JPH05215876A - Barrier aperture for high frequency heating device - Google Patents
Barrier aperture for high frequency heating deviceInfo
- Publication number
- JPH05215876A JPH05215876A JP4022585A JP2258592A JPH05215876A JP H05215876 A JPH05215876 A JP H05215876A JP 4022585 A JP4022585 A JP 4022585A JP 2258592 A JP2258592 A JP 2258592A JP H05215876 A JPH05215876 A JP H05215876A
- Authority
- JP
- Japan
- Prior art keywords
- short
- window
- cooling
- window plate
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Waveguide Connection Structure (AREA)
- Non-Reversible Transmitting Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は電子サイクロトロン周波
数(ECRF)帯、例えば数十GHz〜数百GHzの高
周波数の電磁波で核融合炉のプラズマの生成加熱を行う
高周波加熱装置の障壁窓に係り、特に障壁窓の冷却構造
の改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a barrier window of a high-frequency heating device for generating and heating plasma of a fusion reactor by an electromagnetic wave having a high frequency of electron cyclotron frequency (ECRF), for example, several tens GHz to several hundreds GHz. In particular, it relates to improvement of the cooling structure of the barrier window.
【0002】[0002]
【従来の技術】核融合炉を運転するためには炉心プラズ
マの生成加熱を必要とするが、その一手法として高周波
加熱法がある。この加熱法は、高周波数の電磁波エネル
ギーを炉心のプラズマに入射し、プラズマの共鳴加熱や
電流駆動によってプラズマ温度を上げる方法である。2. Description of the Related Art In order to operate a fusion reactor, it is necessary to generate and heat a core plasma, and one of the methods is a high frequency heating method. This heating method is a method of injecting high-frequency electromagnetic wave energy into plasma in the core and raising the plasma temperature by resonance heating of the plasma or current driving.
【0003】この高周波加熱法を用いた加熱装置の一種
類であるECRF高周波加熱装置の従来例を図3に示
す。同図に示す加熱装置は、高出力の電磁波を発振する
ジャイロトロン等の高周波発振器1と、この高周波発振
器1の出力電磁波を核融合炉2内部のプラズマ3に伝搬
させる伝送路としての導波管4と、この導波管4の途中
に挿入された障壁窓5とを備えている。なお、核融合炉
2および伝送炉4は高真空に保たれている。FIG. 3 shows a conventional example of an ECRF high frequency heating apparatus which is one type of heating apparatus using this high frequency heating method. The heating apparatus shown in the figure is a high-frequency oscillator 1 such as a gyrotron that oscillates a high-power electromagnetic wave, and a waveguide as a transmission line for propagating the output electromagnetic wave of the high-frequency oscillator 1 to the plasma 3 inside the fusion reactor 2. 4 and a barrier window 5 inserted in the middle of the waveguide 4. The fusion reactor 2 and the transmission reactor 4 are kept in high vacuum.
【0004】上記障壁窓5は、トリチウム等の核融合反
応の生成物が外部に拡散するのを防止するものであり、
具体的には図4に示すように、円形導波管4の途中に介
挿させた円形のセラミックス板からなる窓板6a,6b
と、この窓板6a,6bを囲むように設置された冷却ボ
ックス7とを備えている。この内、窓板6a,6bは例
えば高強度、高熱伝導率のアルミナで形成されると共
に、電磁波Dの伝搬方向に直交し、且つ所定距離dだけ
離して平行に配された状態で、円形導波管4の切断端面
に気密に冶金接合され、これにより核融合反応の生成物
がシールされる。この2枚の窓板6a,6b間の距離d
はインピーダンスのミスマッチングを打ち消すことので
きる最適寸法に設定される。冷却ボックス7の供給ポー
ト7aおよび排出ポート7bは図示しない冷却源に連結
してあり、2枚の窓板6a,6b間に冷却媒体Cを流す
ようになっている。このため、プラズマ加熱用の電磁波
が窓板6を透過し、この板の誘電体損失により発生した
熱は側面および外周面の冷却により除かれる。The barrier window 5 prevents the products of nuclear fusion reaction such as tritium from diffusing to the outside.
Specifically, as shown in FIG. 4, window plates 6a and 6b made of a circular ceramic plate inserted in the middle of the circular waveguide 4.
And a cooling box 7 installed so as to surround the window plates 6a and 6b. Among them, the window plates 6a and 6b are made of alumina having high strength and high thermal conductivity, for example, and are circular conductors in a state where they are orthogonal to the propagation direction of the electromagnetic wave D and separated by a predetermined distance d. The cut end surface of the wave tube 4 is hermetically metallurgically bonded, whereby the product of the fusion reaction is sealed. The distance d between the two window plates 6a and 6b
Is set to the optimum size that can cancel the impedance mismatch. The supply port 7a and the discharge port 7b of the cooling box 7 are connected to a cooling source (not shown) so that the cooling medium C flows between the two window plates 6a and 6b. Therefore, the electromagnetic wave for heating the plasma passes through the window plate 6, and the heat generated by the dielectric loss of this plate is removed by cooling the side surface and the outer peripheral surface.
【0005】また、図5には上記障壁窓の別の例とし
て、構造がより簡単な外周冷却形の障壁窓を示す。な
お、図4と同一の構成部材については同一符号を付して
ある。同図に示す障壁窓10は、一枚の円形の窓板11
と、この窓板11を囲うように設置された冷却ボックス
7とを有し、この窓板11を円形導波管4の途中にコバ
ール等の封着リング12を介して、冶金手法を用いて気
密に接合されている。窓板11は電磁波Dの伝搬方向に
直交させている。このため、冷却ボックス7の供給ポー
ト7aから供給された冷却媒体Cは、封着リング12の
外周を通りながら排出ポート7bから冷却源に戻り、そ
の途中で封着リング12の外周面を冷却し、窓板11の
温度を下げるようにしている。上記発熱の原因となる誘
電体損失Lは下記式により表される。 L=2πzPtan δfε0 εr t ……(1)FIG. 5 shows, as another example of the barrier window, a peripheral cooling type barrier window having a simpler structure. The same components as those in FIG. 4 are designated by the same reference numerals. The barrier window 10 shown in the figure is a single circular window plate 11
And a cooling box 7 installed so as to surround the window plate 11, the window plate 11 is provided in the middle of the circular waveguide 4 with a sealing ring 12 such as Kovar or the like using a metallurgical method. It is airtightly joined. The window plate 11 is orthogonal to the propagation direction of the electromagnetic wave D. Therefore, the cooling medium C supplied from the supply port 7a of the cooling box 7 returns to the cooling source from the discharge port 7b while passing through the outer circumference of the sealing ring 12, and cools the outer peripheral surface of the sealing ring 12 in the middle thereof. The temperature of the window plate 11 is lowered. The dielectric loss L that causes the heat generation is expressed by the following equation. L = 2πzPtan δfε 0 ε r t ...... (1)
【0006】ここで、Pは伝送電力、fは周波数、ε0
は真空の誘電率であり、z、tan δ、εr 、tはそれぞ
れ窓窓の特性インピーダンス、誘電体正接、誘電率、板
厚である。Here, P is transmission power, f is frequency, and ε 0
Is the permittivity of a vacuum, and z, tan δ, ε r , and t are the characteristic impedance of the window, the dielectric tangent, the permittivity, and the plate thickness, respectively.
【0007】伝送電力Pは電界の約2乗に比例するの
で、損失Lも電界の2乗に比例する。円形導波管4内の
電界分布は図4、図5中の点線で示すように窓板6a,
6bの中心部程電界強度が高いので、その中心部での損
失Lも大きくなる。また、加熱装置の使用周波数fは例
えば100GHzと高いので、これに比例して誘電体損
失Lが大きくなる。さらに、静電正接tan δは窓板6
a,6bの絶対温度の1.96乗に比例する。Since the transmission power P is proportional to the square of the electric field, the loss L is also proportional to the square of the electric field. The electric field distribution in the circular waveguide 4 is, as shown by the dotted lines in FIGS.
Since the electric field strength is higher in the central portion of 6b, the loss L in the central portion also becomes larger. Moreover, since the operating frequency f of the heating device is as high as 100 GHz, for example, the dielectric loss L increases in proportion to this. Furthermore, the electrostatic tangent tan δ is the window plate 6
It is proportional to the 1.96th power of the absolute temperature of a and 6b.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、上述し
た誘電体損失Lの一例を、伝送電力P=1MW、温度=
400K、周波数f=110GHz、誘電率εr =9.
4、板厚t=1.3mmとして算出して見ると、L=約2
kWにもなり、この損失による発熱量も多くなることか
ら、図4の窓板6a,6b、図5の窓板11の温度を下
げないと、今度は損失Lが増加し、温度上昇と損失増加
の悪循環に陥る。このため、近年における加熱パワーの
大電力化、即ち電磁波エネルギーの増大や運転時間の長
期化、即ち単パルス運転(〜ms)から長パルス運転
(〜10s)或いは連続運転の要求に対し、比較的単純
な構造および流路を備えた従来の障壁窓の冷却構造は以
下のような種々の問題を有し、その対応に苦慮してい
た。However, an example of the above-mentioned dielectric loss L is transmitted power P = 1 MW, temperature =
400 K, frequency f = 110 GHz, permittivity ε r = 9.
4. Calculated with the plate thickness t = 1.3 mm, L = about 2
Since it also becomes kW and the amount of heat generated by this loss also increases, unless the temperature of the window plates 6a and 6b in FIG. 4 and the window plate 11 in FIG. Fall into a vicious cycle of increase. For this reason, in recent years, the heating power has been increased, that is, the electromagnetic wave energy has been increased and the operating time has been extended, that is, in response to a request for single pulse operation (~ ms) to long pulse operation (~ 10s) or continuous operation, The conventional barrier window cooling structure having a simple structure and a flow path has various problems as described below, and it has been difficult to cope with them.
【0009】まず、第1の問題は冷却流路の形状に起因
している。誘電体損失Lは、前述したように絶対温度の
1.96乗に比例して増加する。しかし、図4に示した
従来の冷却構造では、冷却ボックスの下部から供給され
た冷却媒体Cの内、多量の媒体が流路抵抗のより少ない
窓板6a,6bの両側を迂回してしまうので、窓板6
a,6b間、特にその中心部を流れる量が減少し、これ
により冷却効率が低く、誘電体損失Lが大きいという問
題があった。一方、図5に示した従来の冷却構造では、
窓板11における表面積の小さい外周面のみを冷却する
ものであるため、構造は簡単であるが、図4の構造のも
のよりも冷却効率がさらに低下し、誘電体損失がより大
きくなるという問題があった。First, the first problem is due to the shape of the cooling channel. The dielectric loss L increases in proportion to the 1.96th power of the absolute temperature as described above. However, in the conventional cooling structure shown in FIG. 4, a large amount of the cooling medium C supplied from the lower portion of the cooling box bypasses both sides of the window plates 6a and 6b having a smaller flow path resistance. , Window plate 6
There is a problem in that the amount of flow between a and 6b, especially in the central portion thereof, is reduced, which results in low cooling efficiency and large dielectric loss L. On the other hand, in the conventional cooling structure shown in FIG.
Since only the outer peripheral surface of the window plate 11 having a small surface area is cooled, the structure is simple, but there is a problem that the cooling efficiency is further reduced and the dielectric loss becomes larger than that of the structure of FIG. there were.
【0010】第2の問題は発熱分布に起因している。上
記冷却効率の低さをカバーする対策として、冷却媒体C
の質量流量を増やして除熱量を大きくし、損失Lを少な
くするという手法が考えられるが、そのためには冷却媒
体Cの圧力を上げる必要がある。一般に冷却媒体Cとし
ては媒体自身の誘電体損失を少なくするため、気体を用
いており、従来の小電力、単パルス運転では1気圧程度
の圧力で済んでいた。しかし、大電力、連続運転におい
て、質量流量を増やすためには、例えば10気圧程度の
圧力が必要であり、そのように圧力を上げると、窓板6
a,6b,11が受ける力も当然に大きくなる。The second problem is due to the heat generation distribution. As a measure to cover the above low cooling efficiency, the cooling medium C
Although a method of increasing the mass flow rate of A to increase the amount of heat removal and reducing the loss L can be considered, for that purpose, it is necessary to increase the pressure of the cooling medium C. In general, a gas is used as the cooling medium C in order to reduce the dielectric loss of the medium itself, and a pressure of about 1 atm has been sufficient for the conventional low power and single pulse operation. However, in high power, continuous operation, in order to increase the mass flow rate, a pressure of, for example, about 10 atm is required.
The force received by a, 6b, and 11 naturally increases.
【0011】これに加えて、窓板6a,6b,11の中
心部と外周部とでは発熱量(温度差)が大きいので、中
心部と周辺部とに大きい熱応力差が生じ、窓板6a,6
b,11に曲げモーメントが発生し、窓板6a,6b,
11が破損する問題があった。In addition to this, since the calorific value (temperature difference) between the central portion and the outer peripheral portion of the window plates 6a, 6b, 11 is large, a large thermal stress difference is generated between the central portion and the peripheral portion, and the window plate 6a. , 6
Bending moment is generated in b and 11, and the window plates 6a, 6b,
There was a problem that 11 was damaged.
【0012】第3は電磁波の周波数が高いことに起因し
ている。高周波加熱装置の使用周波数は前述の如く例え
ば100GHzと高いので、自由空間波長は3mmと短
く、上述したように冷却媒体Cの圧力を上げた場合、そ
の高圧に起因した窓板6a,6bの間隔dが拡がり、電
力反射量が増加し、プラズマの生成加熱の効率が低下す
る問題がある。The third reason is that the frequency of the electromagnetic wave is high. Since the operating frequency of the high-frequency heating device is as high as 100 GHz as described above, the free space wavelength is as short as 3 mm, and when the pressure of the cooling medium C is increased as described above, the gap between the window plates 6a and 6b caused by the high pressure. There is a problem that d increases, the amount of power reflected increases, and the efficiency of plasma generation and heating decreases.
【0013】さらに、第4に、上述した応力差による曲
げモーメントや変形量を軽減するには、前述した(1)
式から分かるように板厚を増加させることも想定される
が、そのようにすると今度は板厚によって誘電体損失L
が増加し、発熱量が増えるという相反する問題があっ
た。Fourthly, in order to reduce the bending moment and the amount of deformation due to the above-mentioned stress difference, the above-mentioned (1)
As can be seen from the formula, increasing the plate thickness is also envisaged, but if this is done, then the dielectric loss L will depend on the plate thickness.
However, there is a contradictory problem that the heat generation amount increases.
【0014】本発明は、電磁波の伝搬特性を良好に保持
する一方、窓板の機械的強度を下げることなく、冷却効
率を向上させて窓板の温度上昇を抑制し、又は積極的に
窓板の温度を低下させ、誘電体損失を小さくしてプラズ
マ加熱効率を向上させると共に、窓板の変形量や曲げモ
ーメントの発生を抑制して窓板の破損を防止し、信頼性
を格段に向上させることができる高周波加熱装置の障壁
窓を提供することを目的とする。According to the present invention, while maintaining good electromagnetic wave propagation characteristics, the cooling efficiency is improved and the temperature rise of the window plate is suppressed, or the window plate is positively maintained, without lowering the mechanical strength of the window plate. Temperature is reduced, dielectric loss is reduced to improve plasma heating efficiency, and the amount of deformation and bending moment of the window plate is suppressed to prevent damage to the window plate, and the reliability is significantly improved. It is an object of the present invention to provide a barrier window of a high-frequency heating device that can be used.
【0015】[0015]
【課題を解決するための手段】本発明は上記の目的を達
成するため、核融合炉内のプラズマに高周波の電磁波を
伝搬させる伝送路の途中に窓板を介挿した高周波加熱装
置の障壁窓において、前記窓板の外周側両面に固着され
た第1の短絡体と、この第1の短絡体の内周側で窓板の
両側を気密に把持する封着リングと、前記第1の短絡体
が固着された窓板を内包し且つ前記封着リングを第1の
断熱体を介して気密に支持する略筒状の第2の短絡体
と、この第2の短絡体を内包し且つ前記第2の短絡体を
第2の断熱体を介して気密に支持すると共に、前記伝送
路に気密に接続した外周容器と、前記第1の短絡体に連
結され、この第1の短絡体を第1の低温よりも高い温度
の第2の低温に冷却する第2の冷却源とを備える。In order to achieve the above object, the present invention has a barrier window of a high frequency heating device in which a window plate is inserted in the middle of a transmission path for propagating a high frequency electromagnetic wave to plasma in a fusion reactor. A first short-circuit body fixed to both outer peripheral side surfaces of the window plate, a sealing ring for hermetically gripping both sides of the window plate on the inner peripheral side of the first short-circuit body, and the first short circuit A substantially tubular second short-circuit body that includes a window plate to which a body is fixed and that hermetically supports the sealing ring via a first heat insulator, and the second short-circuit body that includes the second short-circuit body. The second short-circuit body is airtightly supported via the second heat-insulating body, and is connected to the outer peripheral container air-tightly connected to the transmission line and the first short-circuit body, and the first short-circuit body is connected to the first short-circuit body. And a second cooling source that cools to a second low temperature that is higher than the low temperature of 1.
【0016】[0016]
【作用】このような構成の高周波加熱装置の障壁窓にあ
っては、窓板は伝送路および外周容器からの輻射熱や第
2の断熱体からの伝導熱が第2の短絡体を介して第2の
冷却源により除熱される所謂クライオスタット構造によ
る2段階で冷却されるので、第2の低温(例えば80
K)に保持される。In the barrier window of the high-frequency heating apparatus having such a structure, the window plate receives the radiant heat from the transmission line and the outer container and the conductive heat from the second heat insulator via the second short-circuit body. Since it is cooled in two stages by a so-called cryostat structure which is removed by the second cooling source, the second low temperature (for example, 80
K).
【0017】また、第2の短絡体からの輻射熱や第1の
断熱体からの伝導熱および窓板に生じる誘電体損失によ
る熱は第1の短絡体を介して第1の冷却源により除熱さ
れ、第1の低温(例えば20K)で平行状態となる。こ
のように窓板の温度を積極的に第1の低温まで下げるこ
とができ、例えば第1の低温を20Kとすると、400
Kでの常温での運転と比べて誘電体損失を約1/400
にすることができる。また、第1の短絡体は窓板に直接
固着されているため、熱抵抗を小さくできる。さらに、
封着リングを薄くできるので、侵入熱が小さく、且つ製
造時に窓板に生じる熱応力を小さくできる。Radiant heat from the second short-circuit body, conductive heat from the first heat insulator, and heat due to dielectric loss generated in the window plate are removed by the first cooling source via the first short-circuit body. Then, it becomes parallel at the first low temperature (for example, 20K). In this way, the temperature of the window plate can be positively reduced to the first low temperature. For example, if the first low temperature is 20K, 400
Dielectric loss is about 1/400 compared to normal temperature operation at K
Can be Moreover, since the first short-circuit body is directly fixed to the window plate, the thermal resistance can be reduced. further,
Since the sealing ring can be thinned, the heat of intrusion can be reduced and the thermal stress generated in the window plate during manufacturing can be reduced.
【0018】したがって、プラズマ生成加熱効率の向上
は勿論、温度上昇や温度分布も格段に低くなり、熱応力
が無視できる。しかも従来のように冷却媒体を窓板の側
面に沿って流す場合とは異なり、冷却媒体の圧力による
変形や曲げモーメントを生じることはない。Therefore, not only the plasma generation heating efficiency is improved, but also the temperature rise and the temperature distribution are remarkably reduced, and the thermal stress can be ignored. Moreover, unlike the conventional case where the cooling medium is caused to flow along the side surface of the window plate, deformation or bending moment due to the pressure of the cooling medium does not occur.
【0019】[0019]
【実施例】以下本発明の一実施例を図面を参照して説明
する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
【0020】図1は本発明による高周波加熱装置の障壁
窓の構成例を一部破断し、図2は図1のA−A線に沿う
矢視断面図を示すものである。図1および図2におい
て、20は高周波加熱装置の円形の常温導波管であり、
この常温導波管20の途中に障壁窓21が取付けられ、
この窓としてのセラミックスからなる窓板22が設けら
れている。FIG. 1 is a partially cutaway view of a structural example of a barrier window of a high frequency heating apparatus according to the present invention, and FIG. 2 is a sectional view taken along the line AA of FIG. In FIGS. 1 and 2, reference numeral 20 denotes a circular room temperature waveguide of a high frequency heating device,
A barrier window 21 is attached in the middle of the room temperature waveguide 20,
A window plate 22 made of ceramics is provided as the window.
【0021】この障壁窓21は、軸方向両端の常温導波
管20に取付けられた外周容器としての筒状の常温の真
空容器24と、この容器24の外側に取付けられた冷却
装置25とを有し、常温真空容器24の内部に冷却装置
25によって窓板22を冷却する冷却機構が設けられて
いる。The barrier window 21 is composed of a cylindrical room-temperature vacuum container 24 as an outer peripheral container attached to the room-temperature waveguides 20 at both ends in the axial direction, and a cooling device 25 attached to the outside of the container 24. A cooling mechanism for cooling the window plate 22 by the cooling device 25 is provided inside the room temperature vacuum container 24.
【0022】窓板22は例えば円形で所定厚さのサファ
イヤで形成されている。この窓板22の外周側両面には
ドーナツ状の短絡リング29が低熱接触抵抗になるよう
に固着され、これら2枚の短絡リング29は第1の短絡
体を形成している。この短絡リング29の内周側で窓板
22の両側に封着リング28が気密に冶金接合されてい
る。The window plate 22 is formed of, for example, a circular sapphire having a predetermined thickness. A donut-shaped short-circuit ring 29 is fixed to both outer peripheral sides of the window plate 22 so as to have a low thermal contact resistance, and these two short-circuit rings 29 form a first short-circuit body. Sealing rings 28 are hermetically metallurgically bonded to both sides of the window plate 22 on the inner peripheral side of the short-circuit ring 29.
【0023】窓板22の軸方向両側には、各々所定の隙
間を介して低温導波管30が配置され、この低温導波管
30はその外周面の略中間位置に一体に立設したフラン
ジ30aを有し、このフランジ30aにより分割される
図1における右側面と封着リング28とがベローズを有
する第1の断熱体としての断熱リング31を介して気密
に、且つ熱侵入の少ない状態で接合されている。A low-temperature waveguide 30 is arranged on both sides of the window plate 22 in the axial direction with a predetermined gap therebetween, and the low-temperature waveguide 30 is integrally provided with a flange at a substantially intermediate position on the outer peripheral surface thereof. 1 and the sealing ring 28, which is divided by the flange 30a, is hermetically sealed via a heat insulating ring 31 as a first heat insulating body having a bellows, and in a state in which there is little heat intrusion. It is joined.
【0024】低温導波管30の両側のフランジ30a間
には円筒状の低温シールド体32が熱的に接続された状
態で取付けられており、これにより窓板22、第1の短
絡体、第1の断熱体等が内包される。A cylindrical low-temperature shield body 32 is mounted between the flanges 30a on both sides of the low-temperature waveguide 30 in a state of being thermally connected, whereby the window plate 22, the first short-circuit body, and the first short-circuit body. The heat insulator 1 and the like are included.
【0025】低温シールド体32は、吊持部材33を介
して短絡リング29および窓板22等を保持している。
なお、低温導波管30、低温シールド体32は第2の短
絡体を形成する。The low-temperature shield body 32 holds the short-circuit ring 29, the window plate 22 and the like via the suspension member 33.
The low-temperature waveguide 30 and the low-temperature shield 32 form a second short-circuit body.
【0026】低温導波管30のフランジ30aにより分
割される図1の左側面と常温真空容器24の内周面とが
第2の断熱体としてのベローズを有する断熱リング35
を介して気密に、且つ熱侵入の少ない状態で接合されて
いる。常温真空容器24はその両端側の内壁上部から吊
持部材36を介して断熱リング35および第2の短絡体
を保持している。常温真空容器24の軸方向両端は各々
常温導波管20に気密に連結されている。A heat insulating ring 35 having a bellows as a second heat insulating member is formed between the left side surface of FIG. 1 and the inner peripheral surface of the room temperature vacuum chamber 24, which are divided by the flange 30a of the low temperature waveguide 30.
Are joined in an airtight manner and with little heat penetration. The room temperature vacuum container 24 holds the heat insulating ring 35 and the second short-circuit body from the upper part of the inner wall on both ends thereof via the suspending member 36. Both axial ends of the room temperature vacuum container 24 are hermetically connected to the room temperature waveguide 20.
【0027】常温真空容器24および吊持部材36は外
周容器を形成する。冷却装置25は第1の低温(ここで
は約20K)の第1の冷却部38と、この第1の冷却部
38と前記短絡リング29とを熱的に接続する第1のサ
ーマルアンカー39と、第1の低温よりも高い第2の低
温(ここでは約80K)の第2の冷却部40と前記低温
シールド体32とを熱的に接続する第2のサーマルアン
カー41とを備えた2段ステージの冷凍機を構成する。
ここで、第1の冷却部38および第1のサーマルアンカ
ー39が第1の冷却源を形成し、第2の冷却部40およ
び第2のサーマルアンカー41が第2の冷却源を形成し
ている。さらに、本実施例では予冷時に窓板22を加熱
するためのヒータ42を短絡リング29に付設してい
る。次に上記のように構成された高周波加熱装置の障壁
窓の作用を述べる。The room temperature vacuum container 24 and the suspension member 36 form an outer peripheral container. The cooling device 25 includes a first cooling unit 38 having a first low temperature (here, about 20K), and a first thermal anchor 39 that thermally connects the first cooling unit 38 and the short-circuit ring 29. A two-stage stage including a second cooling unit 40 having a second low temperature (here, about 80K) higher than the first low temperature and a second thermal anchor 41 that thermally connects the low temperature shield body 32. Constitutes a refrigerator.
Here, the 1st cooling part 38 and the 1st thermal anchor 39 form the 1st cooling source, and the 2nd cooling part 40 and the 2nd thermal anchor 41 form the 2nd cooling source. .. Further, in this embodiment, a heater 42 for heating the window plate 22 during precooling is attached to the short-circuit ring 29. Next, the operation of the barrier window of the high-frequency heating device configured as described above will be described.
【0028】常温導波管20および常温真空容器24か
らの伝導熱は、その殆どが断熱リング35によってしゃ
断されると共に、それら導波管20および常温真空容器
24からの輻射熱の大部分は低温導波管30および低温
シールド体32により吸収され、この吸収熱は第2のサ
ーマルアンカー41を介して第2の冷却部40にて除熱
される。Most of the conduction heat from the room-temperature waveguide 20 and the room-temperature vacuum container 24 is cut off by the heat insulating ring 35, and most of the radiation heat from the waveguide 20 and the room-temperature vacuum container 24 is conducted at low temperature. It is absorbed by the wave tube 30 and the low-temperature shield body 32, and the absorbed heat is removed by the second cooling section 40 via the second thermal anchor 41.
【0029】さらに、断熱リング31および吊持部材3
3からの伝導熱は、短絡リング29を介して第1のサー
マルアンカー39に伝わり、除熱される。このため、窓
板22に外部から到達する熱は、ほぼ低温導波管30か
らの輻射熱のみの僅かな熱となる。Further, the heat insulating ring 31 and the suspension member 3
The conduction heat from 3 is transferred to the first thermal anchor 39 via the short-circuit ring 29 and removed. For this reason, the heat that reaches the window plate 22 from the outside becomes a slight amount of heat that is almost only the radiant heat from the low-temperature waveguide 30.
【0030】そこで、この輻射熱および誘電体損失によ
る発熱は、直接短絡リング29を介して第1のサーマル
アンカー39に伝わり、第1の冷却部38により除熱さ
れるので、窓板22の熱と冷却とが平衡し、窓板22の
温度は第1の低温値約20°Kに保持される。このた
め、窓板22に発生する誘電体損失は常温時に比べて約
1/400になるので、従来の値に比べて数Wと極めて
小さくなる。このように窓板22を1枚とし、その外周
部を極低温(約20K)に冷却する、所謂クライオ構造
を採用しているので、誘電体損失を著しく減少させてプ
ラズマ生成加熱効率を上げることができる。Therefore, the radiant heat and the heat generated by the dielectric loss are directly transmitted to the first thermal anchor 39 through the short-circuit ring 29 and removed by the first cooling unit 38, so that the window plate 22 and the heat are cooled. Are balanced and the temperature of the window plate 22 is maintained at a first low temperature value of about 20 ° K. For this reason, the dielectric loss generated in the window plate 22 is about 1/400 of that at room temperature, which is a few W, which is much smaller than the conventional value. In this way, the so-called cryo structure is adopted in which the window plate 22 is one and the outer peripheral portion is cooled to an extremely low temperature (about 20 K), so that the dielectric loss is remarkably reduced and the plasma generation heating efficiency is increased. You can
【0031】これと共に、窓板22をサファイヤで形成
しているため、サファイヤの熱伝導率の温度変化をうま
く取込むことができる。即ち、サファイヤの熱伝導率
は、温度が30Kで最大値300W/cmK、20Kでも
100W/cmKであり、300K時の0.4W/cmKに
比して格段に向上するから、上述したように極低温に冷
却することにより、窓板22の中心部の発熱が効率良く
外周部に伝わり、窓板22の半径方向の温度差が極めて
小さくなる。したがって、温度上昇による誘電体損失や
熱応力の増加があっても、その増加分を相殺できる。ま
た、窓板22の外周部分の冷却であり、与圧された冷却
媒体による表面冷却ではないから、径方向の応力差が殆
ど発生しない。At the same time, since the window plate 22 is made of sapphire, the temperature change of the thermal conductivity of the sapphire can be well captured. That is, the maximum thermal conductivity of sapphire is 300W / cmK at 30K and 100W / cmK at 20K, which is much higher than 0.4W / cmK at 300K. By cooling to a low temperature, the heat generated in the central portion of the window plate 22 is efficiently transmitted to the outer peripheral portion, and the temperature difference in the radial direction of the window plate 22 becomes extremely small. Therefore, even if the dielectric loss or the thermal stress increases due to the temperature rise, the increase can be offset. Further, since the outer peripheral portion of the window plate 22 is cooled and not the surface cooling by the pressurized cooling medium, the stress difference in the radial direction hardly occurs.
【0032】さらに、短絡リング29は窓板22の外周
側両面に直接固着され、気密のための封着リング28は
断熱リング31と気密に接合し、断熱経路を形成してい
るため、封着リング28を薄くしたり、長くして剛性を
下げても冷却上問題はなく、伝導による侵入熱の減少に
むしろ効果がある。また、封着リング28の剛性を下げ
ることにより、窓板22と封着リング28を冶金的に接
合するときの窓板に生じる残留応力を軽減できる。Further, the short-circuit ring 29 is directly fixed to both outer peripheral side surfaces of the window plate 22, and the sealing ring 28 for airtightness is airtightly joined to the heat insulating ring 31 to form a heat insulating path. There is no problem in cooling even if the ring 28 is made thin or lengthened to reduce the rigidity, and it is rather effective in reducing the intrusion heat due to conduction. Further, by reducing the rigidity of the sealing ring 28, it is possible to reduce the residual stress generated in the window plate when the window plate 22 and the sealing ring 28 are metallurgically bonded.
【0033】また、本実施例では予冷時に、ヒータ42
で窓板22を低温導波管30の第2の低温以上に加熱
し、窓板22に水分が氷結するのを防止しているため、
そのような氷結による誘電体損失の増加を排除して、本
運転時に安定した効率の良いプラズマ生成加熱を行うこ
とができる。尚、この氷結防止策としては、高周波発振
器からマイクロ波を送信しながら予熱してもよい。な
お、本発明の第1、第2の断熱体31,35は、多重円
筒であってもよい。また、窓板22は高強度、低誘電体
損失のものであればガラスも使用できる。Further, in this embodiment, the heater 42 is precooled.
Since the window plate 22 is heated to a temperature equal to or higher than the second low temperature of the low-temperature waveguide 30 by the above, water is prevented from freezing on the window plate 22,
It is possible to eliminate such an increase in dielectric loss due to freezing and perform stable and efficient plasma generation and heating during the main operation. As a measure for preventing the freezing, preheating may be performed while transmitting microwaves from a high frequency oscillator. The first and second heat insulators 31 and 35 of the present invention may be multiple cylinders. Further, the window plate 22 may be made of glass as long as it has high strength and low dielectric loss.
【0034】[0034]
【発明の効果】以上述べたように本発明によれば、第1
の冷却源に接続された第1の短絡体および第2の冷却源
に接続された第2の短絡体による所謂クライオスタット
構造を用いて、内包する窓板を冷却媒体を用いずに例え
ば20K(第1の低温)に冷却しているので、従来の冷
却媒体を用いて常温付近まで冷却して使用する構造のも
のに比べて、誘電体損失を例えば数百分の一まで小さく
でき、電磁波によるプラズマの加熱効率を格段に向上さ
せて、近年の大電力化および連続運転の要請に応えるこ
とができる。また、窓板は従来のような冷却媒体の圧力
を受けないこと、および全体に均一温度であることによ
って応力差による曲げや変形とは殆ど無縁になり、機械
的破損等を排除できる。さらに、窓板の冷却経路と気密
部を別にしたことにより、封着リングの剛性を低くでき
るので、製造時に生じる応力を軽減できる等、高性能、
高信頼性の高周波加熱装置の障壁窓を提供できる。As described above, according to the present invention, the first
Using a so-called cryostat structure composed of a first short-circuit body connected to the cooling source and a second short-circuit body connected to the second cooling source, for example, a window plate that encloses the window plate at a temperature of 20 K (first Since it is cooled to a low temperature of 1, the dielectric loss can be reduced to several hundredth, for example, as compared with a structure in which a conventional cooling medium is used to cool it to around room temperature, and plasma generated by electromagnetic waves is reduced. It is possible to remarkably improve the heating efficiency of (1) to meet the recent demand for higher power and continuous operation. In addition, since the window plate does not receive the pressure of the cooling medium as in the conventional case and has a uniform temperature throughout, it is almost free from bending and deformation due to the stress difference, and mechanical damage can be eliminated. Furthermore, by separating the cooling path and the airtight part of the window plate, the rigidity of the sealing ring can be lowered, so that the stress generated during manufacturing can be reduced, and high performance,
It is possible to provide a highly reliable barrier window for a high frequency heating device.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明に係る高周波加熱装置の障壁窓の一実施
例を一部破断して示す正面図。FIG. 1 is a partially cutaway front view showing an embodiment of a barrier window of a high-frequency heating device according to the present invention.
【図2】図1のA−A線に沿う矢視断面図。FIG. 2 is a sectional view taken along the line AA of FIG.
【図3】高周波加熱装置の概略を示す構成図。FIG. 3 is a configuration diagram showing an outline of a high-frequency heating device.
【図4】従来の高周波加熱装置の障壁窓の構成例を示す
断面図。FIG. 4 is a cross-sectional view showing a configuration example of a barrier window of a conventional high frequency heating device.
【図5】従来の高周波加熱装置の障壁窓の別の構成例を
示す断面図。FIG. 5 is a cross-sectional view showing another configuration example of the barrier window of the conventional high-frequency heating device.
20a,20b……導波管、21……障壁窓、22……
窓板、24……真空容器、25……冷却装置、28……
封着リング、29……短絡リング、30……低温導波
管、31,35……断熱体、32……低温シールド体、
33,36……吊持部材、38,40……第1、第2の
冷却部、39,41……第1、第2のサーマルアンカ
ー、42……ヒータ。20a, 20b ... Waveguide, 21 ... Barrier window, 22 ...
Window plate, 24 ... Vacuum container, 25 ... Cooling device, 28 ...
Sealing ring, 29 ... Short-circuit ring, 30 ... Low temperature waveguide, 31, 35 ... Insulator, 32 ... Low temperature shield,
33, 36 ... Suspension member, 38, 40 ... First and second cooling parts, 39, 41 ... First and second thermal anchors, 42 ... Heater.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 永島 孝 茨城県那珂郡那珂町大字向山801番地の1 日本原子力研究所那珂研究所内 (72)発明者 坂本 慶司 茨城県那珂郡那珂町大字向山801番地の1 日本原子力研究所那珂研究所内 (72)発明者 伊藤 孝治 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takashi Nagashima, Takashi Nagashima, 80-1, Komuyama, Naka-machi, Naka-gun, Ibaraki Prefecture Inside the Naka Institute, Japan Atomic Energy Research Institute (72) Keiji Sakamoto, 801, Mukaiyama, Naka-machi, Naka-gun, Ibaraki Prefecture No. 1 Naka Institute of Japan Atomic Energy Research Institute (72) Inventor Koji Ito 2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Toshiba Keihin Office
Claims (1)
を伝搬させる伝送路の途中に窓板を介挿した高周波加熱
装置の障壁窓において、前記窓板の外周側両面に固着さ
れた第1の短絡体と、この第1の短絡体の内周側で窓板
の両側を気密に把持する封着リングと、前記第1の短絡
体が固着された窓板を内包し且つ前記封着リングを第1
の断熱体を介して気密に支持する略筒状の第2の短絡体
と、この第2の短絡体を内包し且つ前記第2の短絡体を
第2の断熱体を介して気密に支持すると共に、前記伝送
路に気密に接続した外周容器と、前記第1の短絡体に連
結され、この第1の短絡体を第1の低温よりも高い温度
の第2の低温に冷却する第2の冷却源とを備えたことを
特徴とする高周波加熱装置の障壁窓。1. A barrier window of a high-frequency heating device, wherein a window plate is inserted in the middle of a transmission path for propagating a high-frequency electromagnetic wave to plasma in a fusion reactor. And a sealing ring for hermetically gripping both sides of the window plate on the inner peripheral side of the first short circuit body, and the sealing ring containing the window plate to which the first short circuit body is fixed. The first
Second tubular short-circuit body that is airtightly supported via the heat insulating body, and the second short-circuit body is enclosed and the second short-circuit body is airtightly supported through the second heat insulating body. At the same time, a second container, which is connected to the outer peripheral container airtightly connected to the transmission line and the first short-circuit body, cools the first short-circuit body to a second low temperature higher than the first low temperature. A barrier window of a high-frequency heating device, comprising: a cooling source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02258592A JP3160348B2 (en) | 1992-02-07 | 1992-02-07 | High frequency heating device barrier window |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02258592A JP3160348B2 (en) | 1992-02-07 | 1992-02-07 | High frequency heating device barrier window |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05215876A true JPH05215876A (en) | 1993-08-27 |
JP3160348B2 JP3160348B2 (en) | 2001-04-25 |
Family
ID=12086935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02258592A Expired - Fee Related JP3160348B2 (en) | 1992-02-07 | 1992-02-07 | High frequency heating device barrier window |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3160348B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013146494A1 (en) * | 2012-03-30 | 2015-12-10 | 宇部興産株式会社 | Power transmission device and method, and resonance device used therefor |
-
1992
- 1992-02-07 JP JP02258592A patent/JP3160348B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013146494A1 (en) * | 2012-03-30 | 2015-12-10 | 宇部興産株式会社 | Power transmission device and method, and resonance device used therefor |
Also Published As
Publication number | Publication date |
---|---|
JP3160348B2 (en) | 2001-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4670027B2 (en) | Magnetron | |
JPH10116724A (en) | Superconducting device | |
CN105122951A (en) | Plasma generator using dielectric resonator | |
KR20150126878A (en) | Magnetron | |
US4434335A (en) | Compressed-gas circuit interrupter with a heater | |
US4310786A (en) | Magnetron tube with improved low cost structure | |
JPH05215876A (en) | Barrier aperture for high frequency heating device | |
US4442523A (en) | High power metal vapor laser | |
US3376463A (en) | Crossed field microwave tube having toroidal helical slow wave structure formed by a plurality of spaced slots | |
JP3516413B2 (en) | High frequency heating equipment | |
US2817823A (en) | Circular waveguide output for magnetrons | |
Singh et al. | Compact externally heated discharge tube for metal vapor lasers | |
JP2582945B2 (en) | High frequency heating device barrier window | |
JP2001338588A (en) | Gyrotron and its manufacturing method | |
US4907242A (en) | Gas laser apparatus having a low pressure buffer gas | |
JPH03187130A (en) | Magnetron | |
US3448325A (en) | Linear beam tube having a beam collector cooled by radiation through an infrared window | |
Thumm | Recent development of high power gyrotrons and windows for EC wave applications | |
JPH11199367A (en) | Refrigerator-cooling type superconductive magnet device for pulling-up device of single crystal | |
JPS6337538A (en) | Shielding grid tube | |
US20210356193A1 (en) | Bolted joint conduction cooling apparatus for accelerator cavities | |
Schug et al. | The adjustable RF main coupler for the superconducting COSY Linac cavities | |
JPH05304000A (en) | High frequency coupler | |
JPH0745210A (en) | Output circuit for helix type traveling wave tube | |
RU2073284C1 (en) | Thermionic converter with small interelectrode gap |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |