JP2009186634A - Method for manufacturing periodic polarization reversal structure - Google Patents

Method for manufacturing periodic polarization reversal structure Download PDF

Info

Publication number
JP2009186634A
JP2009186634A JP2008024839A JP2008024839A JP2009186634A JP 2009186634 A JP2009186634 A JP 2009186634A JP 2008024839 A JP2008024839 A JP 2008024839A JP 2008024839 A JP2008024839 A JP 2008024839A JP 2009186634 A JP2009186634 A JP 2009186634A
Authority
JP
Japan
Prior art keywords
insulating film
electrode
conductive film
substrate
polarization reversal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008024839A
Other languages
Japanese (ja)
Other versions
JP4646150B2 (en
Inventor
Ryo Fujimura
良 藤村
Shoichiro Yamaguchi
省一郎 山口
Takashi Yoshino
隆史 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2008024839A priority Critical patent/JP4646150B2/en
Publication of JP2009186634A publication Critical patent/JP2009186634A/en
Application granted granted Critical
Publication of JP4646150B2 publication Critical patent/JP4646150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of preventing connection of adjacent polarization reversal part and forming periodic polarization reversal structure in short time when forming the periodic polarization reversal structure by a voltage application method. <P>SOLUTION: There are provided an insulating film 7 with a plurality of clearances provided on a main face 1a of a ferroelectric single crystal substrate 1, and a conductive film 20 provided to coat the clearances 8 of the insulating film 7 and the insulating film. The conductive film 20 includes an insulating film coating part 6 for coating the insulating film, and electrode piece parts 5 provided in the clearances. The electrode piece parts 5 are arrayed under the condition separated from each other toward a polarization reversal direction x. The conductive film 20 includes a notched part 21 extending toward the polarization reversal direction x. The notched part 21 passes through the plurality of clearances 8. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、周期分極反転構造の製造方法に関するものである。   The present invention relates to a method for manufacturing a periodically poled structure.

ニオブ酸リチウム単結晶やタンタル酸リチウム単結晶などの強誘電体単結晶に、周期的な分極反転構造を形成した擬似位相整合(Quasi−Phase−matching)方式の第2高調波発生(Second−Harmonic−Generation)デバイスは、紫外から赤外まで、比較的任意な波長の光を発生させることができる。このデバイスは、光ディスクメモリ用、医学用、光化学用、及び各種光計測用などの幅広い応用が可能である。   Quasi-phase-matching second harmonic generation (Second-Harmonic) in which a periodically poled structure is formed in a ferroelectric single crystal such as lithium niobate single crystal or lithium tantalate single crystal. -Generation) devices can generate light of a relatively arbitrary wavelength from ultraviolet to infrared. This device can be used in a wide range of applications such as optical disk memory, medical use, photochemistry use, and various optical measurement applications.

非特許文献1の記載の方法では、ニオブ酸リチウムのZ基板の表面に絶縁膜を設け、絶縁膜にストライプ状の細長い隙間を設けた上で、絶縁膜および隙間を被覆するように導電膜を設けている。そして、この導電膜にパルス電圧を印加することによって、基板に周期分極反転構造を形成している。
電子情報通信学会論文誌 C-I, Vol. J78-C-1, No.5 pp.238-245、「電圧印加によるLiNbO3 SHGデバイス用分極反転グレーティングの作製」 金高 健二, 藤村 昌寿, 栖原 敏明, 西原 浩
In the method described in Non-Patent Document 1, an insulating film is provided on the surface of a lithium niobate Z substrate, a strip-like elongated gap is provided in the insulating film, and the conductive film is formed so as to cover the insulating film and the gap. Provided. Then, by applying a pulse voltage to the conductive film, a periodically poled structure is formed on the substrate.
IEICE Transactions CI, Vol. J78-C-1, No.5 pp.238-245, "Manufacture of polarization inversion grating for LiNbO3 SHG devices by applying voltage" Kenji Kindaka, Masatoshi Fujimura, Toshiaki Sugawara, Nishihara Hiroshi

また、特許文献1では、ニオブ酸リチウム基板の表面に、金属の櫛形電極を形成している。この櫛形電極は、細長い太幅の給電電極と、この給電電極のエッジから多数延びている細長い電極片とを備えている。各電極片は、その長手方向に向かって、所定長さごとに分離されている。
WO 2005 124447
In Patent Document 1, a metal comb electrode is formed on the surface of a lithium niobate substrate. This comb-shaped electrode includes a long and narrow power supply electrode and a long and thin electrode piece extending from the edge of the power supply electrode. Each electrode piece is separated into predetermined lengths in the longitudinal direction.
WO 2005 124447

また、特許文献2の電圧印加法では、基板表面の櫛形電極の各電極片を複数に区分し、隣接する電極片の間にギャップを設けている。そして、電極片の長さを変化させたり、電極片の間のギャップの寸法を規定することで、深い分極反転構造を形成することを試みている。
特開2006-003488
In the voltage application method of Patent Document 2, each electrode piece of the comb-shaped electrode on the substrate surface is divided into a plurality of pieces, and a gap is provided between adjacent electrode pieces. An attempt is made to form a deep domain-inverted structure by changing the length of the electrode pieces or defining the size of the gap between the electrode pieces.
JP2006-003488

特許文献1、2記載の方法では、電極片をその長手方向に向かって複数の細長い断片に分け、断片間に隙間を設けている。これによって、電極片の各断片の各エッジをそれぞれ出発点として分極反転を開始させ、進行させており、これによって、分極反転に要する時間を短くし、また分極反転深さを大きくすることができる。しかし、隣接する分極反転部がつながりやすい傾向があり、基本波エネルギーの変換効率の低下をもたらすことがある。   In the methods described in Patent Documents 1 and 2, the electrode piece is divided into a plurality of elongated pieces in the longitudinal direction, and a gap is provided between the pieces. As a result, the polarization inversion is started and progressed starting from each edge of each piece of the electrode piece, thereby shortening the time required for the polarization inversion and increasing the polarization inversion depth. . However, there is a tendency that adjacent polarization inversion portions tend to be connected, which may lead to a decrease in fundamental wave energy conversion efficiency.

非特許文献1記載の方法では、隣接する分極反転部がつながりにくいが、しかし電極片が長くなると、分極反転に要する時間が長く、分極反転幅が揃わなくなる傾向がある。特に分極反転に時間がかかることから生産性が低くなる。   In the method described in Non-Patent Document 1, adjacent polarization inversion portions are not easily connected. However, when the electrode piece becomes long, the time required for polarization inversion tends to be long, and the polarization inversion width tends to be uneven. In particular, since it takes time to reverse the polarization, productivity is lowered.

本発明の課題は、電圧印加法によって周期分極反転構造を形成するのに際して、隣接する分極反転部の連結を防止すると共に、短時間で周期分極反転構造を形成可能な方法を提供することである。   An object of the present invention is to provide a method capable of forming a periodic polarization reversal structure in a short time while preventing the connection of adjacent polarization reversal portions when forming a periodic polarization reversal structure by a voltage application method. .

本発明は、単分域化している強誘電体単結晶基板の主面上に設けられた電極構造を用いて、電圧印加法により周期分極反転構造を製造する方法であって、
電極構造が、強誘電体単結晶基板の主面上に設けられた複数の隙間のある絶縁膜と、この絶縁膜の隙間および絶縁膜を被覆するように設けられている導電膜とを備えており、この導電膜が、絶縁膜を被覆する絶縁膜被覆部と、隙間に設けられた電極片部とを備えており、電極片部が、分極反転方向に向かって互いに離間された状態で配列されており、導電膜に、分極反転方向へと向かって延びる切り欠き部が設けられており、切り欠き部が複数の隙間を通過していることを特徴とする。
The present invention is a method of manufacturing a periodically poled structure by a voltage application method using an electrode structure provided on the main surface of a single domain ferroelectric single crystal substrate,
The electrode structure includes an insulating film having a plurality of gaps provided on the main surface of the ferroelectric single crystal substrate, and a conductive film provided to cover the gaps of the insulating films and the insulating film. The conductive film includes an insulating film covering portion that covers the insulating film and an electrode piece portion provided in the gap, and the electrode piece portions are arranged in a state of being separated from each other in the polarization inversion direction. The conductive film is provided with a cutout portion extending in the polarization inversion direction, and the cutout portion passes through a plurality of gaps.

本発明によれば、電極構造が、強誘電体単結晶基板の主面上に設けられた複数の隙間のある絶縁膜と、この絶縁膜の隙間および絶縁膜を被覆するように設けられている導電膜とを備えており、この導電膜が、絶縁膜を被覆する絶縁膜被覆部と、隙間に設けられた電極片部とを備えている。これによって、隣接する分極反転部が連結しにくい。   According to the present invention, the electrode structure is provided so as to cover the insulating film having a plurality of gaps provided on the main surface of the ferroelectric single crystal substrate and the gaps and the insulating films of the insulating films. The conductive film includes an insulating film covering portion that covers the insulating film, and an electrode piece portion provided in the gap. This makes it difficult for adjacent polarization inversion portions to be connected.

その上で、本発明者は、絶縁層および隙間を被覆する導電膜にスリットを入れることにより、各電極片のエッジと強誘電体基板がと接触する接触面積を増やした。通常、例えば四角形の電極片に電界を印加した場合には、電界分布は、電極片のエッジで強度が最大となる形となる。このため、分極反転も電極片のエッジから進展しやすく、四角形の電極片の内部で分極反転の形成分布に偏りが生じる。そして、分極反転の形成速度が低い。しかし、本発明のように、導電膜に、分極反転方向へと向かって細長く延びる切り欠き部を形成することによって、電極片の内部にも電極エッジを形成することができ、電界分布が電極片の内部でより均一になる。それにより、分極反転の形成分布もより均一になりやすく、反転時間が短くなるのではないかと考えられる。   In addition, the present inventor increased the contact area where the edge of each electrode piece and the ferroelectric substrate are in contact with each other by slitting the conductive film covering the insulating layer and the gap. Usually, for example, when an electric field is applied to a rectangular electrode piece, the electric field distribution has a shape in which the intensity is maximized at the edge of the electrode piece. For this reason, polarization reversal also tends to progress from the edge of the electrode piece, and the formation distribution of polarization reversal is biased inside the rectangular electrode piece. And the formation rate of polarization inversion is low. However, as in the present invention, by forming a notch extending in the direction of polarization inversion in the conductive film, an electrode edge can be formed inside the electrode piece, and the electric field distribution is It becomes more uniform inside. Thereby, the formation distribution of the polarization inversion is likely to be more uniform, and the inversion time may be shortened.

以下、図面を適宜参照しつつ、本発明を更に説明する。
まず、図1(a)に示すように、強誘電体結晶基板1の一方の主面1aに絶縁膜を形成する。1bは他方の主面である。次いで、絶縁膜に細長い隙間8を形成し、パターニングされた絶縁膜7を残す。このパターニングされた絶縁膜7の平面形状を図2に模式的に示す。絶縁膜7には、多数の隙間8が形成されており、各隙間8には基板1の主面1aを露出させる。
The present invention will be further described below with reference to the drawings as appropriate.
First, as shown in FIG. 1A, an insulating film is formed on one main surface 1a of the ferroelectric crystal substrate 1. 1b is the other main surface. Next, an elongated gap 8 is formed in the insulating film, and the patterned insulating film 7 is left. A planar shape of the patterned insulating film 7 is schematically shown in FIG. A large number of gaps 8 are formed in the insulating film 7, and the main surface 1 a of the substrate 1 is exposed in each gap 8.

次いで、図1(b)に示すように、基板1上に導電膜20を形成する。導電膜20の平面的形状を図3に示す。導電膜20は、基板主面1aを被覆しており、絶縁膜7を被覆する絶縁膜被覆部6と、主面1aを直接被覆する電極片部5を備えている。基板1の他方の主面1bには一様電極2を形成する。   Next, as illustrated in FIG. 1B, a conductive film 20 is formed on the substrate 1. A planar shape of the conductive film 20 is shown in FIG. The conductive film 20 covers the substrate main surface 1a, and includes an insulating film covering portion 6 that covers the insulating film 7 and an electrode piece portion 5 that directly covers the main surface 1a. A uniform electrode 2 is formed on the other main surface 1 b of the substrate 1.

ここで、各電極片部5は、基板主面1a上に形成されているものであり、絶縁膜被覆部6は、絶縁膜7上に形成されているものである。各電極片部5は、絶縁膜被覆部6と切れ目なくつながっている。平面的に見ると、電極片部5は、いずれも細長いストライプ状の形態を有している。そして、複数の電極片部5が、分極反転方向xに向かって配列されており、方向xで見て隣接する電極片部5間には間隙4が形成されている。また、複数の電極片部5が、電極片5の長手方向(分極反転方向xに対して垂直の方向)yに向かって配列されており、方向yで見て隣接する電極片部5間には間隙9が形成されている。   Here, each electrode piece portion 5 is formed on the substrate main surface 1 a, and the insulating film covering portion 6 is formed on the insulating film 7. Each electrode piece portion 5 is connected to the insulating film covering portion 6 without a break. When viewed in a plan view, each of the electrode pieces 5 has an elongated stripe shape. A plurality of electrode pieces 5 are arranged in the polarization inversion direction x, and a gap 4 is formed between the adjacent electrode pieces 5 as seen in the direction x. A plurality of electrode pieces 5 are arranged in the longitudinal direction (direction perpendicular to the polarization inversion direction x) y of the electrode pieces 5, and between the adjacent electrode pieces 5 as viewed in the direction y. A gap 9 is formed.

ここで、導電膜20には、図3に示すように、分極反転方向xに向かって延びる切り欠き部21を設けてある。導電膜20が存在する領域では、図1(b)に示すように、絶縁膜7は導電膜下に埋まっているので、図3には、電極片部5の輪郭を点線で示す。一方、切り欠き部21においては、絶縁膜7および隙間8が表面に露出し、隙間8内に電極片部5が形成されない。この状態を図5に部分断面図として模式的に示す。   Here, as shown in FIG. 3, the conductive film 20 is provided with a notch 21 extending in the polarization inversion direction x. In the region where the conductive film 20 exists, as shown in FIG. 1B, the insulating film 7 is buried under the conductive film, and therefore the outline of the electrode piece 5 is shown by a dotted line in FIG. On the other hand, in the notch 21, the insulating film 7 and the gap 8 are exposed on the surface, and the electrode piece 5 is not formed in the gap 8. This state is schematically shown as a partial cross-sectional view in FIG.

この後、導電膜20と一様電極2との間に所定の電圧を印加し、多数の分極反転部を基板1内に形成することによって、周期分極反転構造を形成する。この電圧印加方法は特に限定されない。例えば不活性雰囲気中に基板を設置して電圧を印加してもよく、絶縁体液体中に基板を設置して電圧を印加してもよい。   Thereafter, a predetermined voltage is applied between the conductive film 20 and the uniform electrode 2 to form a large number of domain-inverted portions in the substrate 1, thereby forming a periodic domain-inverted structure. This voltage application method is not particularly limited. For example, a substrate may be placed in an inert atmosphere and a voltage may be applied, or a substrate may be placed in an insulating liquid and a voltage may be applied.

例えば四角形の電極片5に電界を印加した場合には、電界分布は、電極片のエッジで強度が最大となる形となる。このため、分極反転も電極片5のエッジから進展しやすく、四角形の電極片の内部で分極反転の形成分布に偏りが生じる。そして、分極反転の形成速度が低い。しかし、本例のように、導電膜20に、分極反転方向xへと向かって細長く延びる切り欠き部21を形成することによって、電極片部5の内部にも電極エッジEを形成することができ、電界分布が電極片の内部でより均一になる。それにより、分極反転の形成分布もより均一になりやすく、反転時間が短くなる。   For example, when an electric field is applied to the quadrangular electrode piece 5, the electric field distribution has a shape in which the intensity is maximum at the edge of the electrode piece. For this reason, the polarization inversion is also likely to progress from the edge of the electrode piece 5, and the polarization inversion formation distribution is biased inside the square electrode piece. And the formation rate of polarization inversion is low. However, as in this example, the electrode edge E can be formed also inside the electrode piece portion 5 by forming the cutout portion 21 elongated in the polarization inversion direction x in the conductive film 20. The electric field distribution becomes more uniform inside the electrode piece. As a result, the formation distribution of polarization inversion tends to be more uniform, and the inversion time is shortened.

導電膜の切り欠き部の形成箇所は特に限定されない。図3の例では、導電膜の対向辺20a、20bからそれぞれ切り欠き部21を内側へと向かって形成した。しかし、図6に示す例では、導電膜20の一辺20aから対向辺20bへと向かって切り欠き部21Aを形成した。また、図7に示す例では、導電膜20の一辺20aから対向辺20bへと向かって延びる切り欠き部21Bを形成すると共に、導電膜20の前記対向辺20bから前記一辺20aへと向かって延びる切り欠き部21Cを異なる高さに形成した   There is no particular limitation on the location where the cutout portion of the conductive film is formed. In the example of FIG. 3, the notches 21 are formed inward from the opposing sides 20a and 20b of the conductive film, respectively. However, in the example shown in FIG. 6, the notch 21A is formed from one side 20a of the conductive film 20 toward the opposite side 20b. In the example shown in FIG. 7, a cutout portion 21B extending from one side 20a of the conductive film 20 toward the opposite side 20b is formed, and also extending from the opposite side 20b of the conductive film 20 toward the one side 20a. The cutout portion 21C was formed at a different height.

各切り欠き部の幅bは特に限定されない。しかし、電極片エッジにおいて発生した電荷を分極反転形成に有効に利用するという観点からは、bは、2μm以上が好ましく、 10μm以上がさらに好ましい。一方、切り欠き部の幅bが大きくなり過ぎると、分極反転に使用できる領域が小さくなってくる。この観点からは、切り欠き部の幅bは、50μm以下が好ましく、20μm以下がさらに好ましい。   The width b of each notch is not particularly limited. However, b is preferably 2 μm or more, and more preferably 10 μm or more, from the viewpoint of effectively using the charge generated at the edge of the electrode piece for polarization inversion formation. On the other hand, if the width b of the notch is too large, the region that can be used for polarization inversion becomes small. From this point of view, the width b of the notch is preferably 50 μm or less, and more preferably 20 μm or less.

隣接する切り欠き部の間隔aは特に限定されない。しかし、分極反転部を短時間で効率良く形成するという観点からは、aは、200〜1000μmが好ましく、200〜400μmがさらに好ましい。   The interval a between adjacent notches is not particularly limited. However, from the viewpoint of efficiently forming the domain-inverted portion in a short time, a is preferably 200 to 1000 μm, and more preferably 200 to 400 μm.

また、b/aは特に限定されない。しかし、分極反転部を短時間で効率良く形成するという観点からは、b/aは、20〜200が好ましく、20〜40がさらに好ましい。   Further, b / a is not particularly limited. However, from the viewpoint of efficiently forming the domain-inverted part in a short time, b / a is preferably 20 to 200, and more preferably 20 to 40.

切り欠き部21、21A、21B、21Cの長さcは、特に限定されず、形成するべき分極反転部の大きさに合わせて設計すればよい。   The length c of the notches 21, 21A, 21B, and 21C is not particularly limited, and may be designed according to the size of the polarization inversion portion to be formed.

好適な実施形態においては、図8に示すように、基板1の下に別体の支持基板11を積層し、基板1と11との間に少なくとも一様電極2を介在させる。そして、支持基板11のうち基板1とは反対側の主面にも電極12を形成する。そして、基板1と11とを絶縁性気体13内に浸漬し、基板1上の導電膜20と電極12とにそれぞれ電線15、19を結線する。そして、電源18から導電膜20および電極12に対して電圧を印加し、周期分極反転構造を形成する。   In a preferred embodiment, as shown in FIG. 8, a separate support substrate 11 is laminated under the substrate 1, and at least the uniform electrode 2 is interposed between the substrates 1 and 11. The electrode 12 is also formed on the main surface of the support substrate 11 opposite to the substrate 1. And the board | substrates 1 and 11 are immersed in the insulating gas 13, and the electric wires 15 and 19 are connected to the electrically conductive film 20 and the electrode 12 on the board | substrate 1, respectively. Then, a voltage is applied from the power source 18 to the conductive film 20 and the electrode 12 to form a periodically poled structure.

本発明において、好ましくは、電極片部が、電極片部の長手方向に向かって互いに離間された状態で配列されている。   In the present invention, the electrode pieces are preferably arranged in a state of being separated from each other in the longitudinal direction of the electrode pieces.

図4の例では、絶縁膜の隙間に形成された導電膜20は、方向yに向かって絶縁膜によって複数の電極片部5に分断されている。これによって、各電極片部5の各エッジを出発点として分極反転が進展するので、深い分極反転を短時間で形成可能である。   In the example of FIG. 4, the conductive film 20 formed in the gap between the insulating films is divided into a plurality of electrode pieces 5 by the insulating film in the direction y. As a result, since the polarization inversion progresses starting from each edge of each electrode piece portion 5, a deep polarization inversion can be formed in a short time.

その上で、本例では、分極反転部と非分極反転部の配列方向xに向かって分極反転部分が連結することを防止できる。これと共に、各電極片の長手方向yで見たときには、隣り合う電極片5下に生ずる分極反転部分は互いにつながり易く、一連の細長い分極反転部を形成しやすい。   In addition, in this example, it is possible to prevent the polarization inversion portion from being connected in the arrangement direction x of the polarization inversion portion and the non-polarization inversion portion. At the same time, when viewed in the longitudinal direction y of each electrode piece, the polarization inversion portions generated below the adjacent electrode pieces 5 are easily connected to each other, and a series of elongated polarization inversion portions are easily formed.

周期分極反転構造を形成するべき基板を構成する強誘電体材料の種類は、限定されない。しかし、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)、ニオブ酸リチウム−タンタル酸リチウム固溶体、KLiNb15の各単結晶が特に好ましい。 The kind of the ferroelectric material that constitutes the substrate on which the periodically poled structure is to be formed is not limited. However, single crystals of lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), lithium niobate-lithium tantalate solid solution, and K 3 Li 2 Nb 5 O 15 are particularly preferable.

強誘電体単結晶中には、三次元光導波路の耐光損傷性を更に向上させるために、マグネシウム(Mg)、亜鉛(Zn)、スカンジウム(Sc)及びインジウム(In)からなる群より選ばれる1種以上の金属元素を含有させることができ、マグネシウムが特に好ましい。   The ferroelectric single crystal is selected from the group consisting of magnesium (Mg), zinc (Zn), scandium (Sc), and indium (In) in order to further improve the light damage resistance of the three-dimensional optical waveguide. More than one metal element can be contained, and magnesium is particularly preferred.

強誘電体単結晶中には、ドープ成分として、希土類元素を含有させることができる。この希土類元素は、レーザ発振用の添加元素として作用する。この希土類元素としては、特にNd、Er、Tm、Ho、Dy、Prが好ましい。   The ferroelectric single crystal can contain a rare earth element as a doping component. This rare earth element acts as an additive element for laser oscillation. As this rare earth element, Nd, Er, Tm, Ho, Dy, and Pr are particularly preferable.

本発明では、基板としてZカット基板を使用するが、オフカットZ基板であってもよい。このオフカット角度は、本発明の作用効果という観点から、10°以下が好ましく、5°以下が更に好ましい。   In the present invention, a Z-cut substrate is used as the substrate, but an off-cut Z substrate may be used. This off-cut angle is preferably 10 ° or less, and more preferably 5 ° or less, from the viewpoint of the effect of the present invention.

また、オフカットZ基板のオフカット角が10 °以下であれば、半導体レーザとの光軸調整も、傾き補正しなくても波長変換効率の劣化は無視でき、高効率な波長変換素子を実現することができる。   In addition, if the off-cut angle of the off-cut Z substrate is 10 ° or less, the deterioration of wavelength conversion efficiency can be ignored without adjusting the optical axis with the semiconductor laser and correcting the tilt, realizing a highly efficient wavelength conversion element. can do.

絶縁膜の材質は限定されないが、SiOやTaのような酸化物、窒化珪素のような窒化物であってよい。絶縁膜の成膜方法としては、蒸着法でもスパッタリング法、スピンコート法でもよい。絶縁膜の成膜厚さは、特に限定されないが、500オングストローム以上、3000オングストローム以下が好ましい。絶縁膜の厚さが小さい場合は、絶縁性が低くなり、周期状分極反転が形成されにくい。絶縁膜が厚すぎる場合は、パターニング精度が悪くなる。 The material of the insulating film is not limited, but may be an oxide such as SiO 2 or Ta 2 O 5 or a nitride such as silicon nitride. As a method for forming the insulating film, an evaporation method, a sputtering method, or a spin coating method may be used. The thickness of the insulating film is not particularly limited, but is preferably 500 Å or more and 3000 Å or less. In the case where the thickness of the insulating film is small, the insulating property is lowered and it is difficult to form periodic polarization inversion. When the insulating film is too thick, the patterning accuracy is deteriorated.

絶縁膜をパターニングして隙間を形成する方法は特に限定されない。例えば、絶縁膜上にフォトレジストをスピンコーティングし、マスク露光、現像を経て、レジストパターンを形成し、このレジストパターンをマスクにして、エッチング処理を行うことで、隙間を形成できる。エッチング処理はウェットエッチングでも、ドライエッチングでもよいが、理想的には基板表面にダメージを与えにくいウェットエッチングの方が好適である。   A method for forming the gap by patterning the insulating film is not particularly limited. For example, a gap can be formed by spin-coating a photoresist on the insulating film, forming a resist pattern through mask exposure and development, and performing an etching process using the resist pattern as a mask. The etching process may be wet etching or dry etching, but ideally wet etching is preferable because it hardly damages the substrate surface.

電圧印加法において使用する電極片部、一様電極の材質は限定されないが、Al、Au、Ag、Cr、Cu、Ni、Ni-Cr 、Pd、Ta 、Mo、W、Ta、AuCrの積層膜などが好ましい。   The material of the electrode piece and uniform electrode used in the voltage application method is not limited, but a laminated film of Al, Au, Ag, Cr, Cu, Ni, Ni-Cr, Pd, Ta, Mo, W, Ta, AuCr Etc. are preferable.

支持基板11の材質は、絶縁性が高く、材質内の体積抵抗率が均一で、所定の構造強度を有していることが必要である。この材質としては、シリコン、サファイア、水晶、ガラスを例示できる。   The material of the support substrate 11 needs to be highly insulating, have a uniform volume resistivity within the material, and have a predetermined structural strength. Examples of this material include silicon, sapphire, crystal, and glass.

基板を絶縁性液体に浸漬して電圧印加法を実施するのに際しては、絶縁オイル(例えばシリコンオイル)、フッ素系不活性液体を例示できる。   When the voltage application method is performed by immersing the substrate in an insulating liquid, insulating oil (for example, silicon oil) or a fluorine-based inert liquid can be exemplified.

絶縁膜をパターニングするときのX方向の周期Γx(図4参照)は、発生させたい波長変換光の波長に適した値に設計する。例えば、緑色の2次高調波を発生させる場合は、Γxは約7μmとなる。   The period Γx (see FIG. 4) in the X direction when patterning the insulating film is designed to a value suitable for the wavelength of the wavelength-converted light to be generated. For example, when generating a green second harmonic, Γx is about 7 μm.

絶縁膜の隙間と隙間との間隔Gyは、特に限定されないが、分極反転の促進という観点から、0.5μm以上が好ましく、0.8μm以上がさらに好ましい。絶縁膜の隙間と隙間との間隔Gyは、y方向に隣接する分極反転部の連結を促進するという観点から、2.0μm以下が好ましく、1.5μm以下がさらに好ましい。y方向の周期Γyは、特に制限を設けるわけではないが、5〜100μmであってよい。   The gap Gy between the gaps of the insulating film is not particularly limited, but is preferably 0.5 μm or more and more preferably 0.8 μm or more from the viewpoint of promoting polarization inversion. The gap Gy between the gaps of the insulating films is preferably 2.0 μm or less, and more preferably 1.5 μm or less, from the viewpoint of promoting the connection of the polarization inversion portions adjacent in the y direction. The period Γy in the y direction is not particularly limited, but may be 5 to 100 μm.

基板背面側の一様電極の形成方法は特に限定されず、蒸着法でもよく、スパッタリング法でもよい。一様電極の膜厚は、例えば500〜3000オングストロームとすることができる。   The method for forming the uniform electrode on the back side of the substrate is not particularly limited, and may be a vapor deposition method or a sputtering method. The film thickness of the uniform electrode can be, for example, 500 to 3000 angstroms.

(対照例)
図1、図2、図4および図8を参照しつつ説明した方法に従い、周期分極反転構造を形成した。ただし、基板1としては、MgO添加のLiNbO(MgOLN)のZカット基板を使用した。基板1の+z面1aに、絶縁膜としてSiO膜を成膜した。絶縁膜の膜厚は約2000オングストロームとした。次いで、絶縁膜上にフォトレジストをスピンコーティングし、マスク露光、現像を経て、レジストパターンを形成した。このレジストパターンをマスクにして、ウェットエッチング処理を行うことで、図1(a)、図2に示すような絶縁膜パターン7を形成した。周期Γxは約7μmとし、Gyは1.2μmとし、Γyは10μmとした。
(Control example)
In accordance with the method described with reference to FIGS. 1, 2, 4 and 8, a periodically poled structure was formed. However, as the substrate 1, a MgO-added LiNbO 3 (MgOLN) Z-cut substrate was used. An SiO 2 film was formed as an insulating film on the + z surface 1 a of the substrate 1. The thickness of the insulating film was about 2000 angstroms. Next, a photoresist was spin-coated on the insulating film, and a resist pattern was formed through mask exposure and development. By performing wet etching using this resist pattern as a mask, an insulating film pattern 7 as shown in FIGS. 1A and 2 was formed. The period Γx was about 7 μm, Gy was 1.2 μm, and Γy was 10 μm.

続いて、スパッタリング法によって、導電膜20および2を成膜した。これらの膜厚は1000オングストロームとし、材質はタンタルとした。ただし、導電膜20には切り欠き部を設けなかった。このように作製した基板1を、図8を参照しつつ説明した方法を適用することによって、周期状分極反転構造を得ることができた。ただし、絶縁性液体として絶縁オイルを使用し、温度設定を150℃にした。また、電圧印加条件としては、ウェハの抗電界となる電界強度の約3kV/mmに設定し、約1msec幅の矩形パルスを印加した。パルスの印加回数は、パターン面積に依存するが、例えば20mmのとき、20000パルスが好適であった。 Subsequently, conductive films 20 and 2 were formed by sputtering. These film thicknesses were 1000 angstroms, and the material was tantalum. However, the conductive film 20 was not provided with a notch. A periodic domain-inverted structure could be obtained by applying the method described with reference to FIG. 8 to the substrate 1 thus manufactured. However, insulating oil was used as the insulating liquid, and the temperature was set to 150 ° C. Further, the voltage application condition was set to about 3 kV / mm, which is the electric field strength serving as the coercive electric field of the wafer, and a rectangular pulse having a width of about 1 msec was applied. The number of times of pulse application depends on the pattern area. For example, when it is 20 mm 2 , 20000 pulses are suitable.

こうした得られた基板表面を、ふっ硝酸でウェットエッチングし、次いで顕微鏡で観察した。x方向(横方向)にみたときに、隣接する分極反転部は互いにつながることはなかった。また、y方向(縦方向)にみたときには、隣接する分極反転部は互いにつながり、1本の繋がった分極反転部が形成されていた。長さ3.3mmにわたる分極反転に要する時間は、2.3分であった。   The surface of the substrate thus obtained was wet-etched with nitric acid and then observed with a microscope. When viewed in the x direction (lateral direction), the adjacent domain-inverted portions were not connected to each other. When viewed in the y direction (longitudinal direction), adjacent polarization inversion portions are connected to each other, and one connected polarization inversion portion is formed. The time required for polarization reversal over a length of 3.3 mm was 2.3 minutes.

(実施例1)
対照例と同様にして周期分極反転構造を形成した。ただし、導電膜20の形態は図3に示すようにし、切り欠き部21を形成した。切り欠き部21の幅bを5μmとし、切り欠き部21の長さcを2.4mmとし、隣接する切り欠き部の間隔aを200μmとした。この結果、長さ3.3mmにわたる分極反転に要する時間は、1.8分であった。即ち、単位分極反転面積あたりに必要な時間が、約20%短縮された。
Example 1
A periodically poled structure was formed in the same manner as the control example. However, the form of the conductive film 20 was as shown in FIG. 3, and the notch 21 was formed. The width b of the notch 21 was 5 μm, the length c of the notch 21 was 2.4 mm, and the interval a between adjacent notches was 200 μm. As a result, the time required for polarization reversal over a length of 3.3 mm was 1.8 minutes. That is, the time required per unit polarization inversion area was shortened by about 20%.

(実施例2)
対照例と同様にして周期分極反転構造を形成した。ただし、導電膜20の形態は図6に示すようにし、切り欠き部21Aを形成した。切り欠き部21Aの幅bを5μmとし、切り欠き部21の長さcを4.8mmとし、隣接する切り欠き部の間隔aを200μmとした。この結果、長さ3.3mmにわたる分極反転に要する時間は、1.8分であった。即ち、単位分極反転面積あたりに必要な時間が、約20%短縮された。
(Example 2)
A periodically poled structure was formed in the same manner as the control example. However, the form of the conductive film 20 was as shown in FIG. 6, and the notch 21A was formed. The width b of the notch 21A was 5 μm, the length c of the notch 21 was 4.8 mm, and the distance a between adjacent notches was 200 μm. As a result, the time required for polarization reversal over a length of 3.3 mm was 1.8 minutes. That is, the time required per unit polarization inversion area was shortened by about 20%.

(実施例3)
対照例と同様にして周期分極反転構造を形成した。ただし、導電膜20の形態は図7に示すようにし、切り欠き部21B、21Cを形成した。切り欠き部21B、21Cの幅bを5μmとし、切り欠き部21の長さcを4.8mmとし、隣接する切り欠き部の間隔aを200μmとした。この結果、長さ3.3mmにわたる分極反転に要する時間は、1.8分であった。即ち、単位分極反転面積あたりに必要な時間が、約20%短縮された。
(Example 3)
A periodically poled structure was formed in the same manner as the control example. However, the form of the conductive film 20 was as shown in FIG. 7, and the notches 21B and 21C were formed. The width b of the notches 21B and 21C was 5 μm, the length c of the notches 21 was 4.8 mm, and the interval a between adjacent notches was 200 μm. As a result, the time required for polarization reversal over a length of 3.3 mm was 1.8 minutes. That is, the time required per unit polarization inversion area was shortened by about 20%.

本発明の特定の実施形態を説明してきたけれども、本発明はこれら特定の実施形態に限定されるものではなく、請求の範囲の範囲から離れることなく、種々の変更や改変を行いながら実施できる。   Although specific embodiments of the present invention have been described, the present invention is not limited to these specific embodiments and can be implemented with various changes and modifications without departing from the scope of the claims.

(a)は、基板1上に絶縁膜7を形成した状態を示す概略断面図であり、(b)は、絶縁膜7上および主面1aを被覆する導電膜20を形成した状態を示す断面図である。(A) is a schematic sectional drawing which shows the state which formed the insulating film 7 on the board | substrate 1, (b) is a cross section which shows the state which formed the electrically conductive film 20 which coat | covers the insulating film 7 and the main surface 1a. FIG. 基板1上に、パターニングされた絶縁膜7が形成された状態を示す平面図である。2 is a plan view showing a state in which a patterned insulating film 7 is formed on a substrate 1. FIG. 基板1の主面1a上の電極構造を模式的に示す平面図である。2 is a plan view schematically showing an electrode structure on a main surface 1a of a substrate 1. FIG. 基板1の主面1a上の電極形状を示す拡大平面図である。2 is an enlarged plan view showing an electrode shape on a main surface 1a of a substrate 1. FIG. 切り欠き部の近辺における電極構造の断面図である。It is sectional drawing of the electrode structure in the vicinity of a notch part. 他の実施形態に係る電極構造の平面図である。It is a top view of the electrode structure concerning other embodiments. 更に他の実施形態に係る電極構造の平面図である。It is a top view of the electrode structure concerning other embodiments. 基板1に電圧を印加するための方法例を模式的に示す図である。2 is a diagram schematically showing an example of a method for applying a voltage to a substrate 1. FIG.

符号の説明Explanation of symbols

1 基板 1a 、1b 主面 2 一様電極 5 電極片部 6 絶縁膜被覆部 7 絶縁膜 20 導電膜 21、21A、21B、21C 切り欠き部 E 電極片のエッジ a 隣接する切り欠き部の間隔 b 切り欠き部の幅 x 分極反転方向 y 電極片部の長手方向 Gy 方向yに見た電極片部の間隔 Γx x方向の周期 Γy y方向の周期   DESCRIPTION OF SYMBOLS 1 Board | substrate 1a, 1b Main surface 2 Uniform electrode 5 Electrode piece part 6 Insulating film coating | coated part 7 Insulating film 20 Conductive film 21, 21A, 21B, 21C Notch part E Edge of electrode piece a Space | interval of adjacent notch part b Notch width x Polarization inversion direction y Longitudinal direction of electrode piece Gy Spacing of electrode piece viewed in direction y Γx Period in x direction Γy Period in y direction

Claims (3)

単分域化している強誘電体単結晶基板の主面上に設けられた電極構造を用いて、電圧印加法により周期分極反転構造を製造する方法であって、
前記電極構造が、前記強誘電体単結晶基板の前記主面上に設けられた複数の隙間のある絶縁膜と、この絶縁膜の前記隙間および前記絶縁膜を被覆するように設けられている導電膜とを備えており、この導電膜が、前記絶縁膜を被覆する絶縁膜被覆部と、前記隙間に設けられた電極片部とを備えており、前記電極片部が、分極反転方向に向かって互いに離間された状態で配列されており、前記導電膜に、前記分極反転方向へと向かって延びる切り欠き部が設けられており、前記切り欠き部が前記複数の隙間を通過していることを特徴とする、周期分極反転構造の製造方法。
A method of manufacturing a periodically poled structure by a voltage application method using an electrode structure provided on a main surface of a single-domain ferroelectric single crystal substrate,
The electrode structure is provided with an insulating film having a plurality of gaps provided on the main surface of the ferroelectric single crystal substrate, and a conductive film provided so as to cover the gaps and the insulating film of the insulating film. The conductive film includes an insulating film covering portion that covers the insulating film, and an electrode piece portion that is provided in the gap, and the electrode piece portion faces in a polarization inversion direction. Are arranged in a state of being separated from each other, the conductive film is provided with a cutout portion extending in the polarization reversal direction, and the cutout portion passes through the plurality of gaps. A method for producing a periodic domain-inverted structure.
前記導電膜に複数の前記切り欠き部が形成されていることを特徴とする、請求項1記載の方法。   The method according to claim 1, wherein a plurality of the notches are formed in the conductive film. 複数の前記電極片部が、前記電極片部の長手方向に向かって互いに離間された状態で配列されていることを特徴とする、請求項1または2記載の方法。   The method according to claim 1, wherein the plurality of electrode pieces are arranged in a state of being separated from each other in the longitudinal direction of the electrode pieces.
JP2008024839A 2008-02-05 2008-02-05 Method for manufacturing periodically poled structure Active JP4646150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008024839A JP4646150B2 (en) 2008-02-05 2008-02-05 Method for manufacturing periodically poled structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008024839A JP4646150B2 (en) 2008-02-05 2008-02-05 Method for manufacturing periodically poled structure

Publications (2)

Publication Number Publication Date
JP2009186634A true JP2009186634A (en) 2009-08-20
JP4646150B2 JP4646150B2 (en) 2011-03-09

Family

ID=41069956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008024839A Active JP4646150B2 (en) 2008-02-05 2008-02-05 Method for manufacturing periodically poled structure

Country Status (1)

Country Link
JP (1) JP4646150B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003632A (en) * 2015-06-05 2017-01-05 株式会社Screenホールディングス Polarization inversion structure manufacturing method, optical device manufacturing method, electrode for inversion, and electrooptic crystal substrate
CN111226167A (en) * 2017-10-10 2020-06-02 日本碍子株式会社 Method for manufacturing periodic polarization reversal structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304863A (en) * 1995-04-28 1996-11-22 Kyocera Corp Production of optical device
JP2004070207A (en) * 2002-08-09 2004-03-04 Mitsubishi Cable Ind Ltd Method of manufacturing polarization reversal crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304863A (en) * 1995-04-28 1996-11-22 Kyocera Corp Production of optical device
JP2004070207A (en) * 2002-08-09 2004-03-04 Mitsubishi Cable Ind Ltd Method of manufacturing polarization reversal crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003632A (en) * 2015-06-05 2017-01-05 株式会社Screenホールディングス Polarization inversion structure manufacturing method, optical device manufacturing method, electrode for inversion, and electrooptic crystal substrate
CN111226167A (en) * 2017-10-10 2020-06-02 日本碍子株式会社 Method for manufacturing periodic polarization reversal structure

Also Published As

Publication number Publication date
JP4646150B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JPH10503602A (en) Fabrication of patterned polarized dielectric structures and devices
JP5300664B2 (en) Method for manufacturing polarization reversal part
US6952307B2 (en) Electric field poling of ferroelectric materials
JP4646150B2 (en) Method for manufacturing periodically poled structure
JP2008225279A (en) Manufacturing method of periodic polarization inverting structure
JP4974872B2 (en) Method for manufacturing periodically poled structure
JP2010156787A (en) Method for manufacturing optical functional element
JP4756706B2 (en) Method for manufacturing domain-inverted structure
JP5992346B2 (en) Method for manufacturing wavelength conversion element
JP4400816B2 (en) Method for manufacturing periodically poled structure and optical device
US7668410B2 (en) Production method for polarization inversion unit
JP3838910B2 (en) Ferroelectric polarization inversion method and optical wavelength conversion device fabrication method
JPH10246900A (en) Production of microstructure of ferroelectric single crystal substrate
JP2009092843A (en) Manufacturing method for periodic polarization reversal structure
JP4642065B2 (en) Method for manufacturing periodic polarization reversal part
US20060049133A1 (en) Domain reversal control method for ferroelectric materials
JP2009271496A (en) Method of fabricating optical functional element
US11332849B2 (en) Method of producing periodic polarization inversion structures
JP6031852B2 (en) Periodic polarization inversion electrode and method of forming periodic polarization inversion structure
JP2016024423A (en) Manufacturing method of wavelength conversion element, and wavelength conversion element
JP2013160970A (en) Periodic polarization inverting electrode, method for forming periodic polarization inverting structure, and periodic polarization inverting element
JP2002277915A (en) Polarization inversion forming method and light wavelength converting element
JP6446518B2 (en) Method for manufacturing wavelength conversion element
JP2010107731A (en) Ferroelectric bulk element
JP2005070194A (en) Method for manufacturing periodical polarization reversal structure and optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150