JPH05215928A - Production of ridge type three-dimensional waveguide - Google Patents

Production of ridge type three-dimensional waveguide

Info

Publication number
JPH05215928A
JPH05215928A JP4047843A JP4784392A JPH05215928A JP H05215928 A JPH05215928 A JP H05215928A JP 4047843 A JP4047843 A JP 4047843A JP 4784392 A JP4784392 A JP 4784392A JP H05215928 A JPH05215928 A JP H05215928A
Authority
JP
Japan
Prior art keywords
dimensional waveguide
ridge
etching
waveguide
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4047843A
Other languages
Japanese (ja)
Other versions
JP3158203B2 (en
Inventor
Masanori Tamaki
昌徳 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP04784392A priority Critical patent/JP3158203B2/en
Publication of JPH05215928A publication Critical patent/JPH05215928A/en
Application granted granted Critical
Publication of JP3158203B2 publication Critical patent/JP3158203B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obviate roughening of the side walls of a three-dimensional waveguide and to decrease propagation losses by inverting the polarization direction in a part on the two-dimensional waveguide consisting of a dielectric material subjected to single polarization and forming the three-dimensional waveguide by etching. CONSTITUTION:After the two-dimensional waveguide of the +C face of the dielectric material subjected to the single polarization is worked, this face is inverted to the -C face exclusive of the part where the ridge type three- dimensional waveguide is to be formed. Namely, a material 5 which can be inverted in polarization is deposited by evaporation on the two-dimensional waveguide 2. The part right under this material or the part right under the part where this material is not deposited by evaporation is inverted to the -C phase when the material is heat treated for a prescribed period of time at a prescribed temp. The etching rates of the +C face and the -C face for an etching liquid vary greatly (+C phase <<-C phase) and, therefore, the two-dimensional waveguide 2 is etched by utilizing the difference in the etching rate, by which the ridge type three-dimensional waveguide having the ridge part in the part of the +C phase is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明はリッジ型三次元導波路の
製造方法に関し、特にはリッジ部側面の荒れが少なく、
低伝搬損失で光の閉じ込め性が良い光導波路の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ridge-type three-dimensional waveguide, and more particularly to a ridge-shaped side surface with less roughness.
The present invention relates to a method for manufacturing an optical waveguide having a low propagation loss and a good light confining property.

【0002】[0002]

【従来の技術】従来、リッジ型三元導波路は、西原、春
名、栖原著 光集積回路 P195オーム社(198
5)に示されるように、フォトリソグラフィー技術と蒸
着、リフトオフにより二次元導波路上にリッジ型導波路
にしたい部分のみTi等のマスクが蒸着された状態と
し、ついで、Ar等のプラズマで物理的にドライエッチ
ングを行なって作製していた。Ti下の材料はTiが完
全に消失するまではエッチングされないのでリッジ型三
次元導波路となる。
2. Description of the Related Art Hitherto, a ridge type ternary waveguide has been disclosed by Nishihara, Haruna, and Suhara in an optical integrated circuit P195 Ohmsha (198).
As shown in 5), a mask of Ti or the like is vapor-deposited on the two-dimensional waveguide at a portion to be formed into a ridge-type waveguide by photolithography technique, vapor deposition, and lift-off. It was produced by dry etching. Since the material under Ti is not etched until Ti is completely disappeared, it becomes a ridge type three-dimensional waveguide.

【0003】他の物理的エチングによる三次元化方法と
しては、マスクとしてTiの代わりにNi,エッチング
ガスとしてCCl2 2 ,Ar,O2 を用い物理的エッ
チングに化学的エッチング作用を加え光学材料の結晶性
に与えるダメージの低減やマスクと光学材料のエッチン
グ比(光学材料のエッチング速度/マスクのエッチング
速度)を大きくしようとする反応性イオンエッチングが
Appl.PhysLett.Vol.38 No11
(1981)に示されている。さらに反応性ガスをビー
ムにして試料に照射することでさらにエッチング比を大
きくしようとする試みがJournal of Lig
htwave tech.Vol.LT−2,No4
(1984)に示されている。
As another three-dimensional method by physical etching, Ni is used as a mask instead of Ti, and CCl 2 F 2 , Ar, and O 2 are used as an etching gas, and a chemical etching action is added to the physical etching to add an optical material. Reactive ion etching for reducing damage to crystallinity and increasing the etching ratio between the mask and the optical material (optical material etching rate / mask etching rate) is described in Appl. PhysLett. Vol. 38 No11
(1981). An attempt to further increase the etching ratio by irradiating the sample with a reactive gas as a beam is a Journal of Lig.
www.tech.com. Vol. LT-2, No4
(1984).

【0004】一方、弗酸、硝酸/弗酸混合液等を用い
て、化学的なエッチングで三次元導波路を形成する方法
も試みられている。
On the other hand, a method of forming a three-dimensional waveguide by chemical etching using hydrofluoric acid, nitric acid / hydrofluoric acid mixed solution, or the like has been attempted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら従来の物
理的、または化学的エッチング法で三次元導波路を作製
する場合、以下の問題点がある。
However, when the three-dimensional waveguide is manufactured by the conventional physical or chemical etching method, there are the following problems.

【0006】物理的ドライエッチング法でリッジ型三次
元導波路を作製する場合エッチングマスクと光学材料の
エッチング比が小さいために、マスク材の膜厚は厚くす
る必要がある。エッチングマスクの形成には一般的にリ
フトオフ法が採用されている。リフトオフ法で厚いエッ
チングマスクを作成すると側壁は非常に荒れた面となっ
てしまう。
When a ridge type three-dimensional waveguide is manufactured by a physical dry etching method, the film thickness of the mask material needs to be large because the etching ratio of the etching mask and the optical material is small. The lift-off method is generally adopted for forming the etching mask. If a thick etching mask is created by the lift-off method, the side wall becomes a very rough surface.

【0007】物理的ドライエッチング法ではエッチング
機構が物理的なエッチングのみであるので、マスクの側
壁の形状がそのまま導波路のリッジ部に転写されるの
で、リッジ型三次元導波路の側壁は非常に荒れたものと
なってしまう。このリッジ部の側壁の荒れが散乱損失の
原因となり伝搬損失が大きくなってしまう。
In the physical dry etching method, since the etching mechanism is only physical etching, the shape of the side wall of the mask is directly transferred to the ridge portion of the waveguide, so that the side wall of the ridge-type three-dimensional waveguide is very large. It will be rough. Roughness of the side wall of the ridge causes scattering loss, resulting in large propagation loss.

【0008】このほか反応性イオンエッチングや反応性
イオンビームエッチングが行われているが、装置が非常
に高価なこと大面積化が困難なこと,大きなエッチング
比が得られていない等の問題がある。
In addition, reactive ion etching and reactive ion beam etching are performed, but there are problems that the apparatus is very expensive, it is difficult to increase the area, and a large etching ratio cannot be obtained. ..

【0009】一方、化学的なエッチングで三次元導波路
を形成する方法においては、エッチングマスクとして適
当なものがなく、さらに、等方性エッチングなためサイ
ドエッチングが起こり微細な形状を作成することができ
ないという問題があり実用的でない。
On the other hand, in the method of forming a three-dimensional waveguide by chemical etching, there is no suitable etching mask, and since it is isotropic etching, side etching may occur to form a fine shape. There is a problem that it can not be done and it is not practical.

【0010】本発明の目的は前記問題点を解決し、リッ
ジ型三次元導波路の側壁の荒れを無くし、伝搬損失の低
いリッジ型三次元導波路の作成方法を提案するものであ
る。
An object of the present invention is to solve the above-mentioned problems and to propose a method for producing a ridge-type three-dimensional waveguide with low propagation loss by eliminating the roughness of the side wall of the ridge-type three-dimensional waveguide.

【0011】[0011]

【課題を解決するための手段】目的達成のために本発明
者らは鋭意研究を行った結果、誘電材料の分極面、+面
と−面のエッチング速度比が大きく異なることを利用
し、エッチングマスクを用いることなくリッジ型三次元
導波路を作成すればよいことを見出した。本発明は、単
一分極化された誘電体材料からなる二次元導波路上の少
なくとも一部分の分極方向を反転せしめる工程、エッチ
ングにより三次元導波路を形成する工程を含むことを特
徴とするリッジ型三次元導波路の製造方法、および単一
分極化された誘電体材料の少なくとも一部分の分極方向
を反転せしめる工程、エッチングによりリッジ構造を形
成する工程、光導波路を形成する工程を含むことを特徴
とするリッジ型三次元導波路の製造方法と、基板上に、
単一分極化された誘電体材料からなり、リッジ部を有す
る導波路が形成されてなるリッジ型の三次元導波路であ
って、該リッジ部の表面は、プラス分極面となっている
ことを特徴とするリッジ型三次元導波路からなる。前記
リッジ部を有する導波路は、リッジ部の表面がプラス分
極面、非リッジ部がマイナス分極面となっていることが
望ましい。
As a result of intensive studies by the present inventors in order to achieve the object, as a result of utilizing the fact that the etching rate ratios of the polarized surface, + surface and − surface of the dielectric material are greatly different, It has been found that a ridge type three-dimensional waveguide may be created without using a mask. The present invention comprises a step of inverting the polarization direction of at least a part of a two-dimensional waveguide made of a single-polarized dielectric material, and a step of forming a three-dimensional waveguide by etching. A method of manufacturing a three-dimensional waveguide, and a step of inverting the polarization direction of at least a part of the single-polarized dielectric material, a step of forming a ridge structure by etching, and a step of forming an optical waveguide. Ridge type three-dimensional waveguide manufacturing method for
A ridge-type three-dimensional waveguide formed of a waveguide material having a ridge portion, which is made of a single-polarized dielectric material, and the surface of the ridge portion is a positive polarization surface. It is characterized by a ridge-type three-dimensional waveguide. In the waveguide having the ridge portion, it is desirable that the surface of the ridge portion has a positive polarization surface and the non-ridge portion has a negative polarization surface.

【0012】[0012]

【作用】本発明にもとずき三次元導波路の作成方法をL
iNbO3 を例にとり、図1を用いて説明する。本発明
が対象とする材料はニオブ酸リチウムに限定されるもの
ではなく、タンタル酸リチウム、水晶、チタン酸ストロ
ンチウム、ガリウム酸リチウム、(Pb,La)(Z
r,Ti)O3 等、誘電体であれば用いうる。
According to the present invention, the method for producing a three-dimensional waveguide is
iNbO 3 will be described as an example with reference to FIG. 1. The material targeted by the present invention is not limited to lithium niobate, but may be lithium tantalate, quartz, strontium titanate, lithium gallium oxide, (Pb, La) (Z).
Any dielectric such as r, Ti) O 3 can be used.

【0013】まず+C面のLiNbO3 二次元導波路を
加工後リッジ型三次元導波路となる部分を除き−C面に
反転する。LiNbO3 の+C面を−C面に反転させる
方法は、LiNbO3 二次元導波路上に分極反転形成可
能な物質を真空蒸着法やスパッタリング法等で蒸着し、
所定の温度,時間,熱処理するとその物質の直下また
は、その物質が蒸着されていない部分の直下が−C面に
反転する。
First, the + C plane LiNbO 3 two-dimensional waveguide is inverted to the −C plane except for the portion which becomes a ridge type three-dimensional waveguide after processing. The method of inverting the + C plane of LiNbO 3 to the −C plane is to deposit a material capable of forming polarization inversion on the LiNbO 3 two-dimensional waveguide by vacuum vapor deposition or sputtering.
When heat treatment is performed for a predetermined temperature and time, the portion directly below the substance or immediately below the portion where the substance is not vapor-deposited is inverted to the -C plane.

【0014】ここで所望の部分に分極反転形成可能な物
質を形成する方法としてはフォトリソグラフィー(図
1、工程a〜c)、真空蒸着法やスパッタリング法等の
蒸着技術(図1、工程d;ここではTiを使用)とリフ
トオフ法(図1、工程f)を用いることができる。作成
されるマスクや蒸着膜は非常に薄いため、微細加工が可
能となる。
Here, as a method for forming a material capable of forming polarization inversion on a desired portion, photolithography (FIG. 1, steps a to c), vapor deposition techniques such as vacuum vapor deposition and sputtering (FIG. 1, step d; Here, Ti can be used and the lift-off method (FIG. 1, step f) can be used. Since the mask and vapor deposition film that are created are very thin, fine processing is possible.

【0015】分極反転形成可能な物質としては、Ti,
Cr,Fe,SiO2 ,Ta,NiO,MgO等があ
り、なかでもTi,SiO2 ,MgOが好適である。+
C面のLiNbO3 二次元導波路上にTiとSiO2
蒸着した場合は、熱処理によりTiとSiO2 の直下が
−C面のLiNbO3 二次元導波路に変わる。これは、
Tiの内部拡散やSiO2 中へのLiの外拡散によりL
iNbO3 のキュリー点が低下し、拡散部分が分極反転
を起こすものである。
Examples of substances capable of forming polarization inversion include Ti,
There are Cr, Fe, SiO 2 , Ta, NiO, MgO, etc. Among them, Ti, SiO 2 , MgO are preferable. +
If depositing Ti and SiO 2 in LiNbO 3 dimensional waveguide on the C plane, directly below the Ti and SiO 2 is changed to LiNbO 3 dimensional waveguide -C surface by heat treatment. this is,
L due to internal diffusion of Ti and external diffusion of Li into SiO 2.
The Curie point of iNbO 3 is lowered, and the diffusion portion causes polarization reversal.

【0016】一方、MgOの場合は、TiとSiO2
場合とは逆でMgOが蒸着されていない部分が−C面の
LiNbO3 に変わる。これは、MgOの拡散によりL
iNbO3 のキュリー点が上昇し、この結果相対的にキ
ュリー点の低い非拡散部分が分極反転を起こすものであ
る。
On the other hand, in the case of MgO, contrary to the case of Ti and SiO 2 , the portion where MgO is not vapor-deposited is changed to LiNbO 3 on the −C plane. This is due to the diffusion of MgO
The Curie point of iNbO 3 rises, and as a result, the non-diffused portion having a relatively lower Curie point causes polarization reversal.

【0017】さらに、分極反転形成物質としてMgOを
用いた場合、熱処理することによりLiNbO3 基板内
に拡散する。MgOはLiNbO3 の耐光損傷性を向上
するため光デバイスに用いる場合には都合が良い。
Further, when MgO is used as the polarization inversion forming substance, it is diffused in the LiNbO 3 substrate by heat treatment. MgO improves the light damage resistance of LiNbO 3 and is therefore suitable for use in optical devices.

【0018】分極反転層の厚みはリッジ型三次元導波路
最大段差に相当するため、光の閉じ込め性から考えて、
少なくとも二次元導波路厚みの半分は分極反転される必
要がある。
Since the thickness of the polarization inversion layer corresponds to the maximum step of the ridge type three-dimensional waveguide, considering the light confining property,
At least half the thickness of the two-dimensional waveguide needs to be polarization-inverted.

【0019】LiNbO3 の+C面と−C面では腐食液
に対するエッチング速度が大きく異なり+C面≪−C面
の関係がある。この+C面と−C面でのエッチング速度
の違いを利用すればLiNbO3 の二次元導波路内に+
C面と−C面が存在する場合、その二次元導波路をエッ
チングすることにより+C面の部分がリッジ部となるリ
ッジ型三次元導波路となる(図1、工程g)。
The etching rates of the LiNbO 3 on the + C plane and the −C plane differ greatly with respect to the corrosive liquid, and there is a relationship of + C plane <<-C plane. If the difference in the etching rate between the + C plane and the −C plane is used, the inside of the LiNbO 3 two-dimensional waveguide is +
When the C-plane and the -C plane exist, the two-dimensional waveguide is etched to form a ridge-type three-dimensional waveguide in which the + C plane is a ridge portion (FIG. 1, step g).

【0020】本方法では二次元導波路からリッジ型三次
元導波路への加工がウエットエッチングにより行ってい
るためリッジ部の側壁の荒れが極めて少ないリッジ型三
次元導波路となる。この際の−C面のエッチング厚み
は、形成された−C面の全部であっても一部であっても
よい。
In this method, since the processing from the two-dimensional waveguide to the ridge-type three-dimensional waveguide is carried out by wet etching, the ridge-type three-dimensional waveguide has very little roughness on the side wall of the ridge portion. At this time, the etching thickness of the -C plane may be the whole or a part of the formed -C plane.

【0021】ところで、本発明によれば光導波路の形成
は前述の如く分極反転の前に行うこともできるが、分極
反転操作の途中、あるいはリッジ形状を作成したのちに
導波路形成を行うこともできる。
According to the present invention, the optical waveguide can be formed before the polarization inversion as described above, but the waveguide can be formed during the polarization inversion operation or after the ridge shape is formed. it can.

【0022】[0022]

【発明の効果】選択性の大きな異方性化学エッチングを
利用し、三次元導波路が作製できるため従来問題となっ
ていた、リッジ部の側壁の荒れが解消され伝搬損失が低
下する。微細加工が可能であり、経済的に有利となる。
このリッジ型三次元導波路は低伝播損失で光の閉じ込め
が良く光デバイス一般に広く使用できる。
EFFECTS OF THE INVENTION Since a three-dimensional waveguide can be manufactured by utilizing anisotropic chemical etching having a large selectivity, the roughness of the side wall of the ridge, which has been a problem in the past, is eliminated and the propagation loss is reduced. Fine processing is possible, which is economically advantageous.
This ridge-type three-dimensional waveguide has low propagation loss and good light confinement, and can be widely used in optical devices in general.

【0023】[0023]

【実施例】【Example】

実施例1 (1)+C面の2インチLiNbO3 二次元導波路上に
スピナによりポジレジストを1μm塗布した。 (2)黒の部分が5μmのマスクを用いてフォトリソグ
ラフィー技術によりレジストパターンを露光した。 (3)次に基板全面に分極反転形成可能なTiを150
Åスパッタリングにより蒸着した。 (4)続いて有機溶剤に浸すことによりレジストを溶解
除去した。この時、レジスト上のTiも同時に除去され
マスクパーンが転写された。 (5)上記(4)を1015℃大気中にて15分間熱処
理することによりTi膜の直下の部が−C面に反転し
た。この時の反転深さは約1.2μmであった。 (6)上記(5)をHF:HNO3 =1:2の沸騰液中
にて5分間 化学エッチングしたところ−C面の部分が
より多くエッチングされ幅5μm,リッジ高さ1μmの
LiNbO3 リッジ型三次元導波路となった。 (7)上記(6)で作製したLiNbO3 三次元導波路
のリッジ部側壁の荒れを非接触式表面粗さ計と走査型電
子顕微鏡を用いて測定したところ、最大表面粗さは0.
04μmであった。 (8)また、カットバック法およびプリズム移動法を用
いて作成した三次元導波路の伝搬損失を測定したところ
伝搬損失は、1.5dB/cmであった。 (9)作製したLiNbO3 三次元導波路の結晶性はロ
ッキングカーブ法で測定したところ20secであっ
た。
Example 1 (1) A positive resist of 1 μm was applied by a spinner on a 2-inch LiNbO 3 two-dimensional waveguide on the + C plane. (2) The resist pattern was exposed by a photolithography technique using a mask having a black portion of 5 μm. (3) Next, Ti that can form polarization inversion is formed on the entire surface of the substrate by 150
Å It was deposited by sputtering. (4) Subsequently, the resist was dissolved and removed by immersing it in an organic solvent. At this time, Ti on the resist was also removed at the same time and the mask pattern was transferred. (5) By heat-treating the above (4) in the atmosphere at 1015 ° C. for 15 minutes, the portion immediately below the Ti film was inverted to the −C plane. The inversion depth at this time was about 1.2 μm. (6) above the (5) HF: HNO 3 = 1: 2 boiling liquid more etched width 5μm five minutes chemical etched at -C face portion C. in, LiNbO 3 ridge type ridge height 1μm It became a three-dimensional waveguide. (7) When the roughness of the side wall of the ridge portion of the LiNbO 3 three-dimensional waveguide prepared in (6) above was measured using a non-contact surface roughness meter and a scanning electron microscope, the maximum surface roughness was found to be 0.
It was 04 μm. (8) Further, when the propagation loss of the three-dimensional waveguide formed by using the cutback method and the prism moving method was measured, the propagation loss was 1.5 dB / cm. (9) The crystallinity of the prepared LiNbO 3 three-dimensional waveguide was 20 sec as measured by the rocking curve method.

【0024】実施例2 (1)3インチLiNbO3 二次元導波路上にフォトリ
ソグラフィー及びRFスパッタ法にて膜厚0.1μm,
幅5μmの窓を開けたSiO2 膜を形成した。 (2)上記(1)を1020℃にて10分熱処理した。
この処理により深さ0.6μの分極反転相が形成され
た。 (3)熱処理後はHFの沸騰液中にて化学エッチングし
SiO2 膜を溶解除去した。 (4)次いで、HF:HNO3 =1:2の沸騰液中にて
3分間化学エッチングし幅5μm,リッジ高さ0.5μ
mの三次元導波路を得た。 (5)(1)〜(4)の工程で作製したLiNbO3
次元導波路の状態を実施例1と同様に評価したところ、
リッジ部側壁の最大表面粗さは0.03μmであり、伝
搬損失は1.3dB/cmであった。
Example 2 (1) A film thickness of 0.1 μm was formed on a 3-inch LiNbO 3 two-dimensional waveguide by photolithography and RF sputtering.
A SiO 2 film having a window with a width of 5 μm was formed. (2) The above (1) was heat-treated at 1020 ° C. for 10 minutes.
By this treatment, a domain-inverted phase having a depth of 0.6μ was formed. (3) After the heat treatment, the SiO 2 film was dissolved and removed by chemical etching in a boiling solution of HF. (4) Next, chemical etching was performed for 3 minutes in a boiling liquid of HF: HNO 3 = 1: 2, width 5 μm, ridge height 0.5 μ.
A three-dimensional waveguide of m was obtained. (5) When the state of the LiNbO 3 three-dimensional waveguide produced in steps (1) to (4) was evaluated in the same manner as in Example 1,
The maximum surface roughness of the side wall of the ridge portion was 0.03 μm, and the propagation loss was 1.3 dB / cm.

【0025】実施例3 (1)1インチLiNbO3 二次元導波路上にフォトリ
ソグラフィー及びRFスパッタ法にて膜厚150Å,幅
4μmのMgO膜を形成した。 (2)上記(1)を1000℃にて20分熱処理した。 (3)さらに1100℃で10分熱処理した。 (4)熱処理後はHF:HNO3 =1:2の沸騰液中に
て5分間化学エッチングし幅5μm,リッジ高さ1μm
の三次元導波路を得た。 (5)(1)〜(4)の工程で作製したLiNbO3
次元導波路の状態を実施例1と同様に評価したところ、
リッジ部側壁の最大表面粗さは0.06μmであり、伝
搬損失は、1.7dB/cmであった。
[0025] Example 3 (1) 1 inch LiNbO 3 film thickness by the two-dimensional waveguide on photolithography and RF sputtering 150 Å, to form an MgO film of width 4 [mu] m. (2) The above (1) was heat-treated at 1000 ° C. for 20 minutes. (3) Heat treatment was further performed at 1100 ° C. for 10 minutes. (4) After the heat treatment, chemical etching is performed for 5 minutes in a boiling liquid of HF: HNO 3 = 1: 2, the width is 5 μm, and the ridge height is 1 μm.
A three-dimensional waveguide of (5) When the state of the LiNbO 3 three-dimensional waveguide produced in steps (1) to (4) was evaluated in the same manner as in Example 1,
The maximum surface roughness of the ridge side wall was 0.06 μm, and the propagation loss was 1.7 dB / cm.

【0026】実施例4 (1)3インチLiTaO3 単結晶上にフォトリソグラ
フィー及びRFスパッタ法にて膜厚200Å,幅4.5
μmのMgO膜を形成した。 (2)上記(1)を1000℃にて30分熱処理した。 (3)さらに1100℃で10分熱処理した。この処理
により深さ1.3μmの分極反転相が形成された。 (3)熱処理後はHF:HNO3 =1:2の沸騰液中に
て3分間化学エッチングし幅5μm,リッジ高さ0.5
μmのリッジ形状を得た。 (4)(1)〜(3)の工程で作製した試料をピロ燐酸
中で250℃60分熱処理を行い、プロトン交換導波路
を作成した。 (5)(1)〜(4)の工程で作製したLiTaO3
次元導波路の状態を実施例1と同様に評価したところ、
リッジ部側壁の最大表面粗さは0.05μmであり、伝
搬損失は1.9dB/cmであった。
Example 4 (1) A film thickness of 200 Å and a width of 4.5 were formed on a 3-inch LiTaO 3 single crystal by photolithography and RF sputtering.
A μm MgO film was formed. (2) The above (1) was heat-treated at 1000 ° C. for 30 minutes. (3) Heat treatment was further performed at 1100 ° C. for 10 minutes. By this treatment, a domain-inverted phase having a depth of 1.3 μm was formed. (3) After the heat treatment, chemical etching was performed for 3 minutes in a boiling liquid of HF: HNO 3 = 1: 2, the width was 5 μm, and the ridge height was 0.5.
A ridge shape of μm was obtained. (4) The sample prepared in steps (1) to (3) was heat-treated in pyrophosphoric acid at 250 ° C. for 60 minutes to prepare a proton exchange waveguide. (5) When the state of the LiTaO 3 three-dimensional waveguide produced in steps (1) to (4) was evaluated in the same manner as in Example 1,
The maximum surface roughness of the side wall of the ridge portion was 0.05 μm, and the propagation loss was 1.9 dB / cm.

【0027】実施例5 (1)2インチLiNbO3 単結晶上にスピナによりポ
ジレジストを1μm塗布した。 (2)黒の部分が5μmのマスクを用いてフォトリソグ
ラフィー技術によりレジストパターンを露光した。 (3)次に基板全面に分極反転形成可能なTiを250
Åスパッタリングにより蒸着した。 (4)続いて有機溶剤に浸すことによりレジストを溶解
除去した。この時、レジスト上のTiも同時に除去され
最終的に導波路となるべき所の上部のみTi膜が形成さ
れていないマスクパーンが作成された。 (5)上記(4)を1015℃大気中にて15分間熱処
理することによりTi膜の直下の部が−C面に反転し
た。この時の反転深さは約1.2μmであった。 (6)(1)〜(5)の工程で作製した試料をピロ燐酸
中で250℃60分熱処理を行い、残存Ti膜をレジス
トとしてプロトン交換導波路を作成した。更に350℃
40分熱処理して安定化した。 (7)上記(6)をHF:HNO3 =1:2の沸騰液中
にて5分間 化学エッチングしたところ、まずTi膜が
溶解除去され、次いで−C面の部分がより多くエッチン
グされ幅5μm,リッジ高さ1μmのLiNbO3 リッ
ジ型三次元導波路となった。 (8)上記(7)で作製したLiNbO3 三次元導波路
の状態を実施例1と同様に評価したところ、リッジ部側
壁の最大表面粗さは0.04μmであり、伝搬損失は、
1.5dB/cmであった。 (9)作製したLiNbO3 三次元導波路の結晶性はロ
ッキングカーブ法で測定したところ23secであっ
た。
Example 5 (1) A positive resist of 1 μm was coated on a 2-inch LiNbO 3 single crystal by a spinner. (2) The resist pattern was exposed by a photolithography technique using a mask having a black portion of 5 μm. (3) Next, Ti that can form polarization inversion is formed on the entire surface of the substrate by 250.
Å It was deposited by sputtering. (4) Subsequently, the resist was dissolved and removed by immersing it in an organic solvent. At this time, Ti on the resist was also removed at the same time, and a mask pattern was formed in which the Ti film was not formed only on the upper portion where the waveguide should be finally formed. (5) By heat-treating the above (4) in the atmosphere at 1015 ° C. for 15 minutes, the portion immediately below the Ti film was inverted to the −C plane. The inversion depth at this time was about 1.2 μm. (6) The sample prepared in the steps (1) to (5) was heat-treated in pyrophosphoric acid at 250 ° C. for 60 minutes to prepare a proton exchange waveguide using the remaining Ti film as a resist. 350 ° C
Stabilized by heat treatment for 40 minutes. (7) When the above (6) was chemically etched in a boiling solution of HF: HNO 3 = 1: 2 for 5 minutes, the Ti film was first dissolved and removed, and then the −C plane was more etched and the width was 5 μm. , The ridge height was 1 μm, and it became a LiNbO 3 ridge type three-dimensional waveguide. (8) When the state of the LiNbO 3 three-dimensional waveguide prepared in (7) above was evaluated in the same manner as in Example 1, the maximum surface roughness of the ridge sidewall was 0.04 μm, and the propagation loss was
It was 1.5 dB / cm. (9) The crystallinity of the produced LiNbO 3 three-dimensional waveguide was 23 sec as measured by the rocking curve method.

【0028】比較例1 (1)1インチLiNbO3 基板を二次元加工した。 (2)LiNbO3 2次元導波路上にレジストを塗布
し、フォトリソグラフィ技術によりレジストに10μm
の窓開けを行った。 (3)基板全面にTiを1μmスパッタリングにより蒸
着した。続いて、その基板を溶剤に浸し、レジスト上の
マスクを除去(リフトオフ)した。 (4)リフトオフ後の基板全面をドライエッチングし、
リッジ型三次元導波路とした。 (5)上記(4)で作製したLiNbO3 三次元導波路
のリッジ部側壁の荒れを非接触式表面粗さ計と走査型電
子顕微鏡を用いて測定したところ、最大表面粗さは0.
5μmであった。 (6)また、カットバック法およびプリズム移動法を用
いて作成した三次元導波路の伝搬損失を測定したところ
伝搬損失は、7.0dB/cmであった。
Comparative Example 1 (1) A 1-inch LiNbO 3 substrate was two-dimensionally processed. (2) LiNbO 3 A two-dimensional waveguide is coated with a resist, and the photolithography technique is applied to the resist to a thickness of 10 μm.
I opened the window. (3) Ti was vapor-deposited on the entire surface of the substrate by 1 μm sputtering. Then, the substrate was immersed in a solvent to remove (lift off) the mask on the resist. (4) Dry etching the entire surface of the substrate after lift-off,
A ridge-type three-dimensional waveguide is used. (5) When the roughness of the side wall of the ridge portion of the LiNbO 3 three-dimensional waveguide prepared in (4) above was measured using a non-contact surface roughness meter and a scanning electron microscope, the maximum surface roughness was found to be 0.
It was 5 μm. (6) Further, when the propagation loss of the three-dimensional waveguide formed by using the cutback method and the prism moving method was measured, the propagation loss was 7.0 dB / cm.

【0029】比較例2 (1)1インチLiNbO3 基板を二次元加工した。 (2)LiNbO3 2次元導波路上に耐弗酸レジストを
塗布し、フォトリソグラフィ技術によりレジストに5μ
mのパターンを作製した。 (3)基板全体をHF:HNO3 =1:2の沸騰液中に
て7分間化学エッチングし幅4.5μm,リッジ高さ
1.2μmの三次元導波路を得た。 (4)レジストを取り除き、三次元導波路の特性を調べ
たところ、サイドエッチングにより導波路幅がマスクよ
りも狭くなっていた。また、三次元導波路の状態を比較
例1と同様に評価したところ、リッジ部の側壁の最大表
面粗さは0.9μmであり伝搬損失は6dB/cmであ
った。
Comparative Example 2 (1) A one-inch LiNbO 3 substrate was two-dimensionally processed. (2) LiNbO 3 A two-dimensional waveguide was coated with a hydrofluoric acid resistant resist, and 5 μm was applied to the resist by photolithography.
The pattern of m was produced. (3) The entire substrate was chemically etched in a boiling liquid of HF: HNO 3 = 1: 2 for 7 minutes to obtain a three-dimensional waveguide having a width of 4.5 μm and a ridge height of 1.2 μm. (4) When the resist was removed and the characteristics of the three-dimensional waveguide were examined, the waveguide width was narrower than that of the mask due to side etching. When the state of the three-dimensional waveguide was evaluated in the same manner as in Comparative Example 1, the maximum surface roughness of the sidewall of the ridge portion was 0.9 μm and the propagation loss was 6 dB / cm.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明によるリッジ型三次元導波路の
製造方法である。
FIG. 1 is a method for manufacturing a ridge-type three-dimensional waveguide according to the present invention.

【符号の説明】[Explanation of symbols]

1ポジ型レジスト 2二次元導波路 3基板 4マスク 5分極反転可能な物質 6分極反転領域 DESCRIPTION OF SYMBOLS 1 Positive resist 2 Two-dimensional waveguide 3 Substrate 4 Mask 5 Material capable of reversing polarization 6 Reversal region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 単一分極化された誘電体材料からなる二
次元導波路上の少なくとも一部分の分極方向を反転せし
める工程、エッチングにより三次元導波路を形成する工
程を含むことを特徴とするリッジ型三次元導波路の製造
方法。
1. A ridge comprising the steps of reversing the polarization direction of at least a portion of a two-dimensional waveguide made of a single-polarized dielectric material and forming a three-dimensional waveguide by etching. Type three-dimensional waveguide manufacturing method.
【請求項2】 単一分極化された誘電体材料の少なくと
も一部分の分極方向を反転せしめる工程、エッチングに
よりリッジ構造を形成する工程、光導波路を形成する工
程を含むことを特徴とするリッジ型三次元導波路の製造
方法。 【0001】
2. A ridge-type tertiary structure comprising the steps of inverting the polarization direction of at least a part of a single-polarized dielectric material, forming a ridge structure by etching, and forming an optical waveguide. Original waveguide manufacturing method. [0001]
JP04784392A 1992-02-03 1992-02-03 Manufacturing method of ridge type three-dimensional waveguide Expired - Lifetime JP3158203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04784392A JP3158203B2 (en) 1992-02-03 1992-02-03 Manufacturing method of ridge type three-dimensional waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04784392A JP3158203B2 (en) 1992-02-03 1992-02-03 Manufacturing method of ridge type three-dimensional waveguide

Publications (2)

Publication Number Publication Date
JPH05215928A true JPH05215928A (en) 1993-08-27
JP3158203B2 JP3158203B2 (en) 2001-04-23

Family

ID=12786654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04784392A Expired - Lifetime JP3158203B2 (en) 1992-02-03 1992-02-03 Manufacturing method of ridge type three-dimensional waveguide

Country Status (1)

Country Link
JP (1) JP3158203B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273960A1 (en) * 2001-06-28 2003-01-08 Corning O.T.I. S.p.A. Integrated ferroelectric optical waveguide device
JP4667544B2 (en) * 1997-04-17 2011-04-13 キネティック リミテッド Etching method
JP2014063825A (en) * 2012-09-20 2014-04-10 Hitachi Metals Ltd Method for manufacturing substrate with piezoelectric thin film, and method for manufacturing piezoelectric thin film element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667544B2 (en) * 1997-04-17 2011-04-13 キネティック リミテッド Etching method
EP1273960A1 (en) * 2001-06-28 2003-01-08 Corning O.T.I. S.p.A. Integrated ferroelectric optical waveguide device
JP2014063825A (en) * 2012-09-20 2014-04-10 Hitachi Metals Ltd Method for manufacturing substrate with piezoelectric thin film, and method for manufacturing piezoelectric thin film element

Also Published As

Publication number Publication date
JP3158203B2 (en) 2001-04-23

Similar Documents

Publication Publication Date Title
Miyazawa Ferroelectric domain inversion in Ti‐diffused LiNbO3 optical waveguide
JP2002350659A (en) Optical waveguide element and manufacturing method for optical waveguide element
JPH1073722A (en) Polarizing optical element and its production
JPH103100A (en) Optical waveguide parts, optical parts, manufacture of optical waveguide parts, and manufacture of periodic polarization inversion structure
CN110764188A (en) Preparation method of lithium niobate ridge type optical waveguide
EP0486769A2 (en) Polarized optical waveguide and method for manufacturing the same
JPH05215928A (en) Production of ridge type three-dimensional waveguide
JP4081398B2 (en) Optical wavelength conversion element
EP0863117B1 (en) A process for forming a microstructure in a substrate of a ferroelectric single crystal
JPH0517295A (en) Lithium niobate single crystal thin film subjected to domain inversion treatment
KR100439960B1 (en) PMN-PT optical waveguides by thermal diffusion and fabrication methods thereof
JPH05273418A (en) Ridge type three-dimensional optical waveguide and its production
JP4316065B2 (en) Manufacturing method of optical waveguide element
US6605227B2 (en) Method of manufacturing a ridge-shaped three dimensional waveguide
JPH1164664A (en) Production of optical waveguide
JP2001116943A (en) Method for producing thin metal oxide film element
JPH06174908A (en) Production of waveguide type diffraction grating
US11899293B2 (en) Electro optical devices fabricated using deep ultraviolet radiation
JP2003114346A (en) Method for manufacturing optical waveguide element
JPH0797170B2 (en) Optical element manufacturing method
JP2948042B2 (en) How to use the second harmonic generation element
JP3353281B2 (en) Fine processing method of dielectric optical material
JPH0774843B2 (en) Optical element manufacturing method
JP3165756B2 (en) Second harmonic generation element and method of manufacturing the same
JPS602904A (en) Optical waveguide element and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

EXPY Cancellation because of completion of term