JPH05215424A - Freezer using mixed refrigerant - Google Patents

Freezer using mixed refrigerant

Info

Publication number
JPH05215424A
JPH05215424A JP32031191A JP32031191A JPH05215424A JP H05215424 A JPH05215424 A JP H05215424A JP 32031191 A JP32031191 A JP 32031191A JP 32031191 A JP32031191 A JP 32031191A JP H05215424 A JPH05215424 A JP H05215424A
Authority
JP
Japan
Prior art keywords
refrigerant
azeotropic
mixed
boiling point
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32031191A
Other languages
Japanese (ja)
Inventor
Takao Aizawa
孝夫 相澤
Kazuyuki Iguchi
和幸 井口
Takayuki Sugimoto
孝之 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP32031191A priority Critical patent/JPH05215424A/en
Publication of JPH05215424A publication Critical patent/JPH05215424A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve safeness by using a mixed refrigerant obtained by mixing at a prescribed mixing ratio a first incombustible refrigerant and an azeotropic mixture which shows a minimum azeotropic point under the atmospheric pressure and incombustibility by mixing a second combustible refrigerant having a boiling point higher than that of the first refrigerant and a third incombustible refrigerant having a boiling point higher than that of the second refrigerant at an azeotropic composing ratio. CONSTITUTION:R22 is used as a first incombustible refrigerant, R142b is as a second combustible refrigerant having a boiling point higher than that of the first refrigerant, and C318 is as a third incombustible refrigerant having a boiling point higher than that of the second refrigerant. The second refrigerant R142b and the third refrigerant C318 are mixed at an azeotropic composing ratio to be an azeotropic mixture which shows a minimum azeotropic point and incombustibity. In this case, the azeotropic composing ratio is R142b/C318=37.1/62.9 by weight %. As the weight % occupied by the R142b in the mixed refrigerant is 25%, the weight % of the first refrigerant R22, the second refrigerant R142b and the third refrigerant C318 is nearly 32.5:25.0:42.5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス漏れがあっても燃
える虞れのない混合冷媒を用いた冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus using a mixed refrigerant which does not burn even if gas leaks.

【0002】[0002]

【従来の技術】ヒートポンプにより冷房,暖房,給湯を行
なうシステムにおいて、給湯運転モードでは、冷暖房運
転モードよりも高い冷媒凝縮温度が要求される。そのた
め、単一冷媒でもって上記両運転モードを行なおうとす
ると、吐出冷媒温度が異常上昇したり(例えば冷媒とし
てR22を使用した場合)、あるいは十分な冷暖房能力が
得られなくなったりする(例えば冷媒としてR12を使用
した場合)。そこで、例えば特開昭61-55562号公報に記
載されているように、沸点の異なる2種類の冷媒を混合
した混合冷媒を使用し、これにより冷暖房能力の低下を
防止しつつ、給湯運転モードで高温湯が得られるような
対策が採られている。 この場合、従来は、R22(75重
量%)とR114(25重量%)との混合冷媒が使用されてきた
が、近年、フロン規制の関係から、上記R114の使用が
好ましくないとされ、その代替品としてR142b[エタン
系、分子式CH3-CClF2、分子量100.50、沸点-9.8℃]の使
用が検討されている。
2. Description of the Related Art In a system that uses a heat pump to cool, heat, and supply hot water, the hot water supply operation mode requires a higher refrigerant condensing temperature than the cooling and heating operation mode. Therefore, when trying to perform both of the above operation modes with a single refrigerant, the discharged refrigerant temperature rises abnormally (for example, when R22 is used as the refrigerant), or sufficient cooling / heating capacity cannot be obtained (for example, the refrigerant). (When R12 is used as). Therefore, as described in, for example, Japanese Patent Application Laid-Open No. 61-55562, a mixed refrigerant in which two kinds of refrigerants having different boiling points are mixed is used, thereby preventing the cooling / heating capacity from being lowered and in the hot water supply operation mode. Measures are taken to obtain hot water. In this case, conventionally, a mixed refrigerant of R22 (75% by weight) and R114 (25% by weight) has been used, but in recent years, the use of R114 is considered unfavorable due to the chlorofluorocarbon regulations, and its replacement Use of R142b [ethane system, molecular formula CH 3 -CClF 2 , molecular weight 100.50, boiling point -9.8 ° C] is being investigated as a product.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記冷媒R
142bは、不燃性ガス中に一定比率以下の割合で存在する
場合には不燃性であるが、単独で、あるいは不燃性ガス
中に一定比率以上の割合で存在する場合には、可燃性を
呈する。従って、R22(75重量%)とR142b(25重量%)と
の混合冷媒を冷媒回路に充填し、この比率が維持されれ
ば問題はないが、冷媒回路に何らかの原因でガス漏れが
発生すると、次のような問題が生じる。即ち、ガス漏れ
が発生すると、低沸点であるR22(沸点-40.82℃)が選択
的に漏れ出し、漏洩混合冷媒つまり系内に残る混合冷媒
中のR142bの比率が、図3の曲線で示すように最初の約
10%から次第に増加して、漏れ率が約80%を超えると68
%以上の可燃域に入る。そのため、それ以降に漏れ出す
混合冷媒は、引火したり爆発して事故を招く虞れが高
い。また、老朽化で冷凍装置を廃棄する際、上述のフロ
ン規制との関連から系内の混合冷媒を真空ポンプで抜き
取る必要があるが、この場合もガス漏れ等で抜き取るべ
き混合冷媒中のR142bの比率が高いと、同様の虞れが生
じる。なお、図3の曲線から下の面積つまり縦軸の漏洩
混合冷媒中のR142bの重量%を横軸の冷媒漏れ率で積
分した値が、充填時の混合冷媒中のR142bの比率であ
る25重量%に相当する。そこで、本発明の目的は、R14
2b等の可燃性の冷媒が特定の冷媒との間で不燃性の共沸
混合物を作ることに着目し、冷媒系にガス漏れが生じて
も系内に残る混合冷媒中の可燃性冷媒の比率増加を抑え
ることによって、安全性の高い混合冷媒を用いた冷凍装
置を提供することにある。
However, the above-mentioned refrigerant R
142b is non-flammable when present in a non-combustible gas in a proportion less than or equal to a certain proportion, but exhibits flammability alone or when present in the non-combustible gas in a proportion or more than a certain proportion. .. Therefore, if the refrigerant circuit is filled with a mixed refrigerant of R22 (75 wt%) and R142b (25 wt%) and this ratio is maintained, there is no problem, but if gas leakage occurs for some reason in the refrigerant circuit, The following problems occur. That is, when a gas leak occurs, R22 (boiling point-40.82 ° C), which has a low boiling point, selectively leaks, and the ratio of R142b in the leaked mixed refrigerant, that is, the mixed refrigerant remaining in the system is as shown by the curve in FIG. First about
It gradually increases from 10% to 68 when the leak rate exceeds about 80%.
Enter a flammable area of over%. Therefore, the mixed refrigerant that leaks after that is highly likely to catch fire or explode, resulting in an accident. In addition, when disposing of the refrigeration system due to deterioration, it is necessary to extract the mixed refrigerant in the system with a vacuum pump in relation to the above-mentioned CFC regulations, but in this case as well, the R142b If the ratio is high, the same fear occurs. In addition, the area below the curve of FIG. 3, that is, the value obtained by integrating the weight% of R142b in the leaked mixed refrigerant on the vertical axis by the refrigerant leak rate on the horizontal axis is the ratio of R142b in the mixed refrigerant at the time of filling, which is 25 weight%. Equivalent to%. Therefore, an object of the present invention is to provide R14
Focusing on combustible refrigerants such as 2b that make an incombustible azeotrope with a specific refrigerant, the ratio of the combustible refrigerant in the mixed refrigerant that remains in the system even if gas leakage occurs in the refrigerant system. An object of the present invention is to provide a refrigeration system using a highly safe mixed refrigerant by suppressing the increase.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明の混合冷媒を用いた冷凍装置は、不燃性の第
1冷媒と、この第1冷媒よりも高沸点で可燃性の第2冷
媒と、この第2冷媒よりも高沸点で不燃性の第3冷媒と
を共沸組成比で混合して製造され、大気圧下で極小共沸
点を呈し、かつ不燃性を呈する共沸混合物とを所定の混
合比で混合してなる混合冷媒を用いたことを特徴とす
る。
In order to achieve the above object, a refrigerating apparatus using the mixed refrigerant of the present invention comprises a non-combustible first refrigerant and a second flammable second combustible refrigerant higher than the first refrigerant. An azeotropic mixture which is produced by mixing a refrigerant and a third refrigerant which has a higher boiling point than the second refrigerant and is nonflammable at an azeotropic composition ratio, which exhibits a minimal azeotropic point under atmospheric pressure and is nonflammable. It is characterized in that a mixed refrigerant obtained by mixing the above is mixed at a predetermined mixing ratio.

【0005】[0005]

【作用】上記混合冷媒を用いた冷凍装置において、冷媒
系にガス漏れが生じて、低沸点で不燃性の第1冷媒が選
択的に漏れ出しても、この第1冷媒が漏れ出た後には第
2冷媒と第3冷媒の極小共沸点をもつ共沸混合物が系内
に残り、この共沸混合物は大気圧下で不燃性を示す。従
って、この共沸混合物が系外に漏れ出しても引火または
爆発することはなく、ガス漏れあるいは装置廃棄時のガ
ス抜きの際の安全性が確保される。
In the refrigeration system using the above mixed refrigerant, even if the first refrigerant, which has a low boiling point and is incombustible, selectively leaks due to gas leakage in the refrigerant system, after the first refrigerant leaks, An azeotropic mixture having a minimum azeotropic point of the second refrigerant and the third refrigerant remains in the system, and this azeotropic mixture exhibits noncombustibility under atmospheric pressure. Therefore, even if this azeotropic mixture leaks out of the system, it does not ignite or explode, and the safety is ensured at the time of gas leakage or degassing at the time of disposal of the device.

【0006】[0006]

【実施例】以下、本発明を図示の実施例により詳細に説
明する。本実施例では、不燃性の第1冷媒としてR22
を、第1冷媒よりも高沸点で可燃性の第2冷媒としてR
142bを、第2冷媒よりも高沸点で不燃性の第3冷媒とし
てC318を夫々用いるとともに、第2冷媒のR142bと第
3冷媒のC318は、共沸組成比で混合されて、大気圧下
で極小共沸点および不燃性を呈する共沸混合物となって
いる。上記共沸組成比は、重量%でR142b/C318=37.
1/62.9であり、実施例の混合冷媒中ではR142bの占め
る重量%が25%であるので、第1冷媒R22,第2冷媒R1
42b,第3冷媒C318の重量%比は、略32.5:25.0:42.5と
なる。なお、上記3種の冷媒の物性値は、下記のとおり
である。 第1冷媒R22 [メタン系、分子式CHClF2、分子量86.4
7、沸点-40.82℃] 第2冷媒R142b [エタン系、分子式CH3-CClF2、分子量
100.50、沸点-9.8℃] 第3冷媒C318 [環状C4F8(フッ化シクロブタン)、分子
量200.03、沸点-5.85℃]
The present invention will be described in detail below with reference to the embodiments shown in the drawings. In this embodiment, R22 is used as the first non-combustible refrigerant.
R as a second flammable second refrigerant having a higher boiling point than the first refrigerant.
142b is used as a third refrigerant that has a higher boiling point than the second refrigerant and is nonflammable, and C142 of the second refrigerant and C318 of the third refrigerant are mixed at an azeotropic composition ratio and under atmospheric pressure. It is an azeotropic mixture that exhibits a minimum azeotropic point and nonflammability. The above-mentioned azeotropic composition ratio is R142b / C318 = 37.
Since it is 1 / 62.9, and the weight percentage of R142b in the mixed refrigerant of the embodiment is 25%, the first refrigerant R22 and the second refrigerant R1
The weight% ratio of 42b and the third refrigerant C318 is approximately 32.5: 25.0: 42.5. The physical properties of the three types of refrigerants are as follows. First refrigerant R22 [methane, molecular formula CHClF 2, molecular weight 86.4
7, boiling point-40.82 ℃] Refrigerant R142b [ethane system, molecular formula CH 3 -CClF 2 , molecular weight
100.50, boiling point-9.8 ° C] 3rd refrigerant C318 [cyclic C 4 F 8 (cyclobutane fluoride), molecular weight 200.03, boiling point-5.85 ° C]

【0007】上記混合冷媒を用いた冷凍装置において、
冷媒回路にガス漏れが生じた場合について、まず説明す
る。冷媒回路に充填された混合冷媒中の第2冷媒R142b
の重量%は、上述の如く25%である。漏れ初期では低沸
点の第1冷媒R22が選択的に漏れ出し、回路内には第2
冷媒R142bと第3冷媒C318の共沸混合物(R142b/C31
8=37.1/62.9)が残されるので、冷媒回路内の混合冷媒
中のR142bの重量%は、図1の曲線の如く漏れの進行
(冷媒漏れ率の増大)とともに増加する。ここで漏れ出す
R22は、不燃性だから引火や爆発の虞はない。冷媒漏れ
率が略70%に達すると、第1冷媒R22は総て漏れ出して
しまい、それ以降は第2/第3冷媒R142b/C318の共
沸混合物のみが漏れ出すので、冷媒回路内に残る混合冷
媒中のR142bの重量%も、図1の曲線の右側の水平部で
示すように、共沸組成比に等しい37.1%を示す。そし
て、この共沸混合物は、上述の如く不燃性であるので、
漏れ出しても引火または爆発することはなく、また、漏
れで共沸混合物のみが残った冷凍装置を廃棄する際、真
空ポンプでガス抜きするときも引火や爆発の虞がない。
つまり、ガス漏れや装置廃棄時のガス抜きの際の安全性
が確保され、ひいては冷凍装置そのものの安全性が向上
するのである。なお、図1の曲線から下の面積が充填当
初の混合冷媒中のR142bの重量%である25%に相当す
る。また、上記共沸混合物の組成比はR142b/C318=
37.1/62.9であるが、この組成比の前後の混合物でも、
上述と同様の効果が得られる。
In the refrigerating apparatus using the above mixed refrigerant,
First, the case where gas leakage occurs in the refrigerant circuit will be described. Second refrigerant R142b in the mixed refrigerant filled in the refrigerant circuit
% By weight is 25% as described above. At the initial stage of the leakage, the low boiling point first refrigerant R22 selectively leaks out, and the second refrigerant R22 in the circuit
Azeotropic mixture of refrigerant R142b and third refrigerant C318 (R142b / C31
8 = 37.1 / 62.9) is left, the weight% of R142b in the mixed refrigerant in the refrigerant circuit is the progress of leakage as shown by the curve in FIG.
Increases with (increased refrigerant leakage rate). R22 which leaks out here is nonflammable, so there is no risk of ignition or explosion. When the refrigerant leakage rate reaches approximately 70%, all of the first refrigerant R22 leaks out, and thereafter, only the azeotropic mixture of the second / third refrigerant R142b / C318 leaks out, so that it remains in the refrigerant circuit. The weight% of R142b in the mixed refrigerant also shows 37.1%, which is equal to the azeotropic composition ratio, as shown in the horizontal part on the right side of the curve in FIG. And since this azeotropic mixture is nonflammable as described above,
Even if it leaks out, it does not catch fire or explode, and there is no risk of ignition or explosion even when degassing with a vacuum pump when discarding the refrigeration system in which only the azeotrope remained due to the leak.
In other words, safety is ensured when gas is leaked or gas is removed when the device is discarded, and the safety of the refrigeration system itself is improved. The area below the curve in FIG. 1 corresponds to 25%, which is the weight% of R142b in the mixed refrigerant at the beginning of filling. The composition ratio of the azeotropic mixture is R142b / C318 =
It is 37.1 / 62.9, but even with a mixture before and after this composition ratio,
The same effect as described above can be obtained.

【0008】次に、冷凍装置における上記混合冷媒の働
きについて述べる。但し、冷凍装置に用いられる混合冷
媒は、共沸混合物の組成比が少なく、R142bの重量%が
10%程度のものである。図2は、この混合冷媒を用い
たヒートポンプ式冷凍装置の冷媒回路を示しており、こ
の冷媒回路は、四路切換弁2の切換ポートC,室外熱交
換器3,受液器5,空気調和用熱交換器たる室内ユニット
7,四路切換弁2の切換ポートHを順次配管10b〜10
eで循環接続するとともに、圧縮機1の吐出口と四路切
換弁2の流入ポートIを第1開閉弁11を介設した配管
10aで、四路切換弁2の流出ポートOと圧縮機1の吸
込口をアキュムレータ8を介設した配管10fで夫々接
続している。また、受液器5の室外熱交換器3側の配管
10cには暖房時に能力調整をする第1膨張弁4を、室
内熱交換器7側の配管10dには冷房時に能力調整をす
る第2膨張弁6を夫々介設する。さらに、圧縮機1の吐
出口と受液器5の間には、第2開閉弁12を介設した配
管10gおよび配管10hにより、湯沸かし用熱交換器た
る貯湯ユニット9を接続している。
Next, the function of the mixed refrigerant in the refrigeration system will be described. However, the mixed refrigerant used in the refrigerating apparatus has a small composition ratio of the azeotropic mixture, and the weight% of R142b is about 10%. FIG. 2 shows a refrigerant circuit of a heat pump type refrigerating apparatus using this mixed refrigerant. This refrigerant circuit includes a switching port C of the four-way switching valve 2, an outdoor heat exchanger 3, a liquid receiver 5, an air conditioner. The indoor unit 7, which is the heat exchanger for the vehicle, and the switching ports H of the four-way switching valve 2 are sequentially piped from 10b to 10b.
The circulation port is connected by e, and the discharge port of the compressor 1 and the inflow port I of the four-way switching valve 2 are connected to the outflow port O of the four-way switching valve 2 and the compressor 1 by a pipe 10a provided with the first opening / closing valve 11. The suction ports are connected to each other by a pipe 10f having an accumulator 8 interposed therebetween. Further, the pipe 10c on the outdoor heat exchanger 3 side of the liquid receiver 5 is provided with the first expansion valve 4 for adjusting the capacity during heating, and the pipe 10d on the indoor heat exchanger 7 side is provided with the second expansion valve 4 for adjusting the capacity during cooling. The expansion valves 6 are provided respectively. Further, a hot water storage unit 9 which is a heat exchanger for boiling water is connected between the discharge port of the compressor 1 and the liquid receiver 5 by a pipe 10g and a pipe 10h provided with a second opening / closing valve 12.

【0009】上記混合冷媒は、図2の冷媒回路内でも、
第1冷媒R22を低沸点の第1成分とし、第2/第3冷媒
R142b/C318の共沸混合物を高沸点の第2成分とする
非共沸混合冷媒として挙動する。そして、第1,第2膨
張弁4,6の開度調整により、アキュムレータ8に貯え
られる液冷媒を増減させ、これに伴い冷媒回路を循環す
る冷媒の組成を変化させて、冷暖房,給湯に応じた能力
制御を次のように行なうようになっている。
In the refrigerant circuit shown in FIG. 2, the mixed refrigerant is
It behaves as a non-azeotropic mixed refrigerant in which the first refrigerant R22 is the low boiling first component and the second / third refrigerant R142b / C318 azeotrope is the high boiling second component. Then, by adjusting the opening degree of the first and second expansion valves 4 and 6, the amount of liquid refrigerant stored in the accumulator 8 is increased or decreased, and the composition of the refrigerant circulating in the refrigerant circuit is changed accordingly, depending on the heating / cooling and hot water supply. The ability control is performed as follows.

【0010】まず、冷房運転モードでは、第1開閉弁1
1のみを開き、四路切換弁2をポートI,C/ポートH,
Oが夫々連通するように切り換えて、圧縮機1から吐出
した冷媒ガスを、破線矢印の如く循環させ、室外熱交換
器3で凝縮,放熱させる一方、室内ユニット7で蒸発,吸
熱させて室内を冷房する。このとき、第1膨張弁4は全
開させ、第2膨張弁6の開度を、室内ユニット(7)通過
後の冷媒の過熱度が適正になるように調整する。する
と、アキュムレータ8には冷媒液が貯えられることな
く、総ての混合冷媒が冷媒回路を循環する。この状態か
ら冷房負荷が増大した場合、第2膨張弁6の開度を増し
て室内ユニット通過後の冷媒を湿り気味に制御する。す
ると、アキュムレータ8に流入した湿り気味の冷媒が気
液に分離され、液冷媒が貯えられる。この湿り気味冷媒
から分離される液冷媒、即ち貯えられる液冷媒の組成
は、R22を第1成分,R142b/C318共沸混合物を第2成
分とする温度を縦軸にとった全率可溶形の気液平衡図か
ら判るように、高沸点の共沸混合物(第2成分)を多量に
含むことになる。従って、冷媒回路を循環する冷媒は、
逆に低沸点のR22(第1成分)を多量に含むことになっ
て、冷房能力はそれだけ増大するのである。アキュムレ
ータ8に貯えられた冷媒液の量は、第2膨張弁6の開度
を減じ、室内ユニット通過後の冷媒の乾き度を増して、
貯えられた冷媒液を蒸発させれば減少させることがで
き、これにより冷房能力は最初の状態まで減少する。
First, in the cooling operation mode, the first on-off valve 1
Open only 1, and set the four-way selector valve 2 to port I, C / port H,
O is switched to communicate with each other, and the refrigerant gas discharged from the compressor 1 is circulated as indicated by the broken line arrow to be condensed and radiated by the outdoor heat exchanger 3 while being evaporated and absorbed by the indoor unit 7 so that the inside of the room is To cool. At this time, the first expansion valve 4 is fully opened, and the opening degree of the second expansion valve 6 is adjusted so that the superheat degree of the refrigerant after passing through the indoor unit (7) becomes appropriate. Then, the refrigerant liquid is not stored in the accumulator 8, and all the mixed refrigerant circulates in the refrigerant circuit. When the cooling load increases from this state, the opening degree of the second expansion valve 6 is increased to control the refrigerant after passing through the indoor unit to be moist. Then, the moist refrigerant flowing into the accumulator 8 is separated into gas and liquid, and the liquid refrigerant is stored. The composition of the liquid refrigerant separated from the moist refrigerant, that is, the liquid refrigerant to be stored is a total rate soluble type in which the temperature with the R22b as the first component and the R142b / C318 azeotrope as the second component is plotted on the vertical axis. As can be seen from the vapor-liquid equilibrium diagram in Fig. 1, a large amount of high boiling azeotrope (second component) is contained. Therefore, the refrigerant circulating in the refrigerant circuit is
On the contrary, a large amount of R22 (first component) having a low boiling point is contained, and the cooling capacity is increased accordingly. The amount of the refrigerant liquid stored in the accumulator 8 reduces the opening degree of the second expansion valve 6 and increases the dryness of the refrigerant after passing through the indoor unit,
It can be reduced by evaporating the stored refrigerant liquid, which reduces the cooling capacity to the initial state.

【0011】次に、暖房運転モードでは、四路切換弁2
をポートI,H/ポートC,Oが夫々連通するように切り
換えて、圧縮機1から吐出した冷媒ガスを、実線矢印の
如く循環させ、室内ユニット7で凝縮,放熱させる一
方、室外熱交換器3で蒸発,吸熱させて室内を暖房す
る。このときは、第2膨張弁6を全開し、第1膨張弁4
の開度を増して、上述と同様にアキュムレータ8に共沸
混合物を多量に含む液冷媒が貯えられたとき、暖房能力
が増大することになる。
Next, in the heating operation mode, the four-way switching valve 2
Are switched so that the ports I and H / ports C and O are communicated with each other, and the refrigerant gas discharged from the compressor 1 is circulated as indicated by the solid line arrow to be condensed and radiated by the indoor unit 7, while the outdoor heat exchanger is also used. In 3 heats the room by evaporating and absorbing heat. At this time, the second expansion valve 6 is fully opened and the first expansion valve 4 is opened.
When the liquid refrigerant containing a large amount of the azeotrope is stored in the accumulator 8 by increasing the opening degree of, the heating capacity is increased.

【0012】さらに、給湯モードでは、四路切換弁2を
暖房運転モードと同じ位置とし、第1開閉弁11を閉
じ、第2開閉弁12を開いて、圧縮機1から吐出した冷
媒ガスを、一点鎖線矢印の如く配管10gを経て貯湯ユ
ニット9に送り、配管10hから受液器5を経て実線矢
印の如く循環させる。この場合は、貯湯ユニット9で湯
を沸かさなければならないので、高沸点の共沸混合物を
アキュムレータ8に貯えることなく循環させる必要があ
る。従って、第2膨張弁6を全開し、第1膨張弁4の開
度を、室外熱交換器(3)通過後の冷媒の過熱度が適正に
なるように調整し、すべての混合冷媒を冷媒回路に循環
させる。これにより、R142b/C318の共沸混合物が冷
媒回路の貯湯ユニット9内で凝縮して、高温の熱源とし
て湯を沸かすことになる。また、湯沸かし能力を減少さ
せるには、第1膨張弁4の開度を増して、アキュムレー
タ8に共沸混合物を多量に含む冷媒液を貯えればよい。
Further, in the hot water supply mode, the four-way switching valve 2 is set to the same position as in the heating operation mode, the first opening / closing valve 11 is closed, the second opening / closing valve 12 is opened, and the refrigerant gas discharged from the compressor 1 is It is sent to the hot water storage unit 9 through the pipe 10g as indicated by the one-dot chain line arrow, and is circulated as shown by the solid line arrow from the pipe 10h through the liquid receiver 5. In this case, since the hot water must be boiled in the hot water storage unit 9, it is necessary to circulate the high boiling point azeotropic mixture without storing it in the accumulator 8. Therefore, the second expansion valve 6 is fully opened, the opening degree of the first expansion valve 4 is adjusted so that the degree of superheat of the refrigerant after passing through the outdoor heat exchanger (3) becomes appropriate, and all the mixed refrigerants are cooled by the refrigerant. Circulate in the circuit. As a result, the azeotropic mixture of R142b / C318 condenses in the hot water storage unit 9 of the refrigerant circuit and boils the hot water as a high temperature heat source. Further, in order to reduce the boiling water capacity, the opening degree of the first expansion valve 4 may be increased to store the refrigerant liquid containing a large amount of the azeotropic mixture in the accumulator 8.

【0013】このように、上記冷凍装置に、本実施例の
R22とR142b/C318共沸混合物とからなる混合冷媒を
用いれば、第1,第2膨張弁4,6の開度調整により、ア
キュムレータ8に貯えられる上記共沸混合物の量を増減
させ、これに伴ない冷媒回路を循環する冷媒中のR22の
量を減増させて、冷暖房,給湯に応じた適切な能力制御
を行なうことができる。加えて、上述の如く上記共沸混
合物が不燃性であるので、ガス漏れや冷凍装置廃棄時の
ガス抜きの際の安全性が確保され、冷凍装置そのものの
安全性も向上する。
As described above, if the mixed refrigerant composed of R22 and R142b / C318 azeotrope of this embodiment is used in the refrigerating apparatus, the accumulator can be adjusted by adjusting the opening of the first and second expansion valves 4 and 6. It is possible to increase or decrease the amount of the azeotrope mixture stored in 8 and to increase or decrease the amount of R22 in the refrigerant circulating in the refrigerant circuit in accordance with this, and to perform appropriate capacity control according to cooling and heating and hot water supply. .. In addition, since the azeotropic mixture is non-flammable as described above, safety is ensured at the time of gas leakage and degassing at the time of discarding the refrigeration system, and the safety of the refrigeration system itself is improved.

【0014】なお、上記実施例では、第1,第2,第3冷
媒として夫々R22,R142b,C318を用いた場合を説明し
たが、各冷媒の種類はこれらに限られず、その組成比も
実施例のものに限られない。
In the above embodiment, the case where R22, R142b, and C318 are used as the first, second, and third refrigerants, respectively, has been described. However, the kinds of the respective refrigerants are not limited to these, and the composition ratio thereof is also used. It is not limited to the examples.

【0015】[0015]

【発明の効果】以上の説明で明らかなように、本発明の
冷凍装置は、不燃性の第1冷媒と、この第1冷媒よりも
高沸点で可燃性の第2冷媒と,この第2冷媒よりも高沸
点で不燃性の第3冷媒とを共沸組成比で混合して製造さ
れ、大気圧下で極小共沸点および不燃性を呈する共沸混
合物とを所定の混合比で混合してなる混合冷媒を用いて
いるので、冷凍装置の膨張弁の開度調整等により、冷媒
回路を循環する冷媒に含まれる第1冷媒の比率を増減さ
せて、冷暖房,給湯に応じた適切な能力制御ができると
ともに、不燃性の共沸混合物により、ガス漏れや廃棄時
ガス抜きの際の安全性が確保され、冷凍装置そのものの
安全性をも向上させることができる。
As is clear from the above description, the refrigerating apparatus of the present invention includes a non-combustible first refrigerant, a second combustible refrigerant having a higher boiling point than the first refrigerant, and the second refrigerant. It is produced by mixing an azeotropic composition ratio with a third refrigerant that has a higher boiling point and is nonflammable, and is mixed at a predetermined mixing ratio with an azeotropic mixture that exhibits a minimal azeotropic point and nonflammability under atmospheric pressure. Since a mixed refrigerant is used, by adjusting the opening degree of the expansion valve of the refrigeration system, etc., the ratio of the first refrigerant contained in the refrigerant circulating in the refrigerant circuit is increased or decreased to perform appropriate capacity control according to heating / cooling or hot water supply. In addition, the non-flammable azeotropic mixture ensures the safety of gas leakage and degassing at the time of disposal, and can improve the safety of the refrigerating apparatus itself.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の混合冷媒における冷媒漏
れ率と漏洩冷媒中のR142bの比率との関係を示す図であ
る。
FIG. 1 is a diagram showing a relationship between a refrigerant leak rate in a mixed refrigerant and a ratio of R142b in the leaked refrigerant according to an embodiment of the present invention.

【図2】 上記混合冷媒を用いた冷凍装置の冷媒回路図
である。
FIG. 2 is a refrigerant circuit diagram of a refrigerating apparatus using the mixed refrigerant.

【図3】 従来の混合冷媒における冷媒漏れ率と漏洩冷
媒中のR142bの比率との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a refrigerant leakage rate in a conventional mixed refrigerant and a ratio of R142b in the leakage refrigerant.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…四路切換弁、3…室外熱交換器、4,
6…第1,第2膨張弁、7…室内ユニット、8…アキュ
ムレータ、9…貯湯ユニット。
1 ... Compressor, 2 ... Four-way switching valve, 3 ... Outdoor heat exchanger, 4,
6 ... First and second expansion valves, 7 ... Indoor unit, 8 ... Accumulator, 9 ... Hot water storage unit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 不燃性の第1冷媒と、 この第1冷媒よりも高沸点で可燃性の第2冷媒と、この
第2冷媒よりも高沸点で不燃性の第3冷媒とを共沸組成
比で混合して製造され、大気圧下で極小共沸点を呈し、
かつ不燃性を呈する共沸混合物とを所定の混合比で混合
してなる混合冷媒を用いた冷凍装置。
1. An azeotropic composition of a non-flammable first refrigerant, a second flammable second refrigerant having a higher boiling point than the first refrigerant, and a third non-flammable refrigerant having a higher boiling point than the second refrigerant. Produced by mixing in a ratio, it exhibits a minimum azeotropic point under atmospheric pressure,
A refrigeration system using a mixed refrigerant formed by mixing a non-flammable azeotropic mixture with a predetermined mixing ratio.
JP32031191A 1991-12-04 1991-12-04 Freezer using mixed refrigerant Pending JPH05215424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32031191A JPH05215424A (en) 1991-12-04 1991-12-04 Freezer using mixed refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32031191A JPH05215424A (en) 1991-12-04 1991-12-04 Freezer using mixed refrigerant

Publications (1)

Publication Number Publication Date
JPH05215424A true JPH05215424A (en) 1993-08-24

Family

ID=18120076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32031191A Pending JPH05215424A (en) 1991-12-04 1991-12-04 Freezer using mixed refrigerant

Country Status (1)

Country Link
JP (1) JPH05215424A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534602A (en) * 2015-01-14 2015-04-22 合肥天鹅制冷科技有限公司 Superhigh-temperature special air conditioner
CN104534707A (en) * 2015-01-14 2015-04-22 合肥天鹅制冷科技有限公司 Special air conditioner for wide temperature region
WO2017170009A1 (en) * 2016-03-28 2017-10-05 日本電気株式会社 Cooling apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641787A (en) * 1987-06-09 1989-01-06 E I Du Pont De Nemours & Co Halocarbon blend for refrigerant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641787A (en) * 1987-06-09 1989-01-06 E I Du Pont De Nemours & Co Halocarbon blend for refrigerant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534602A (en) * 2015-01-14 2015-04-22 合肥天鹅制冷科技有限公司 Superhigh-temperature special air conditioner
CN104534707A (en) * 2015-01-14 2015-04-22 合肥天鹅制冷科技有限公司 Special air conditioner for wide temperature region
WO2017170009A1 (en) * 2016-03-28 2017-10-05 日本電気株式会社 Cooling apparatus

Similar Documents

Publication Publication Date Title
JP5927339B2 (en) Dual refrigeration equipment
EP0675331B1 (en) Air conditioning system with built-in intermediate heat exchanger with two different types of refrigerants circulated
JP3208151B2 (en) Refrigeration equipment
US20110126575A1 (en) Refrigerating apparatus
US20040123608A1 (en) Non-azeotropic refrigerant mixture, refrigerating cycle and refrigerating device
JP2000234811A (en) Refrigerating cycle device
KR20090008342A (en) Refrigeration system
JP2022017439A (en) High efficiency air conditioning systems and methods
WO2015147338A1 (en) Two-stage cascade refrigeration device
KR20200108246A (en) Refrigerant
JP2022125358A (en) Refrigeration device
CN108531135A (en) Mix refrigerant suitable for deep cooling warm area and preparation method thereof, application process
US11359122B2 (en) Method for heating and/or air-conditioning in a vehicle
JP2016070571A (en) Refrigeration device
JPH05215424A (en) Freezer using mixed refrigerant
KR100473961B1 (en) Method of charging mixed cooling medium
JP4543469B2 (en) Refrigeration equipment
KR100869082B1 (en) Dual Refrigerant Refrigeration Equipment by Compulsive Circulation of Secondary Refrigerant
JP2020525745A (en) Refrigeration system and method
JPH0798161A (en) Freezer using mixed refrigerant
JP2022003119A (en) Coolant
JP2007155193A (en) Refrigerating cycle device
Chavhan et al. Experimental performance evaluation of R152a to replace R134a in vapour compression refrigeration system
JPH08303882A (en) Method of operating heat pump using new alternative refrigerant gas hfc
JP3833885B2 (en) vending machine