A JP 2276892A JP H05216081 A JPH05216081 A JP H05216081A
Authority
JP
Japan
Prior art keywords
conversion element
wavelength conversion
film
waveguide
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2276892A
Other languages
Japanese (ja)
Inventor
Satoshi Miyaguchi
敏 宮口
Atsushi Onoe
篤 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2276892A priority Critical patent/JPH05216081A/en
Publication of JPH05216081A publication Critical patent/JPH05216081A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the process for production of the wavelength conversion element suitable for mass production with a smaller number of production stages than heretofore. CONSTITUTION:This process for production consists of a stage for forming a three-dimensional waveguide 7 extending on the main surface of a substrate consisting of a ferroelectric substance, a stage for forming a grating 10 consisting of plural metallic bands respectively extending in the direction orthogonal with the three-dimensional waveguide 7 on the main surface and a metallic film 9 on the opposite surface of the main surface and a stage for irradiating the metallic bands with electron beams. Plural polarization inversion layers 4 are formed along the extension direction of the three-dimensional waveguide 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【従来の技術】本発明は、導波路を有し準位相整合によ
る第2高調波発生を用いた波長変換素子の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a wavelength conversion element having a waveguide and using second harmonic generation by quasi-phase matching.

【0002】[0002]

【産業上の利用分野】第2高調波発生を用いた波長変換
素子として準位相整合(quasi-phase matching:QPM)を
利用した素子が知られている。準位相整合は、例えば第
2高調波の出力がその伝播に伴って干渉距離(コヒーレ
ンス長)毎に極大極小を周期的に繰返すことを利用し
て、コヒーレンス長毎に発生する分極波の符号を交互に
反転させて、第2高調波の出力に打消を生ぜしめること
なく、その加算により出力を増大させる整合方法であ
る。準位相整合を用いれば、光学的に等方な物質や、分
散特性のためにバルク材料としては位相整合のとれない
テンソル成分の大きな物質を用いても、分極波の符号を
交互に反転させる分極反転部分の周期を調整することに
より、見かけ上の位相整合を達成することができる。こ
の準位相整合方法を利用して、強誘電体からなるチャネ
ル形導波路にその伸長方向に沿って分極反転層を周期的
に形成した波長変換素子が開発されている。
BACKGROUND OF THE INVENTION An element using quasi-phase matching (QPM) is known as a wavelength conversion element using second harmonic generation. Quasi-phase matching utilizes, for example, that the output of the second harmonic periodically repeats the maximum and minimum at each interference distance (coherence length) as it propagates, and the sign of the polarization wave generated at each coherence length is determined. This is a matching method in which the outputs are increased alternately by the inversion without causing the second harmonic output to cancel. If quasi-phase matching is used, even if an optically isotropic material or a material with a large tensor component that cannot be phase-matched as a bulk material due to its dispersion characteristics is used, the polarization of the polarization wave is alternately inverted. Apparent phase matching can be achieved by adjusting the period of the inverted portion. Utilizing this quasi-phase matching method, a wavelength conversion element has been developed in which a domain-inverted layer is periodically formed along the extension direction in a channel type waveguide made of a ferroelectric material.

【0003】分極波の符号を周期的に反転させるには非
線型係数の符号を反転させればよく、強誘電体ではドメ
インの反転特性を利用できる。例えばLiNbO3結晶
は、強誘電性のドメイン構造がc軸方位に180°反転分
域をもち、とくに+c面では不純物や歪応力、熱や電界
等の外部要因によって分極ドメイン反転を生じやすい。
In order to periodically invert the sign of the polarization wave, the sign of the nonlinear coefficient may be inverted, and in the ferroelectric substance, the inversion characteristic of the domain can be utilized. For example, in a LiNbO 3 crystal, the ferroelectric domain structure has a 180 ° inversion domain in the c-axis direction, and in the + c plane, polarization domain inversion easily occurs due to external factors such as impurities, strain stress, heat, and electric field.

【0004】LiNbO3結晶等の強誘電体ブロックの
主面上へ周期ドメイン反転構造を形成する方法には、キ
ューリー点近傍の熱処理、くし型電極による高電圧処
理、電子ビーム描画処理等がある。
Methods for forming a periodic domain inversion structure on the main surface of a ferroelectric block such as LiNbO 3 crystal include heat treatment near the Curie point, high voltage treatment with a comb-shaped electrode, and electron beam drawing treatment.

【0005】例えば、図1に、キューリー点近傍の熱処
理を用いた波長変換素子の具体的な製造方法を示す。ま
ず、キューリー点近傍の熱処理法により、分極反転層を
作成する。LiTaO3結晶基板1上に蒸着したTa膜
2上にフォトレジスト膜を塗布後、電子ビーム描画等で
所定周期開孔のパターニングを行い、ドライエッチング
を行って所定周期の分極反転層形成用開孔を形成する。
その後、フォトレジスト膜を除去してTa膜2のグレー
ティングを形成する(図1a)。次に、Ta膜のグレー
ティング上にピロリン酸を塗布し熱処理してプロトン交
換を行い所定周期のプロトン交換層4aをLiTaO3
結晶基板1に形成する(図1b)。Ta膜2のグレーテ
ィングを除去して、熱処理によりプロトン交換層4aの
分極反転を行って所定周期の分極反転層4を形成する
(図1c)。
For example, FIG. 1 shows a specific method of manufacturing a wavelength conversion element using heat treatment near the Curie point. First, a polarization inversion layer is formed by a heat treatment method near the Curie point. After coating a photoresist film on the Ta film 2 deposited on the LiTaO 3 crystal substrate 1, patterning of the periodic holes is performed by electron beam drawing or the like, and dry etching is performed to form the domain inversion layer forming apertures of a predetermined period. To form.
Then, the photoresist film is removed to form a grating for the Ta film 2 (FIG. 1a). Next, pyrophosphoric acid is coated on the grating of the Ta film and heat-treated to perform proton exchange, and the proton exchange layer 4a having a predetermined period is formed into LiTaO 3
It is formed on the crystal substrate 1 (FIG. 1b). The grating of the Ta film 2 is removed, and the polarization inversion of the proton exchange layer 4a is performed by heat treatment to form the polarization inversion layer 4 having a predetermined period (FIG. 1c).

【0006】次に、3次元導波路を作成する。所定周期
の分極反転層4に直交する開孔パターンのTa膜5を基
板1上に形成する(図1d)。Ta膜5上へのピロリン
酸塗布後に熱処理してプロトン交換を行って導波路7を
形成する(図1e)。Ta膜5を除去して分極反転層4
に直交する導波路7からなる導波路型の波長変換素子を
作成する(図1f)。
Next, a three-dimensional waveguide is created. A Ta film 5 having an opening pattern orthogonal to the domain-inverted layer 4 having a predetermined period is formed on the substrate 1 (FIG. 1d). After coating pyrophosphoric acid on the Ta film 5, heat treatment is performed to perform proton exchange to form the waveguide 7 (FIG. 1e). The Ta film 5 is removed and the polarization inversion layer 4 is removed.
A waveguide-type wavelength conversion element composed of the waveguide 7 orthogonal to is formed (FIG. 1f).

【0007】しかしながら、キューリー点近傍の熱処理
においては、Ta等の周期パターン(グレーティング)
を作り、キュリー温度近傍の温度で熱処理後、冷却する
ことにより行われるので、反転ドメイン層の断面形状が
三角又は半円型となり反転ドメインの微細パターンが作
れない。また、かかる波長変換素子製造方法において
は、ピロリン酸の塗布によるプロトン交換を用いて周期
的な分極反転層を作り、その後、更にプロトン交換によ
り3次元導波路を形成するので、作成工程が複雑で時間
がかかる。
However, in the heat treatment near the Curie point, a periodic pattern (grating) such as Ta.
Is performed, and the heat treatment is performed at a temperature near the Curie temperature, followed by cooling. Therefore, the cross-sectional shape of the inversion domain layer becomes triangular or semicircular, and a fine pattern of the inversion domain cannot be formed. Further, in such a wavelength conversion element manufacturing method, a periodic polarization inversion layer is formed by using proton exchange by applying pyrophosphoric acid, and then a three-dimensional waveguide is formed by further proton exchange, so that the manufacturing process is complicated. take time.

【0008】一方、上記くし型電極による高電圧処理を
用いた波長変換素子製造方法においては、結晶基板を高
温中で処理しなければならず、結晶を損傷する、電極材
料が結晶中に熱拡散する等の欠点がある(特開平第2−
187735号)。また、上記電子ビーム描画処理を用
いた波長変換素子製造方法においては、結晶基板上に電
子ビーム径を小さくして周期的に走査し周期パターンの
反転ドメイン層を形成する場合には、前に照射した電子
ビームにより反転分極した部分の影響で後の電子ビーム
が曲げられ正確なパターンの反転ドメイン層が形成でき
ない欠点がある。反対に、電子ビーム径を大きくして走
査し反転ドメイン層を形成する場合には、電子ビームの
強度がその半径上ガウス分布であるために精度の良い反
転ドメイン層が形成できない。
On the other hand, in the method of manufacturing a wavelength conversion element using the above-mentioned high voltage treatment with the comb-shaped electrode, the crystal substrate must be treated at a high temperature, and the crystal is damaged, and the electrode material is thermally diffused in the crystal. There are drawbacks such as
187735). Further, in the wavelength conversion element manufacturing method using the electron beam drawing process, when the electron beam diameter is made small on the crystal substrate to periodically scan to form the inversion domain layer of the periodic pattern, the irradiation is performed before. Due to the effect of the inverted polarization by the electron beam, the subsequent electron beam is bent and there is a drawback that an inverted domain layer having an accurate pattern cannot be formed. On the contrary, when the inversion domain layer is formed by scanning with an increased electron beam diameter, the inversion domain layer cannot be formed with high accuracy because the intensity of the electron beam has a Gaussian distribution on its radius.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、製造
工程数が従来より少なく大量生産に適した波長変換素子
製造方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a wavelength conversion element manufacturing method which has fewer manufacturing steps than conventional ones and is suitable for mass production.

【0010】[0010]

【課題を解決するための手段】本発明による波長変換素
子製造方法は、強誘電体からなる基板の主面上に伸長す
る3次元導波路を形成する工程と、前記主面上において
前記3次元導波路に直交する方向に各々伸長する複数の
金属帯からなるグレーティングを、前記主面の対向面上
において金属膜を形成する工程と、前記金属帯へ電子ビ
ームを照射する工程とからなり、前記3次元導波路の伸
長方向に沿って複数の分極反転層を形成することを特徴
とする。
A method of manufacturing a wavelength conversion element according to the present invention comprises a step of forming a three-dimensional waveguide extending on a main surface of a substrate made of a ferroelectric material, and the three-dimensional waveguide on the main surface. A grating consisting of a plurality of metal strips each extending in a direction orthogonal to the waveguide, a step of forming a metal film on the facing surface of the main surface, and a step of irradiating the metal strip with an electron beam, It is characterized in that a plurality of polarization inversion layers are formed along the extending direction of the three-dimensional waveguide.

【0011】[0011]

【作用】本発明によれば、製造工程時間を短縮でき、波
長変換素子製造方法を簡略化できる。
According to the present invention, the manufacturing process time can be shortened and the wavelength conversion element manufacturing method can be simplified.

【0012】[0012]

【実施例】以下に、本発明の実施例を図面を参照しつつ
説明する。図2に、準位相整合を用いるLiTaO3
晶からなる導波路型波長変換素子の具体的な製造方法を
示す。まず、LiTaO3を基板(厚さ0.5mm)とし、電
子ビーム蒸着機内において、LiTaO3結晶基板1の
−z面全面上にTa膜2を所定膜厚に蒸着する。次に、
Ta膜2上にスピンコーターでフォトレジスト膜を所定
膜厚に塗布して、密着露光装置を用いたフォトプロセス
又は電子ビーム描画装置で導波路のための開孔パターン
によりパターニングを行う。次に、RIE装置(Reactiv
e ion etching apparatus)によってCF4ガス中にてド
ライエッチングを行い、アセトン又はリムーバーによっ
てフォトレジスト膜を除去する伸長開孔を有するTa膜
2を基板1上に形成する。(図2a)。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows a specific method of manufacturing a waveguide type wavelength conversion element made of LiTaO 3 crystal using quasi phase matching. First, using LiTaO 3 as a substrate (thickness 0.5 mm), a Ta film 2 is vapor-deposited to a predetermined thickness on the entire −z surface of the LiTaO 3 crystal substrate 1 in an electron beam vapor deposition machine. next,
A photoresist film is applied on the Ta film 2 with a spin coater to a predetermined thickness, and patterning is performed with a hole pattern for a waveguide by a photo process using a contact exposure device or an electron beam drawing device. Next, the RIE device (Reactiv
dry etching is performed in CF 4 gas by means of an ion etching apparatus, and a Ta film 2 having elongated openings for removing the photoresist film is formed on the substrate 1 by acetone or remover. (Fig. 2a).

【0013】次に、Ta膜2及び基板露出部分上にピロ
リン酸を塗布した後に電気炉で熱処理してプロトン交換
を行い、3次元導波路7を形成する(図2b)。水洗
後、Ta膜2を除去して、伸長する3次元導波路7を担
持した基板を得る(図2c)。次に、スパッタリング装
置を用いて、基板の+Z面全面において膜厚1000オング
ストロームでクロムCr等の金属膜9を成膜し、その対
向する−Z面全面にも同様にCr膜を成膜する。その
後、−Z面の金属膜上に膜厚約1μmのフォトレジスト
膜をスピンコート法により形成する。その後、フォトレ
ジスト膜上に電子ビーム描画装置で3.5μmピッチ(1.7
5μmラインアンドスペース)の反転ドメイン層用パター
ニングを3次元導波路7に直交するように行なう、次に
RIE装置によってCl2+O2ガスにてドライエッチン
グを行い、その後フォトレジスト膜部分を除去し、周期
的間隔の複数の平行Cr金属帯からなるグレーティング
10すなわちCr膜周期パターンを−Z面に形成する
(図2d)。各Cr金属帯は3次元導波路に直交する方
向に伸長する。また、この反転ドメイン層用パターニン
グと同時にレジストレーション用パターン(位置決め用
パターン)も形成しておく。なお、この時は基板に電子
ビームが当たっても、−Z面全面にCr膜がある為、ト
ーズ量の不足で反転ドメイン層は形成されない。
Next, pyrophosphoric acid is applied to the Ta film 2 and the exposed portion of the substrate and then heat-treated in an electric furnace to exchange protons to form a three-dimensional waveguide 7 (FIG. 2b). After washing with water, the Ta film 2 is removed to obtain a substrate carrying the extending three-dimensional waveguide 7 (FIG. 2c). Next, using a sputtering apparatus, a metal film 9 of chromium Cr or the like is formed on the entire + Z surface of the substrate with a film thickness of 1000 angstroms, and a Cr film is similarly formed on the entire opposite -Z surface. Then, a photoresist film having a film thickness of about 1 μm is formed on the metal film on the −Z surface by spin coating. After that, a 3.5 μm pitch (1.7
(5 μm line and space) patterning for the inversion domain layer is performed so as to be orthogonal to the three-dimensional waveguide 7. Next, dry etching is performed with Cl 2 + O 2 gas by an RIE device, and then the photoresist film portion is removed, A grating 10 consisting of a plurality of parallel Cr metal bands at periodic intervals, that is, a Cr film periodic pattern is formed on the -Z plane (Fig. 2d). Each Cr metal band extends in a direction orthogonal to the three-dimensional waveguide. A registration pattern (positioning pattern) is also formed at the same time as the patterning for the inversion domain layer. At this time, even if the substrate is hit with an electron beam, the inversion domain layer is not formed because the Cr film is present on the entire surface of the -Z plane and the toe amount is insufficient.

【0014】次に、電子ビーム描画装置を用いて、レジ
ストレーションマークによって位置決めした後に電子ビ
ームを3.5μmピッチのCr膜周期パターン10の各金属
帯上にてこれに沿って一回ずつ照射する(図2e)。こ
のとき、Cr膜周期パターン10の各金属帯直下で均一
に電子が蓄積され高精度な反転ドメイン層ができる。ま
た、電子ビームは、加速電圧が30KVで、電子ビーム
径が0.1μm直径で、ドーズ量が 100〜2000μC/cm2
条件で照射する。
Next, using an electron beam drawing device, after positioning by the registration mark, the electron beam is irradiated once on each metal strip of the Cr film periodic pattern 10 having a pitch of 3.5 μm along it ( Figure 2e). At this time, electrons are uniformly accumulated right under each metal band of the Cr film periodic pattern 10 to form a highly accurate inversion domain layer. The electron beam is irradiated under the conditions of an accelerating voltage of 30 KV, an electron beam diameter of 0.1 μm and a dose amount of 100 to 2000 μC / cm 2 .

【0015】最後に、両面のCr膜周期パターンをウェ
ットエッチングで除去し、3次元導波路7の伸長方向に
沿って複数の分極反転ドメイン層4を形成する(図2
f)。このように、LiTaO3結晶の+Z面に全面に
Cr等の金属を成膜しかつ−Z面に所望のピッチでCr
等の金属グレーティングを成膜する工程と、電子ビーム
を−Z面上の金属グレーティングめがけて照射する工程
とを有する方法により、低温で反転ドメイン層が形成で
きるので、結晶の損傷が減少する。また、金属グレーテ
ィングに向けて一回だけ電子ビームを照射するだけなの
で工程数の減少が達成できる。
Finally, the Cr film periodic patterns on both surfaces are removed by wet etching to form a plurality of domain-inverted domain layers 4 along the extending direction of the three-dimensional waveguide 7 (FIG. 2).
f). In this way, a metal such as Cr is formed on the entire + Z surface of the LiTaO 3 crystal and Cr is formed on the −Z surface at a desired pitch.
Since the inversion domain layer can be formed at a low temperature by a method including a step of forming a metal grating such as the above and a step of irradiating an electron beam toward the metal grating on the -Z plane, crystal damage is reduced. Moreover, since the electron beam is irradiated only once toward the metal grating, the number of steps can be reduced.

【0016】また、強誘電体としてはLiTaO3の他
にLiNbO3,KNbO3,KTiPO4等が用い得
る。金属周期パターンとしてCrを用いているが、その
他金属としてAu、Al、Ag等が用いられる。電子ビ
ーム照射条件並びCr膜周期パターンの各金属帯の長さ
及び幅は、強誘電体の種類並びに3次元導波路の長さ及
び幅等に応じて設定される。
As the ferroelectric substance, LiNbO 3 , KNbO 3 , KTiPO 4, etc. can be used in addition to LiTaO 3 . Although Cr is used as the metal periodic pattern, Au, Al, Ag, or the like is used as the other metal. The electron beam irradiation condition and the length and width of each metal band of the Cr film periodic pattern are set according to the type of ferroelectric substance and the length and width of the three-dimensional waveguide.

【0017】尚、金属グレーティングへ電子ビーム照射
工程の前に反転ドメイン層と垂直方向にプロトン交換に
よる3次元導波路を作製しておくが、強誘電体の導波路
を形成するためには、この他に蒸着法、エピタキシャル
成長法等で強誘電体導波路を形成しても良い。さらに導
波路の形状は上記実施例の埋設型の他に、基板主面上に
強誘電体導波路を突出させ形成したマイクロストリップ
型、強誘電体の膜厚を変化させたリッジ型としてもよ
い。また電子ビーム照射工程の後に3次元導波路を形成
することも可能である。
Before the electron beam irradiation step on the metal grating, a three-dimensional waveguide is formed by proton exchange in the direction perpendicular to the inversion domain layer. To form a ferroelectric waveguide, this three-dimensional waveguide is formed. Alternatively, the ferroelectric waveguide may be formed by a vapor deposition method, an epitaxial growth method, or the like. Further, the shape of the waveguide may be, in addition to the buried type in the above-described embodiment, a microstrip type in which a ferroelectric waveguide is formed to project on the main surface of the substrate, or a ridge type in which the thickness of the ferroelectric is changed. .. It is also possible to form a three-dimensional waveguide after the electron beam irradiation step.

【0018】[0018]

【発明の効果】以上のように、本発明の波長変換素子製
造方法によれば、強誘電体からなる基板の主面上に伸長
する3次元導波路を形成する工程と、主面上において3
次元導波路に直交する方向に各々伸長する複数の金属帯
からなるグレーティングを、主面の対向面上において金
属膜を形成する工程と、金属帯へ電子ビームを照射する
工程とからなり、3次元導波路の伸長方向に沿って複数
の分極反転層を形成するので、微細周期の反転ドメイン
層を有する波長変換素子が製造でき、使用する強誘電体
に対応して設定すべき分極反転層の周期を金属周期パタ
ーンを変化させることにより容易に設定でき、さらに従
来の製造工程を簡素化できる。
As described above, according to the method of manufacturing a wavelength conversion element of the present invention, a step of forming a three-dimensional waveguide extending on the main surface of a substrate made of a ferroelectric material and three steps on the main surface.
A three-dimensional three-dimensional process includes a step of forming a metal film on a surface opposite to the main surface, and a step of irradiating the metal band with an electron beam, the grating including a plurality of metal bands each extending in a direction orthogonal to the three-dimensional waveguide. Since a plurality of polarization inversion layers are formed along the extension direction of the waveguide, a wavelength conversion element having an inversion domain layer with a fine period can be manufactured, and the period of the polarization inversion layer to be set corresponding to the ferroelectric substance to be used. Can be easily set by changing the metal periodic pattern, and the conventional manufacturing process can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】波長変換素子製造方法の各工程における部材の
概略斜視図である。
FIG. 1 is a schematic perspective view of a member in each step of a wavelength conversion element manufacturing method.

【図2】実施例の波長変換素子製造方法の各工程におけ
る部材の概略斜視図である。
FIG. 2 is a schematic perspective view of a member in each step of the method for manufacturing the wavelength conversion element according to the embodiment.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1 基板 4 分極反転層 7 導波路 9 金属膜 10 金属グレーティング 1 substrate 4 polarization inversion layer 7 waveguide 9 metal film 10 metal grating

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 強誘電体からなる基板の主面上に伸長す
る3次元導波路を形成する工程と、前記主面上において
前記3次元導波路に直交する方向に各々伸長する複数の
金属帯からなるグレーティングを、前記主面の対向面上
において金属膜を形成する工程と、前記金属帯へ電子ビ
ームを照射する工程とからなり、前記3次元導波路の伸
長方向に沿って複数の分極反転層を形成することを特徴
とする波長変換素子製造方法。
1. A step of forming a three-dimensional waveguide extending on a main surface of a substrate made of a ferroelectric material, and a plurality of metal strips extending on the main surface in a direction orthogonal to the three-dimensional waveguide. A step of forming a metal film on the opposite surface of the main surface and a step of irradiating the metal band with an electron beam, and a plurality of polarization inversions along the extending direction of the three-dimensional waveguide. A method for manufacturing a wavelength conversion element, which comprises forming a layer.
JP2276892A 1992-02-07 1992-02-07 Production of wavelength conversion element Pending JPH05216081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2276892A JPH05216081A (en) 1992-02-07 1992-02-07 Production of wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2276892A JPH05216081A (en) 1992-02-07 1992-02-07 Production of wavelength conversion element

Publications (1)

Publication Number Publication Date
JPH05216081A true JPH05216081A (en) 1993-08-27

Family

ID=12091855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2276892A Pending JPH05216081A (en) 1992-02-07 1992-02-07 Production of wavelength conversion element

Country Status (1)

Country Link
JP (1) JPH05216081A (en)

Similar Documents

Publication Publication Date Title
US5522973A (en) Fabrication of ferroelectric domain reversals
US5415743A (en) Fabrication of ferroelectric domain reversals
US5521750A (en) Process for forming proton exchange layer and wavelength converting element
US5424867A (en) Fabrication of ferroelectric domain reversals
JPH05216081A (en) Production of wavelength conversion element
US7115513B2 (en) Domain reversal control method for ferroelectric materials
JP3364268B2 (en) Method of forming domain-inverted layer
JP3303346B2 (en) Method for controlling polarization of lithium niobate and lithium tantalate, method for manufacturing optical waveguide device using the same, and optical waveguide device
US5748361A (en) Ferroelectric crystal having inverted domain structure
US5395495A (en) Fabrication of ferroelectric domain reversals
US5668578A (en) Method for fabricating ferrolelectric domain reversals, and optical wavelength converter element
US7460295B2 (en) Periodic poling structure and electrode element and method for preparing the same
JPH05127207A (en) Production of wavelength conversion element
JPH0713008A (en) Diffraction grating and its production and wavelength conversion element
US20080158655A1 (en) Method for Preparing a Periodically Poled Structure
US7394588B2 (en) Wavelength converter structure and method for preparing the same
JP2660217B2 (en) Manufacturing method of wavelength conversion element
JP2009186634A (en) Method for manufacturing periodic polarization reversal structure
KR100269383B1 (en) Fabricating method of second harmonic generation device
JPH10206810A (en) Ridge type optical waveguide element and its manufacture
JPH0695191A (en) Formation of proton exchange layer
EP0718671A1 (en) Method for forming domain inversion regions and for fabricating wavelength conversion device
JPH05323407A (en) Formation of partial polarization inversion region and optical second higher harmonic generating element
JPH06230445A (en) Production of periodic polarization inversion structure and production of wavelength conversion element
JPH04280234A (en) Control method of polarization inversion