JP3158203B2 - Manufacturing method of ridge type three-dimensional waveguide - Google Patents

Manufacturing method of ridge type three-dimensional waveguide

Info

Publication number
JP3158203B2
JP3158203B2 JP04784392A JP4784392A JP3158203B2 JP 3158203 B2 JP3158203 B2 JP 3158203B2 JP 04784392 A JP04784392 A JP 04784392A JP 4784392 A JP4784392 A JP 4784392A JP 3158203 B2 JP3158203 B2 JP 3158203B2
Authority
JP
Japan
Prior art keywords
dimensional waveguide
ridge
etching
waveguide
linbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04784392A
Other languages
Japanese (ja)
Other versions
JPH05215928A (en
Inventor
昌徳 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP04784392A priority Critical patent/JP3158203B2/en
Publication of JPH05215928A publication Critical patent/JPH05215928A/en
Application granted granted Critical
Publication of JP3158203B2 publication Critical patent/JP3158203B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明はリッジ型三次元導波路の
製造方法に関し、特にはリッジ部側面の荒れが少なく、
低伝搬損失で光の閉じ込め性が良い光導波路の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ridge-type three-dimensional waveguide, and more particularly to a method for manufacturing a ridge-type three-dimensional waveguide, in which the side surface of the ridge has less roughness.
The present invention relates to a method of manufacturing an optical waveguide having low propagation loss and good light confinement.

【0002】[0002]

【従来の技術】従来、リッジ型三元導波路は、西原、春
名、栖原著 光集積回路 P195オーム社(198
5)に示されるように、フォトリソグラフィー技術と蒸
着、リフトオフにより二次元導波路上にリッジ型導波路
にしたい部分のみTi等のマスクが蒸着された状態と
し、ついで、Ar等のプラズマで物理的にドライエッチ
ングを行なって作製していた。Ti下の材料はTiが完
全に消失するまではエッチングされないのでリッジ型三
次元導波路となる。
2. Description of the Related Art Conventionally, a ridge-type ternary waveguide has been manufactured by Nishihara, Haruna, and Suhara.
As shown in 5), a mask of Ti or the like is deposited only on the portion desired to be a ridge-type waveguide on the two-dimensional waveguide by photolithography, vapor deposition, and lift-off, and then a physical layer is formed by plasma of Ar or the like. Was manufactured by performing dry etching. The material under Ti is not etched until the Ti has completely disappeared, resulting in a ridge-type three-dimensional waveguide.

【0003】他の物理的エチングによる三次元化方法と
しては、マスクとしてTiの代わりにNi,エッチング
ガスとしてCCl2 2 ,Ar,O2 を用い物理的エッ
チングに化学的エッチング作用を加え光学材料の結晶性
に与えるダメージの低減やマスクと光学材料のエッチン
グ比(光学材料のエッチング速度/マスクのエッチング
速度)を大きくしようとする反応性イオンエッチングが
Appl.PhysLett.Vol.38 No11
(1981)に示されている。さらに反応性ガスをビー
ムにして試料に照射することでさらにエッチング比を大
きくしようとする試みがJournal of Lig
htwave tech.Vol.LT−2,No4
(1984)に示されている。
[0003] Another three-dimensional method by physical etching is to use Ni instead of Ti as a mask, CCl 2 F 2 , Ar, and O 2 as an etching gas to add a chemical etching effect to physical etching to obtain an optical material. Reactive ion etching to reduce the damage to crystallinity of the crystal and increase the etching ratio between the mask and the optical material (etching speed of the optical material / etching speed of the mask) is disclosed in Appl. PhysLett. Vol. 38 No11
(1981). An attempt to further increase the etching ratio by irradiating the sample with a reactive gas beam has been attempted in Journal of Lig.
htwave tech. Vol. LT-2, No4
(1984).

【0004】一方、弗酸、硝酸/弗酸混合液等を用い
て、化学的なエッチングで三次元導波路を形成する方法
も試みられている。
On the other hand, a method of forming a three-dimensional waveguide by chemical etching using hydrofluoric acid, a mixed solution of nitric acid / hydrofluoric acid or the like has been attempted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら従来の物
理的、または化学的エッチング法で三次元導波路を作製
する場合、以下の問題点がある。
However, when a three-dimensional waveguide is manufactured by a conventional physical or chemical etching method, there are the following problems.

【0006】物理的ドライエッチング法でリッジ型三次
元導波路を作製する場合エッチングマスクと光学材料の
エッチング比が小さいために、マスク材の膜厚は厚くす
る必要がある。エッチングマスクの形成には一般的にリ
フトオフ法が採用されている。リフトオフ法で厚いエッ
チングマスクを作成すると側壁は非常に荒れた面となっ
てしまう。
When fabricating a ridge type three-dimensional waveguide by a physical dry etching method, it is necessary to increase the thickness of the mask material because the etching ratio between the etching mask and the optical material is small. In general, a lift-off method is used for forming an etching mask. When a thick etching mask is formed by the lift-off method, the side wall becomes a very rough surface.

【0007】物理的ドライエッチング法ではエッチング
機構が物理的なエッチングのみであるので、マスクの側
壁の形状がそのまま導波路のリッジ部に転写されるの
で、リッジ型三次元導波路の側壁は非常に荒れたものと
なってしまう。このリッジ部の側壁の荒れが散乱損失の
原因となり伝搬損失が大きくなってしまう。
In the physical dry etching method, since the etching mechanism is only physical etching, the shape of the side wall of the mask is directly transferred to the ridge portion of the waveguide. It will be rough. The roughness of the side wall of the ridge causes scattering loss and increases propagation loss.

【0008】このほか反応性イオンエッチングや反応性
イオンビームエッチングが行われているが、装置が非常
に高価なこと大面積化が困難なこと,大きなエッチング
比が得られていない等の問題がある。
[0008] In addition, reactive ion etching and reactive ion beam etching are performed. However, there are problems that the apparatus is very expensive, that it is difficult to increase the area, and that a large etching ratio cannot be obtained. .

【0009】一方、化学的なエッチングで三次元導波路
を形成する方法においては、エッチングマスクとして適
当なものがなく、さらに、等方性エッチングなためサイ
ドエッチングが起こり微細な形状を作成することができ
ないという問題があり実用的でない。
On the other hand, in the method of forming a three-dimensional waveguide by chemical etching, there is no suitable etching mask, and since it is isotropic etching, side etching occurs to form a fine shape. It is not practical because there is a problem that it cannot be done.

【0010】本発明の目的は前記問題点を解決し、リッ
ジ型三次元導波路の側壁の荒れを無くし、伝搬損失の低
いリッジ型三次元導波路の作成方法を提案するものであ
る。
An object of the present invention is to solve the above-mentioned problems and to provide a method of forming a ridge-type three-dimensional waveguide having a low propagation loss by eliminating the roughness of the side wall of the ridge-type three-dimensional waveguide.

【0011】[0011]

【課題を解決するための手段】目的達成のために本発明
者等は鋭意研究を行った結果、誘電材料の分極面、+面
と−面のエッチング速度比が大きく異なることを利用
し、エッチングマスクを用いることなくリッジ型三次元
導波路を作成すればよいことを見出した。本発明は、単
一分極化された誘電体材料からなる二次元導波路上の少
なくとも一部分の分極方向を反転せしめた後、エッチン
グマスクを用いることなく、異なる分極方向が接する境
界と両分極方向部分とを同時にエッチングすることによ
り三次元導波路を形成することを特徴とするリッジ型三
次元導波路の製造方法、あるいは単一分極化された誘電
体材料の少なくとも一部分の分極方向を反転せしめた
後、エッチングマスクを用いることなく、異なる分極方
向が接する境界と両分極方向部分とを同時にエッチング
することによりリッジ構造を形成し、その後、光導波路
を形成することを特徴とするリッジ型三次元導波路の製
造方法からなる。前記リッジ部を有する導波路は、リッ
ジ部の表面がプラス分極面、非リッジ部がマイナス分極
面となっていることが望ましい。
Means for Solving the Problems In order to achieve the object, the inventors of the present invention have conducted intensive studies and as a result, have taken advantage of the fact that the etching rate ratio between the polarized surface, the + surface and the-surface of the dielectric material is greatly different, and It has been found that a ridge-type three-dimensional waveguide can be formed without using a mask. SUMMARY OF THE INVENTION The present invention provides a method for etching a two-dimensional waveguide comprising a single-polarized dielectric material.
A method of manufacturing a ridge-type three-dimensional waveguide, characterized by forming a three-dimensional waveguide by simultaneously etching a boundary where different polarization directions are in contact with each other and a part in both polarization directions without using a mask. After inverting the polarization direction of at least a portion of the converted dielectric material, a ridge structure is formed by simultaneously etching the boundary where the different polarization directions are in contact and both polarization direction portions without using an etching mask. And a method of manufacturing a ridge-type three-dimensional waveguide characterized by forming an optical waveguide. In the waveguide having the ridge portion, it is preferable that the surface of the ridge portion has a positive polarization surface and the non-ridge portion has a negative polarization surface.

【0012】[0012]

【作用】本発明にもとずき三次元導波路の作成方法をL
iNbO3 を例にとり、図1を用いて説明する。本発明
が対象とする材料はニオブ酸リチウムに限定されるもの
ではなく、タンタル酸リチウム、水晶、チタン酸ストロ
ンチウム、ガリウム酸リチウム、(Pb,La)(Z
r,Ti)O3 等、誘電体であれば用いうる。
According to the present invention, a method for producing a three-dimensional waveguide
This will be described with reference to FIG. 1 taking iNbO 3 as an example. The material targeted by the present invention is not limited to lithium niobate, but lithium tantalate, quartz, strontium titanate, lithium gallate, (Pb, La) (Z
Any dielectric material such as (r, Ti) O 3 can be used.

【0013】まず+C面のLiNbO3 二次元導波路を
加工後リッジ型三次元導波路となる部分を除き−C面に
反転する。LiNbO3 の+C面を−C面に反転させる
方法は、LiNbO3 二次元導波路上に分極反転形成可
能な物質を真空蒸着法やスパッタリング法等で蒸着し、
所定の温度,時間,熱処理するとその物質の直下また
は、その物質が蒸着されていない部分の直下が−C面に
反転する。
First, the LiNbO 3 two-dimensional waveguide on the + C plane is turned into the −C plane after processing, except for the portion that becomes the ridge type three-dimensional waveguide. A method for inverting the + C plane of LiNbO 3 to a −C plane is to deposit a substance capable of forming polarization inversion on a LiNbO 3 two-dimensional waveguide by a vacuum evaporation method, a sputtering method, or the like,
When a heat treatment is performed at a predetermined temperature, for a predetermined time, the area immediately below the substance or the area immediately below the part where the substance is not deposited is inverted to the -C plane.

【0014】ここで所望の部分に分極反転形成可能な物
質を形成する方法としてはフォトリソグラフィー(図
1、工程a〜c)、真空蒸着法やスパッタリング法等の
蒸着技術(図1、工程d;ここではTiを使用)とリフ
トオフ法(図1、工程f)を用いることができる。作成
されるマスクや蒸着膜は非常に薄いため、微細加工が可
能となる。
Here, as a method of forming a substance capable of forming domain inversion at a desired portion, a deposition technique such as photolithography (FIG. 1, steps a to c), a vacuum deposition method or a sputtering method (FIG. 1, step d; Here, Ti) and a lift-off method (FIG. 1, step f) can be used. Since a mask or a deposited film to be formed is very thin, fine processing can be performed.

【0015】分極反転形成可能な物質としては、Ti,
Cr,Fe,SiO2 ,Ta,NiO,MgO等があ
り、なかでもTi,SiO2 ,MgOが好適である。+
C面のLiNbO3 二次元導波路上にTiとSiO2
蒸着した場合は、熱処理によりTiとSiO2 の直下が
−C面のLiNbO3 二次元導波路に変わる。これは、
Tiの内部拡散やSiO2 中へのLiの外拡散によりL
iNbO3 のキュリー点が低下し、拡散部分が分極反転
を起こすものである。
Examples of the substance capable of forming domain inversion include Ti,
There are Cr, Fe, SiO 2 , Ta, NiO, MgO and the like, and among them, Ti, SiO 2 and MgO are preferable. +
If depositing Ti and SiO 2 in LiNbO 3 dimensional waveguide on the C plane, directly below the Ti and SiO 2 is changed to LiNbO 3 dimensional waveguide -C surface by heat treatment. this is,
L due to the internal diffusion of Ti and the external diffusion of Li into SiO 2
The Curie point of iNbO 3 is lowered, and the diffusion portion causes polarization inversion.

【0016】一方、MgOの場合は、TiとSiO2
場合とは逆でMgOが蒸着されていない部分が−C面の
LiNbO3 に変わる。これは、MgOの拡散によりL
iNbO3 のキュリー点が上昇し、この結果相対的にキ
ュリー点の低い非拡散部分が分極反転を起こすものであ
る。
On the other hand, in the case of MgO, the portion where MgO is not deposited changes to LiNbO 3 on the -C plane, contrary to the case of Ti and SiO 2 . This is due to the diffusion of MgO
The Curie point of iNbO 3 increases, and as a result, the non-diffusion portion having a relatively low Curie point causes polarization inversion.

【0017】さらに、分極反転形成物質としてMgOを
用いた場合、熱処理することによりLiNbO3 基板内
に拡散する。MgOはLiNbO3 の耐光損傷性を向上
するため光デバイスに用いる場合には都合が良い。
Further, when MgO is used as the polarization inversion forming material, it diffuses into the LiNbO 3 substrate by heat treatment. MgO is convenient when used for an optical device in order to improve the light damage resistance of LiNbO 3 .

【0018】分極反転層の厚みはリッジ型三次元導波路
最大段差に相当するため、光の閉じ込め性から考えて、
少なくとも二次元導波路厚みの半分は分極反転される必
要がある。
Since the thickness of the domain-inverted layer corresponds to the maximum step of the ridge type three-dimensional waveguide, considering the light confinement,
At least half of the thickness of the two-dimensional waveguide needs to be reversed.

【0019】LiNbO3 の+C面と−C面では腐食液
に対するエッチング速度が大きく異なり+C面≪−C面
の関係がある。この+C面と−C面でのエッチング速度
の違いを利用すればLiNbO3 の二次元導波路内に+
C面と−C面が存在する場合、その二次元導波路をエッ
チングすることにより+C面の部分がリッジ部となるリ
ッジ型三次元導波路となる(図1、工程g)。
The etching rates of the LiNbO 3 + C face and the −C face with respect to the etchant greatly differ from each other, and there is a relation of + C face ≪−C face. By utilizing the difference in the etching rate between the + C plane and the −C plane, a + N plane can be formed in the LiNbO 3 two-dimensional waveguide.
When the C-plane and the -C-plane are present, the two-dimensional waveguide is etched to form a ridge-type three-dimensional waveguide in which the + C-plane portion becomes a ridge (FIG. 1, step g).

【0020】本方法では二次元導波路からリッジ型三次
元導波路への加工がウエットエッチングにより行ってい
るためリッジ部の側壁の荒れが極めて少ないリッジ型三
次元導波路となる。この際の−C面のエッチング厚み
は、形成された−C面の全部であっても一部であっても
よい。
In this method, since the processing from the two-dimensional waveguide to the ridge-type three-dimensional waveguide is performed by wet etching, a ridge-type three-dimensional waveguide having extremely small roughness on the side walls of the ridge portion is obtained. At this time, the etching thickness of the −C plane may be all or part of the formed −C plane.

【0021】ところで、本発明によれば光導波路の形成
は前述の如く分極反転の前に行うこともできるが、分極
反転操作の途中、あるいはリッジ形状を作成したのちに
導波路形成を行うこともできる。
According to the present invention, the optical waveguide can be formed before the polarization inversion as described above. However, the waveguide can be formed during the polarization inversion operation or after the ridge shape is formed. it can.

【0022】[0022]

【発明の効果】選択性の大きな異方性化学エッチングを
利用し、三次元導波路が作製できるため従来問題となっ
ていた、リッジ部の側壁の荒れが解消され伝搬損失が低
下する。微細加工が可能であり、経済的に有利となる。
このリッジ型三次元導波路は低伝播損失で光の閉じ込め
が良く光デバイス一般に広く使用できる。
According to the present invention, a three-dimensional waveguide can be manufactured by using anisotropic chemical etching having a high selectivity, so that the side wall of the ridge portion, which has been a problem in the prior art, is eliminated and the propagation loss is reduced. Fine processing is possible, which is economically advantageous.
The ridge-type three-dimensional waveguide has low propagation loss, good light confinement, and can be widely used in general optical devices.

【0023】[0023]

【実施例】【Example】

実施例1 (1)+C面の2インチLiNbO3 二次元導波路上に
スピナによりポジレジストを1μm塗布した。 (2)黒の部分が5μmのマスクを用いてフォトリソグ
ラフィー技術によりレジストパターンを露光した。 (3)次に基板全面に分極反転形成可能なTiを150
Åスパッタリングにより蒸着した。 (4)続いて有機溶剤に浸すことによりレジストを溶解
除去した。この時、レジスト上のTiも同時に除去され
マスクパーンが転写された。 (5)上記(4)を1015℃大気中にて15分間熱処
理することによりTi膜の直下の部が−C面に反転し
た。この時の反転深さは約1.2μmであった。 (6)上記(5)をHF:HNO3 =1:2の沸騰液中
にて5分間 化学エッチングしたところ−C面の部分が
より多くエッチングされ幅5μm,リッジ高さ1μmの
LiNbO3 リッジ型三次元導波路となった。 (7)上記(6)で作製したLiNbO3 三次元導波路
のリッジ部側壁の荒れを非接触式表面粗さ計と走査型電
子顕微鏡を用いて測定したところ、最大表面粗さは0.
04μmであった。 (8)また、カットバック法およびプリズム移動法を用
いて作成した三次元導波路の伝搬損失を測定したところ
伝搬損失は、1.5dB/cmであった。 (9)作製したLiNbO3 三次元導波路の結晶性はロ
ッキングカーブ法で測定したところ20secであっ
た。
Example 1 (1) A positive resist was applied to a thickness of 1 μm on a 2-inch LiNbO 3 two-dimensional waveguide on the + C plane using a spinner. (2) The resist pattern was exposed by a photolithography technique using a mask having a black portion of 5 μm. (3) Next, Ti which can be formed by polarization inversion is
蒸 着 Evaporated by sputtering. (4) Subsequently, the resist was dissolved and removed by immersion in an organic solvent. At this time, Ti on the resist was also removed at the same time, and the mask pattern was transferred. (5) By heat-treating the above (4) in the air at 1015 ° C. for 15 minutes, the portion immediately below the Ti film was inverted to the −C plane. The inversion depth at this time was about 1.2 μm. (6) The above (5) was chemically etched in a boiling liquid of HF: HNO 3 = 1: 2 for 5 minutes. As a result, the portion of the C-plane was etched more and the LiNbO 3 ridge type having a width of 5 μm and a ridge height of 1 μm was obtained. It became a three-dimensional waveguide. (7) The roughness of the side wall of the ridge of the LiNbO 3 three-dimensional waveguide fabricated in (6) was measured using a non-contact type surface roughness meter and a scanning electron microscope.
It was 04 μm. (8) When the propagation loss of the three-dimensional waveguide formed by using the cutback method and the prism moving method was measured, the propagation loss was 1.5 dB / cm. (9) The crystallinity of the manufactured LiNbO 3 three-dimensional waveguide was measured by a rocking curve method and found to be 20 seconds.

【0024】実施例2 (1)3インチLiNbO3 二次元導波路上にフォトリ
ソグラフィー及びRFスパッタ法にて膜厚0.1μm,
幅5μmの窓を開けたSiO2 膜を形成した。 (2)上記(1)を1020℃にて10分熱処理した。
この処理により深さ0.6μの分極反転相が形成され
た。 (3)熱処理後はHFの沸騰液中にて化学エッチングし
SiO2 膜を溶解除去した。 (4)次いで、HF:HNO3 =1:2の沸騰液中にて
3分間化学エッチングし幅5μm,リッジ高さ0.5μ
mの三次元導波路を得た。 (5)(1)〜(4)の工程で作製したLiNbO3
次元導波路の状態を実施例1と同様に評価したところ、
リッジ部側壁の最大表面粗さは0.03μmであり、伝
搬損失は1.3dB/cmであった。
Example 2 (1) A film having a thickness of 0.1 μm was formed on a 3-inch LiNbO 3 two-dimensional waveguide by photolithography and RF sputtering.
An SiO 2 film having a window having a width of 5 μm was formed. (2) The above (1) was heat-treated at 1020 ° C. for 10 minutes.
As a result, a domain-inverted phase having a depth of 0.6 μ was formed. (3) After the heat treatment, the SiO 2 film was dissolved and removed by chemical etching in a boiling HF solution. (4) Next, in a boiling solution of HF: HNO 3 = 1: 2, chemically etched for 3 minutes, width 5 μm, ridge height 0.5 μm.
m three-dimensional waveguides were obtained. (5) The state of the LiNbO 3 three-dimensional waveguide fabricated in the steps (1) to (4) was evaluated in the same manner as in Example 1.
The maximum surface roughness of the ridge side wall was 0.03 μm, and the propagation loss was 1.3 dB / cm.

【0025】実施例3 (1)1インチLiNbO3 二次元導波路上にフォトリ
ソグラフィー及びRFスパッタ法にて膜厚150Å,幅
4μmのMgO膜を形成した。 (2)上記(1)を1000℃にて20分熱処理した。 (3)さらに1100℃で10分熱処理した。 (4)熱処理後はHF:HNO3 =1:2の沸騰液中に
て5分間化学エッチングし幅5μm,リッジ高さ1μm
の三次元導波路を得た。 (5)(1)〜(4)の工程で作製したLiNbO3
次元導波路の状態を実施例1と同様に評価したところ、
リッジ部側壁の最大表面粗さは0.06μmであり、伝
搬損失は、1.7dB/cmであった。
Example 3 (1) An MgO film having a thickness of 150 ° and a width of 4 μm was formed on a 1-inch LiNbO 3 two-dimensional waveguide by photolithography and RF sputtering. (2) The above (1) was heat-treated at 1000 ° C. for 20 minutes. (3) Further heat treatment was performed at 1100 ° C. for 10 minutes. (4) After the heat treatment, the film is chemically etched in a boiling solution of HF: HNO 3 = 1: 2 for 5 minutes, and the width is 5 μm and the ridge height is 1 μm.
Was obtained. (5) The state of the LiNbO 3 three-dimensional waveguide fabricated in the steps (1) to (4) was evaluated in the same manner as in Example 1.
The maximum surface roughness of the ridge side wall was 0.06 μm, and the propagation loss was 1.7 dB / cm.

【0026】実施例4 (1)3インチLiTaO3 単結晶上にフォトリソグラ
フィー及びRFスパッタ法にて膜厚200Å,幅4.5
μmのMgO膜を形成した。 (2)上記(1)を1000℃にて30分熱処理した。 (3)さらに1100℃で10分熱処理した。この処理
により深さ1.3μmの分極反転相が形成された。 (3)熱処理後はHF:HNO3 =1:2の沸騰液中に
て3分間化学エッチングし幅5μm,リッジ高さ0.5
μmのリッジ形状を得た。 (4)(1)〜(3)の工程で作製した試料をピロ燐酸
中で250℃60分熱処理を行い、プロトン交換導波路
を作成した。 (5)(1)〜(4)の工程で作製したLiTaO3
次元導波路の状態を実施例1と同様に評価したところ、
リッジ部側壁の最大表面粗さは0.05μmであり、伝
搬損失は1.9dB/cmであった。
Example 4 (1) A film thickness of 200 ° and a width of 4.5 were formed on a 3-inch LiTaO 3 single crystal by photolithography and RF sputtering.
A μm MgO film was formed. (2) The above (1) was heat-treated at 1000 ° C. for 30 minutes. (3) Further heat treatment was performed at 1100 ° C. for 10 minutes. By this treatment, a domain-inverted phase having a depth of 1.3 μm was formed. (3) After the heat treatment, the substrate is chemically etched in a boiling liquid of HF: HNO 3 = 1: 2 for 3 minutes, and has a width of 5 μm and a ridge height of 0.5.
A ridge shape of μm was obtained. (4) The samples prepared in the steps (1) to (3) were heat-treated in pyrophosphoric acid at 250 ° C. for 60 minutes to prepare a proton exchange waveguide. (5) When the state of the LiTaO 3 three-dimensional waveguide fabricated in the steps (1) to (4) was evaluated in the same manner as in Example 1,
The maximum surface roughness of the ridge side wall was 0.05 μm, and the propagation loss was 1.9 dB / cm.

【0027】実施例5 (1)2インチLiNbO3 単結晶上にスピナによりポ
ジレジストを1μm塗布した。 (2)黒の部分が5μmのマスクを用いてフォトリソグ
ラフィー技術によりレジストパターンを露光した。 (3)次に基板全面に分極反転形成可能なTiを250
Åスパッタリングにより蒸着した。 (4)続いて有機溶剤に浸すことによりレジストを溶解
除去した。この時、レジスト上のTiも同時に除去され
最終的に導波路となるべき所の上部のみTi膜が形成さ
れていないマスクパーンが作成された。 (5)上記(4)を1015℃大気中にて15分間熱処
理することによりTi膜の直下の部が−C面に反転し
た。この時の反転深さは約1.2μmであった。 (6)(1)〜(5)の工程で作製した試料をピロ燐酸
中で250℃60分熱処理を行い、残存Ti膜をレジス
トとしてプロトン交換導波路を作成した。更に350℃
40分熱処理して安定化した。 (7)上記(6)をHF:HNO3 =1:2の沸騰液中
にて5分間 化学エッチングしたところ、まずTi膜が
溶解除去され、次いで−C面の部分がより多くエッチン
グされ幅5μm,リッジ高さ1μmのLiNbO3 リッ
ジ型三次元導波路となった。 (8)上記(7)で作製したLiNbO3 三次元導波路
の状態を実施例1と同様に評価したところ、リッジ部側
壁の最大表面粗さは0.04μmであり、伝搬損失は、
1.5dB/cmであった。 (9)作製したLiNbO3 三次元導波路の結晶性はロ
ッキングカーブ法で測定したところ23secであっ
た。
Example 5 (1) A positive resist was applied to a thickness of 1 μm on a 2-inch LiNbO 3 single crystal using a spinner. (2) The resist pattern was exposed by a photolithography technique using a mask having a black portion of 5 μm. (3) Next, 250 nm of Ti capable of forming domain inversion is formed on the entire surface of the substrate.
蒸 着 Evaporated by sputtering. (4) Subsequently, the resist was dissolved and removed by immersion in an organic solvent. At this time, the Ti on the resist was also removed at the same time, and a mask pattern was formed in which the Ti film was not formed only at the upper portion where the waveguide was to be finally formed. (5) By heat-treating the above (4) in the air at 1015 ° C. for 15 minutes, the portion immediately below the Ti film was inverted to the −C plane. The inversion depth at this time was about 1.2 μm. (6) The samples prepared in the steps (1) to (5) were heat-treated in pyrophosphoric acid at 250 ° C. for 60 minutes to form a proton exchange waveguide using the remaining Ti film as a resist. 350 ° C
Stabilized by heat treatment for 40 minutes. (7) When the above (6) was chemically etched in a boiling solution of HF: HNO 3 = 1: 2 for 5 minutes, the Ti film was first dissolved and removed, and then the −C plane portion was etched more and the width was 5 μm. And a LiNbO 3 ridge type three-dimensional waveguide having a ridge height of 1 μm. (8) When the state of the LiNbO 3 three-dimensional waveguide fabricated in (7) above was evaluated in the same manner as in Example 1, the maximum surface roughness of the ridge side wall was 0.04 μm, and the propagation loss was:
It was 1.5 dB / cm. (9) The crystallinity of the manufactured LiNbO 3 three-dimensional waveguide was measured by the rocking curve method and found to be 23 seconds.

【0028】比較例1 (1)1インチLiNbO3 基板を二次元加工した。 (2)LiNbO3 2次元導波路上にレジストを塗布
し、フォトリソグラフィ技術によりレジストに10μm
の窓開けを行った。 (3)基板全面にTiを1μmスパッタリングにより蒸
着した。続いて、その基板を溶剤に浸し、レジスト上の
マスクを除去(リフトオフ)した。 (4)リフトオフ後の基板全面をドライエッチングし、
リッジ型三次元導波路とした。 (5)上記(4)で作製したLiNbO3 三次元導波路
のリッジ部側壁の荒れを非接触式表面粗さ計と走査型電
子顕微鏡を用いて測定したところ、最大表面粗さは0.
5μmであった。 (6)また、カットバック法およびプリズム移動法を用
いて作成した三次元導波路の伝搬損失を測定したところ
伝搬損失は、7.0dB/cmであった。
Comparative Example 1 (1) A 1-inch LiNbO 3 substrate was processed two-dimensionally. (2) LiNbO 3 A resist is applied on a two-dimensional waveguide, and the resist is applied to the resist by photolithography to a thickness of 10 μm.
Window opened. (3) Ti was deposited on the entire surface of the substrate by sputtering at 1 μm. Subsequently, the substrate was immersed in a solvent, and the mask on the resist was removed (lift-off). (4) dry etching the entire surface of the substrate after lift-off,
A ridge type three-dimensional waveguide was used. (5) The roughness of the side wall of the ridge of the LiNbO 3 three-dimensional waveguide fabricated in (4) was measured using a non-contact type surface roughness meter and a scanning electron microscope.
It was 5 μm. (6) When the propagation loss of the three-dimensional waveguide formed by using the cutback method and the prism moving method was measured, the propagation loss was 7.0 dB / cm.

【0029】比較例2 (1)1インチLiNbO3 基板を二次元加工した。 (2)LiNbO3 2次元導波路上に耐弗酸レジストを
塗布し、フォトリソグラフィ技術によりレジストに5μ
mのパターンを作製した。 (3)基板全体をHF:HNO3 =1:2の沸騰液中に
て7分間化学エッチングし幅4.5μm,リッジ高さ
1.2μmの三次元導波路を得た。 (4)レジストを取り除き、三次元導波路の特性を調べ
たところ、サイドエッチングにより導波路幅がマスクよ
りも狭くなっていた。また、三次元導波路の状態を比較
例1と同様に評価したところ、リッジ部の側壁の最大表
面粗さは0.9μmであり伝搬損失は6dB/cmであ
った。
Comparative Example 2 (1) A 1-inch LiNbO 3 substrate was processed two-dimensionally. (2) LiNbO 3 A two-dimensional waveguide is coated with a hydrofluoric acid resist, and the resist is applied to the resist by photolithography at 5 μm.
m pattern was produced. (3) The entire substrate was chemically etched in a boiling liquid of HF: HNO 3 = 1: 2 for 7 minutes to obtain a three-dimensional waveguide having a width of 4.5 μm and a ridge height of 1.2 μm. (4) When the resist was removed and the characteristics of the three-dimensional waveguide were examined, the width of the waveguide was narrower than that of the mask due to side etching. When the state of the three-dimensional waveguide was evaluated in the same manner as in Comparative Example 1, the maximum surface roughness of the side wall of the ridge portion was 0.9 μm, and the propagation loss was 6 dB / cm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明によるリッジ型三次元導波路の
製造方法である。
FIG. 1 is a method for manufacturing a ridge-type three-dimensional waveguide according to the present invention.

【符号の説明】[Explanation of symbols]

1ポジ型レジスト 2二次元導波路 3基板 4マスク 5分極反転可能な物質 6分極反転領域 1 Positive resist 2 Two-dimensional waveguide 3 Substrate 4 Mask 5 Polarizable substance 6 Polarized area

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単一分極化された誘電体材料からなる二次
元導波路上の少なくとも一部分の分極方向を反転せしめ
た後、エッチングマスクを用いることなく、異なる分極
方向が接する境界と両分極方向部分とを同時にエッチン
グすることにより三次元導波路を形成することを特徴と
するリッジ型三次元導波路の製造方法。
1. A method according to claim 1, wherein after inverting the polarization direction of at least a part of the two-dimensional waveguide made of a single-polarized dielectric material , the boundary between the different polarization directions and the two polarization directions are used without using an etching mask. A method for manufacturing a ridge-type three-dimensional waveguide, wherein a three-dimensional waveguide is formed by simultaneously etching a part and a part.
【請求項2】単一分極化された誘電体材料の少なくとも
一部分の分極方向を反転せしめた後、エッチングマスク
を用いることなく、異なる分極方向が接する境界と両分
極方向部分とを同時にエッチングすることによりリッジ
構造を形成し、その後、光導波路を形成することを特徴
とするリッジ型三次元導波路の製造方法。 【0001】
2. An etching mask after reversing the polarization direction of at least a part of a single-polarized dielectric material.
Forming a ridge structure by simultaneously etching a boundary where different polarization directions are in contact with each other and a portion in both polarization directions without using an optical waveguide, and thereafter forming an optical waveguide. . [0001]
JP04784392A 1992-02-03 1992-02-03 Manufacturing method of ridge type three-dimensional waveguide Expired - Lifetime JP3158203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04784392A JP3158203B2 (en) 1992-02-03 1992-02-03 Manufacturing method of ridge type three-dimensional waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04784392A JP3158203B2 (en) 1992-02-03 1992-02-03 Manufacturing method of ridge type three-dimensional waveguide

Publications (2)

Publication Number Publication Date
JPH05215928A JPH05215928A (en) 1993-08-27
JP3158203B2 true JP3158203B2 (en) 2001-04-23

Family

ID=12786654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04784392A Expired - Lifetime JP3158203B2 (en) 1992-02-03 1992-02-03 Manufacturing method of ridge type three-dimensional waveguide

Country Status (1)

Country Link
JP (1) JP3158203B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0975828B1 (en) * 1997-04-17 2001-12-05 QinetiQ Limited Etching method
EP1273960A1 (en) * 2001-06-28 2003-01-08 Corning O.T.I. S.p.A. Integrated ferroelectric optical waveguide device
JP5553099B2 (en) * 2012-09-20 2014-07-16 日立金属株式会社 Method for manufacturing substrate with piezoelectric thin film and method for manufacturing piezoelectric thin film element

Also Published As

Publication number Publication date
JPH05215928A (en) 1993-08-27

Similar Documents

Publication Publication Date Title
Miyazawa Ferroelectric domain inversion in Ti‐diffused LiNbO3 optical waveguide
JPH103100A (en) Optical waveguide parts, optical parts, manufacture of optical waveguide parts, and manufacture of periodic polarization inversion structure
JP3158203B2 (en) Manufacturing method of ridge type three-dimensional waveguide
JP2949807B2 (en) Optical waveguide device and method of manufacturing the same
US6117346A (en) Process for forming a microstructure in a substrate of a ferroelectric single crystal
JP3138549B2 (en) Method of fabricating ridge type on optical crystal substrate or thin film on the substrate
CN1916673B (en) Optical element
KR100439960B1 (en) PMN-PT optical waveguides by thermal diffusion and fabrication methods thereof
JPH07318876A (en) Optical non-reciprocal circuit
JPS6032844B2 (en) Method of manufacturing optical waveguide
US6605227B2 (en) Method of manufacturing a ridge-shaped three dimensional waveguide
JP3353281B2 (en) Fine processing method of dielectric optical material
JPH06174908A (en) Production of waveguide type diffraction grating
JPH0797170B2 (en) Optical element manufacturing method
US11899293B2 (en) Electro optical devices fabricated using deep ultraviolet radiation
JPH0774843B2 (en) Optical element manufacturing method
JPH05273418A (en) Ridge type three-dimensional optical waveguide and its production
JPH0727941A (en) Production of waveguide
Baude et al. Fabrication of Sol-Gel Derived Ferroelectric Plzt (9/65/35) Optical Waveguides
JP2007025636A (en) Method of fabricating optical element
JP2739793B2 (en) Manufacturing method of three-phase type phase shift reticle
JPS5979622A (en) Elastic surface wave element
JP2948042B2 (en) How to use the second harmonic generation element
KR100238167B1 (en) Optical polarizer and its fabrication method
JP3932242B2 (en) Method for forming optical waveguide element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

EXPY Cancellation because of completion of term