JPH05215133A - Static pressure fluid bearing and positioning control device thereof - Google Patents
Static pressure fluid bearing and positioning control device thereofInfo
- Publication number
- JPH05215133A JPH05215133A JP4046384A JP4638492A JPH05215133A JP H05215133 A JPH05215133 A JP H05215133A JP 4046384 A JP4046384 A JP 4046384A JP 4638492 A JP4638492 A JP 4638492A JP H05215133 A JPH05215133 A JP H05215133A
- Authority
- JP
- Japan
- Prior art keywords
- static pressure
- moving body
- bearing
- gap
- positioning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C29/00—Bearings for parts moving only linearly
- F16C29/02—Sliding-contact bearings
- F16C29/025—Hydrostatic or aerostatic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
- F16C32/0603—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
- F16C32/0614—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
- F16C32/0662—Details of hydrostatic bearings independent of fluid supply or direction of load
- F16C32/067—Details of hydrostatic bearings independent of fluid supply or direction of load of bearings adjustable for aligning, positioning, wear or play
- F16C32/0674—Details of hydrostatic bearings independent of fluid supply or direction of load of bearings adjustable for aligning, positioning, wear or play by means of pre-load on the fluid bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C29/00—Bearings for parts moving only linearly
- F16C29/12—Arrangements for adjusting play
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0402—Bearings not otherwise provided for using magnetic or electric supporting means combined with other supporting means, e.g. hybrid bearings with both magnetic and fluid supporting means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0472—Active magnetic bearings for linear movement
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体露光装置(ステ
ッパ等)の位置決め装置の案内として使用される静圧空
気軸受に関し、特に浮上力に対してバランスをとるため
の吸引力発生用永久磁石部に磁場変調用コイルを設けた
静圧空気軸受に関するものである。さらに本発明はこの
静圧空気軸受を使った位置決め装置に関し、特に移動体
の姿勢変化を制御するための位置決め制御装置構成に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static pressure air bearing used as a guide for a positioning device of a semiconductor exposure apparatus (stepper or the like), and more particularly to a permanent magnet for generating an attractive force for balancing the levitation force. The present invention relates to a static pressure air bearing in which a magnetic field modulation coil is provided in a portion. Furthermore, the present invention relates to a positioning device using this static pressure air bearing, and more particularly to a positioning control device configuration for controlling the posture change of a moving body.
【0002】[0002]
【従来の技術】精密機器の運動精度を支配する重要な要
素の一つとして案内面がある。近年、直進精度確保の観
点から静圧軸受が多く用いられている。例えば、高精度
を要求される位置決めステージでは、通常、案内や支持
部に静圧軸受を用いて運動精度を高めている。2. Description of the Related Art A guide surface is one of the important factors that control the motion accuracy of precision equipment. In recent years, hydrostatic bearings have been widely used from the viewpoint of ensuring straight running accuracy. For example, in a positioning stage that requires high accuracy, static pressure bearings are usually used for guides and supporting parts to improve motion accuracy.
【0003】この静圧空気軸受の長所は、空気膜の平均
化効果により高い直進精度が得られることおよび非接触
支持のため摩擦、摩耗、発塵が少なくその結果、駆動力
を小さくでき、清浄環境化での使用が可能となることで
ある。The advantage of this hydrostatic air bearing is that high straightness can be obtained due to the averaging effect of the air film and friction, wear and dust are reduced due to non-contact support, and as a result the driving force can be reduced and the cleaning can be improved. This means that it can be used in an environmental environment.
【0004】一方、静圧空気軸受の短所は、粘性が小さ
い空気で支持しているため、剛性や負荷容量の向上が難
しいことおよび空気の圧縮性に起因する自励振動が発生
しやすいことである。On the other hand, the disadvantage of the hydrostatic air bearing is that it is supported by air of low viscosity, so that it is difficult to improve rigidity and load capacity, and self-excited vibration easily occurs due to the compressibility of air. is there.
【0005】次に、静圧空気軸受を用いた位置決め装置
の一例について説明する。図5は移動体1を静圧空気軸
受2を用いて案内する1軸方向の位置決め装置の一例で
ある。ここで、3は駆動用ボールネジであり、カップリ
ング4を介して移動体1を直動方向に位置決めする駆動
機構となっている。使用される案内としての静圧空気軸
受2は、固体摩擦に起因するスティックスリップやバッ
クラッシュが皆無であるため高移動分解能を持ち、静圧
静圧パッドの形状誤差が作動流体膜で平均化されるため
案内精度が向上し、かつ摩擦が皆無であるため恒久的な
高精度送りが可能となるという特徴を有する。Next, an example of a positioning device using a hydrostatic air bearing will be described. FIG. 5 is an example of a uniaxial positioning device that guides the moving body 1 using the static pressure air bearing 2. Here, 3 is a drive ball screw, which is a drive mechanism for positioning the moving body 1 in the linear movement direction via the coupling 4. The hydrostatic air bearing 2 used as a guide has high movement resolution because there is no stick slip or backlash due to solid friction, and the hydrostatic pressure pad shape error is averaged in the working fluid film. Therefore, the guide accuracy is improved, and since there is no friction, it is possible to perform a permanent high-precision feed.
【0006】図6は静圧空気軸受取付部の拡大断面図で
ある。図6を用いてこの軸受の原理を説明する。同図
は、移動体1が静圧パッド5a、5bの働きにより隙間
6a、6bを介して定盤7から非接触浮上している様子
を描いている。静圧パッドホルダ9a、9bに取り付け
られた静圧パッド5a、5bには各々供給チューブ8
a、8bから圧縮空気が供給され、これにより定盤7に
対する浮上力を得ている。また、磁石ホルダ10a、1
0bに取り付けられた永久磁石11a、11bの作用に
より、移動体1を定盤7側へ吸引する。したがって、圧
縮空気が導かれる静圧パッド5a、5bによる上方向の
浮上力と永久磁石による下方向への吸引力のバランスが
とれた状態で隙間6a、6bが安定となり、定盤7に対
する非接触状態が得られる。FIG. 6 is an enlarged sectional view of the static pressure air bearing mounting portion. The principle of this bearing will be described with reference to FIG. This figure depicts a state in which the moving body 1 floats in a non-contact manner from the surface plate 7 through the gaps 6a and 6b by the action of the static pressure pads 5a and 5b. The supply tube 8 is attached to each of the static pressure pads 5a and 5b attached to the static pressure pad holders 9a and 9b.
Compressed air is supplied from a and 8b, so that the levitation force with respect to the surface plate 7 is obtained. Also, the magnet holders 10a, 1
The moving body 1 is attracted to the surface plate 7 side by the action of the permanent magnets 11a and 11b attached to 0b. Therefore, the clearances 6a and 6b are stable in a state where the upward floating force of the static pressure pads 5a and 5b to which the compressed air is guided and the downward attractive force of the permanent magnets are balanced, and the clearances 6a and 6b are not in contact with the surface plate 7. The state is obtained.
【0007】なお、同図は移動体1が静圧パッド5a、
5bによって重力と逆方向に非接触支持される場合の図
であるが、水平方向に移動体1を非接触支持する場合も
原理は同様となる。ただし、この場合は永久磁石は、空
気軸受の反発力によって移動体1が左右に変形するのを
防止する役割も有する。In the figure, the moving body 1 has a static pressure pad 5a,
5B is a diagram showing a case where the movable body 1 is supported in a non-contact manner in the direction opposite to gravity by 5b, but the principle is the same when the movable body 1 is supported in a non-contact manner in the horizontal direction. However, in this case, the permanent magnet also has a role of preventing the moving body 1 from being laterally deformed by the repulsive force of the air bearing.
【0008】[0008]
【発明が解決しようとする課題】前記従来技術において
は、以上の説明のように、静圧空気軸受は永久磁石の吸
引力と作動流体の圧力との釣合いによって一定の隙間を
得て移動体を非接触支持する。この場合、隙間が装置性
能に関わる重要なパラメータになる。即ち隙間は装置の
機械剛性を決定しており、この機械剛性は、制御ループ
を構成して静圧空気軸受を使用する位置決め装置の性能
に大きく影響するからである。従来の静圧空気軸受では
隙間の管理が十分できないという問題点があった。In the above-mentioned prior art, as described above, the static pressure air bearing provides the movable body with a certain clearance due to the balance between the attractive force of the permanent magnet and the pressure of the working fluid. Support non-contact. In this case, the gap becomes an important parameter related to the device performance. That is, the clearance determines the mechanical rigidity of the device, and this mechanical rigidity greatly affects the performance of the positioning device that constitutes the control loop and uses the hydrostatic air bearing. The conventional static pressure air bearing has a problem that the clearance cannot be managed sufficiently.
【0009】即ち、着磁によって永久磁石の吸引力が決
まるのであるが、その大きさを正確に、かつバラツキ無
しで作り込むことは困難であった。また、パッドそのも
のも制作上のバラツキを持っていた。したがって、作動
流体を静圧パッドに供給したときに得られる浮上力と磁
気吸引力のバランスもバラツキを持ち、このため隙間が
目標値どおりに設定できなかった。この場合、剛性の絶
対値が目標どおりに管理できないことになるため、制御
系を構成したときの位置決め性能も管理できなかった。That is, the magnetizing force determines the attractive force of the permanent magnet, but it was difficult to make the size of the permanent magnet accurately and without variation. Also, the pads themselves had variations in production. Therefore, the balance between the levitation force and the magnetic attraction force obtained when the working fluid is supplied to the static pressure pad also varies, and thus the gap cannot be set as the target value. In this case, the absolute value of rigidity cannot be managed as desired, so that the positioning performance when the control system is configured could not be managed.
【0010】上述の問題点は位置決め装置の制御系性能
を制限する剛性の絶対値に関わるものであったが、従来
技術においてはその他に、静圧空気軸受を空間的に配置
したことに原因する位置決め装置の姿勢変化の問題があ
った。以下これについて説明する。The above-mentioned problems are related to the absolute value of the rigidity which limits the performance of the control system of the positioning device, but in the prior art, it is caused by the spatial arrangement of the hydrostatic air bearings. There was a problem of the posture change of the positioning device. This will be described below.
【0011】一般に、静圧パッドと永久磁石を静圧空気
軸受を構成する1ユニットとしたとき、位置決め装置の
中ではこのユニットを何カ所も使用して移動体を支持し
ている。したがって、静圧パッドの浮上力と永久磁石の
吸引力の釣合いはユニット毎に異なり、当然、それぞれ
の隙間も異なっていた。従来、所与の永久磁石の吸引力
は組み込んだ後には調整できないので、作動流体の圧力
を調整して、全ユニットの隙間がほぼ目標値近傍となる
ようにしていた。しかしながら、各ユニットの隙間は微
妙に異なり、ユニットに支持された移動体が位置決め駆
動されるたびに、隙間が異なることに起因した姿勢変化
が生じていた。Generally, when the static pressure pad and the permanent magnet are one unit constituting a static pressure air bearing, this unit is used at many places in the positioning device to support the moving body. Therefore, the balance between the levitation force of the static pressure pad and the attraction force of the permanent magnet differs from unit to unit, and naturally the gaps between them also differ. Conventionally, since the attraction force of a given permanent magnet cannot be adjusted after being incorporated, the pressure of the working fluid has been adjusted so that the gaps of all units are close to the target value. However, the gap between the units is slightly different, and each time the moving body supported by the unit is positionally driven, a change in posture occurs due to the difference in the gap.
【0012】つまり、静止空気軸受の隙間は軸受剛性と
等価なのであるが、移動体の共振周波数と軸受剛性の関
係は周知のように次式で与えられている。That is, the clearance of the stationary air bearing is equivalent to the bearing rigidity, but the relationship between the resonance frequency of the moving body and the bearing rigidity is given by the following equation as is well known.
【0013】[0013]
【数1】f=(k/m)1/2/2π ただし、m:ステージ質量、k:剛性、である。## EQU1 ## f = (k / m) 1/2 / 2.pi., Where m is stage mass and k is rigidity.
【0014】上式において、静圧空気軸受の剛性kは軸
受隙間によって変化する。しかしながら、移動体が移動
する位置で軸受隙間も変化する。このため、剛性が軸受
各部で変化すると、移動体の姿勢変化をもたらす。した
がって、姿勢変化により位置決め時間が移動場所毎に変
動し、ある場所では良好な位置決め時間を達成している
にもかかわらず、別の場所では、極端な場合、発振現象
を招くという事態にさえ陥ることがある。さらには、軸
受隙間の変化は経時的な機械寸法の変化や機械組立時の
材料変形とあいまって機械的接触事故を招くことがあっ
た。In the above equation, the rigidity k of the static pressure air bearing changes depending on the bearing clearance. However, the bearing gap also changes at the position where the moving body moves. Therefore, if the rigidity changes in each part of the bearing, the posture of the moving body changes. Therefore, the positioning time varies depending on the position of movement due to a change in posture, and even if a good positioning time is achieved in one place, in another place, in an extreme case, an oscillation phenomenon may be caused. Sometimes. Furthermore, changes in the bearing clearance, along with changes in machine dimensions over time and material deformation during machine assembly, sometimes lead to mechanical contact accidents.
【0015】本発明は上記従来技術の欠点に鑑みなされ
たものであって、軸受の組立精度や機械的精度のバラツ
キあるいは軸受の移動による場所的変化による軸受隙間
の変化を防止した静圧空気軸受の提供を目的とする。The present invention has been made in view of the above-mentioned drawbacks of the prior art, and is a static pressure air bearing in which variations in bearing assembly accuracy and mechanical accuracy or changes in bearing clearance due to locational changes due to movement of the bearing are prevented. For the purpose of providing.
【0016】[0016]
【課題を解決するための手段および作用】前記目的を達
成するため、本発明では、永久磁石によるバイアス吸引
力を磁場変調用コイルに通電する電流によって操作可能
な静圧空気軸受を提供する。本構成によって軸受間隙は
調整可能となり、これにより剛性を調整できることとな
る。In order to achieve the above object, the present invention provides a hydrostatic air bearing that can be operated by a current that applies a bias attraction force by a permanent magnet to a magnetic field modulation coil. With this configuration, the bearing gap can be adjusted, and thus the rigidity can be adjusted.
【0017】また、位置決め装置における移動体のピッ
チングやヨーイングなどの姿勢変化を抑制すべく、その
姿勢変化を補正するように磁場変調用コイルへの電流を
制御する装置構成を提供する。この場合、静圧空気軸受
各部の剛性を同一に揃えるということではなく、姿勢変
化を抑制するように静圧空気軸受各部の剛性値をそれぞ
れ変化させて移動体の姿勢が矯正される。Further, in order to suppress the posture change such as pitching and yawing of the moving body in the positioning device, there is provided a device configuration for controlling the current to the magnetic field modulation coil so as to correct the posture change. In this case, the rigidity of each part of the static pressure air bearing is not made uniform, but the rigidity value of each part of the static pressure air bearing is changed so as to suppress the change in position, and the position of the moving body is corrected.
【0018】[0018]
【実施例】図1は本の一実施例に係る磁場変調用コイル
を備えた静圧空気軸受取付部の拡大断面図である。同図
において、12a、12bはバイアス用の永久磁石、1
3a、13bは磁場変調用コイル、14a、14bはヨ
ークである。1 is an enlarged sectional view of a static pressure air bearing mounting portion provided with a magnetic field modulation coil according to an embodiment of the present invention. In the figure, 12a and 12b are permanent magnets for bias, and 1
3a and 13b are magnetic field modulation coils, and 14a and 14b are yokes.
【0019】前述の図6に示す従来の静圧空気軸受で
は、静圧パッド5a、5bにバラツキがあるので、同一
の圧縮空気を供給チューブ8a、8bに導いても浮上力
は異なる。また、定盤7への吸引力を発生する永久磁石
11a、11bにも着磁ムラによる吸引力のバラツキが
あった。したがって、静圧バッド5aの近傍と静圧パッ
ド5bの近傍の隙間6a、6bは同一ではないのであ
る。この状態で、移動体1を水平方向に高速位置決め駆
動させた場合、ピッチングという姿勢変化を生じさせ、
位置決めの整定を著しく阻害する結果となっていた。最
悪の場合には、定盤7への接触事故を生じる場合もあっ
た。一方、静圧軸受が移動体1を水平方向に非接触支持
するように配置された場合において移動体1を高速位置
決めさせたときには、ヨーイングと呼ばれる姿勢の変化
を生じさせていた。In the conventional static pressure air bearing shown in FIG. 6 described above, since the static pressure pads 5a and 5b have variations, even if the same compressed air is guided to the supply tubes 8a and 8b, the levitation force is different. Further, the permanent magnets 11a and 11b that generate the attraction force to the surface plate 7 also have variations in the attraction force due to uneven magnetization. Therefore, the gaps 6a and 6b in the vicinity of the static pressure pad 5a and in the vicinity of the static pressure pad 5b are not the same. In this state, when the moving body 1 is driven to position in the horizontal direction at high speed, a posture change called pitching occurs,
As a result, the settling of positioning was significantly hindered. In the worst case, a contact accident with the surface plate 7 may occur. On the other hand, when the hydrostatic bearing is arranged so as to support the moving body 1 in the horizontal direction in a non-contact manner, when the moving body 1 is positioned at a high speed, a change in posture called yawing occurs.
【0020】しかしながら、図1に示す本発明の実施例
に係る磁場変調用コイルを備えた静圧空気軸受では永久
磁石12a、12bとともに磁場変調用コイル13a、
13bが準備されており、これに通電する電流によって
吸引力を調整することが可能である。したがって、移動
体1の定盤7に対する隙間6a、6bをそれぞれ目標値
に調整することが可能である。すなわち、磁場を強める
方向に電流を通電すれば吸引力ば大きくなるので、隙間
6a、6bは狭くなり、反対に磁場を弱める方向に通電
すると吸引力も弱くなるので隙間6a、6bは拡がるの
である。隙間6a、6bの調整は剛性の調整と等価であ
り、特性が揃った軸受を有する移動体1の水平方向の位
置決めは、定盤7が平面度が良好であればピッチング運
動を生じさせることがないため、移動場所によらず位置
決め特性は安定になる。勿論、剛性値を目標とする値に
セットすることができるので、共振周波数そのものも実
現可能な範囲で高くすることができ、したがって位置決
め性能も最高の状態にすることが可能となる。However, in the static pressure air bearing having the magnetic field modulation coil according to the embodiment of the present invention shown in FIG. 1, the permanent magnets 12a and 12b as well as the magnetic field modulation coil 13a,
13b is prepared, and it is possible to adjust the attraction force by the electric current supplied to this. Therefore, the gaps 6a and 6b of the moving body 1 with respect to the surface plate 7 can be adjusted to the respective target values. That is, when a current is applied in the direction of strengthening the magnetic field, the attraction force is increased, so that the gaps 6a and 6b are narrowed. On the contrary, when current is applied in the direction of weakening the magnetic field, the attraction force is also weakened and the gaps 6a and 6b are expanded. The adjustment of the gaps 6a and 6b is equivalent to the adjustment of the rigidity, and the horizontal positioning of the moving body 1 having the bearings having the uniform characteristics can cause the pitching motion if the surface plate 7 has good flatness. Since it does not exist, the positioning characteristics are stable regardless of the moving location. Of course, since the rigidity value can be set to a target value, the resonance frequency itself can be increased within a feasible range, and thus the positioning performance can be maximized.
【0021】図1の実施例では2カ所に静圧パッド5
a、5bを配置し、同時に2カ所に磁場変調用コイル1
3a、13bを備えていた。このような構成に代えて、
図2のように、静圧パッド5aと永久磁石11aからな
る静圧空気軸受と静圧パッド5bとバイアス用永久磁石
12bに磁場変調用コイル13bを施したものからなる
静圧空気軸受とを配置してもよい。この場合、静圧パッ
ド5aと永久磁石11aとからなる静圧空気軸受の部位
は、圧縮空気の供給量と永久磁石の吸引力のバランスで
受動的に隙間6aが決まる。調整可能な部位は磁場変調
用コイル13bを備えた静圧パッド5bの部位の隙間6
bである。In the embodiment of FIG. 1, static pressure pads 5 are provided at two places.
a and 5b are arranged, and the magnetic field modulation coil 1 is placed at two locations at the same time.
It was equipped with 3a and 13b. Instead of such a configuration,
As shown in FIG. 2, a static pressure air bearing including a static pressure pad 5a and a permanent magnet 11a, and a static pressure air bearing including a static pressure pad 5b and a bias permanent magnet 12b provided with a magnetic field modulation coil 13b are arranged. You may. In this case, at the portion of the static pressure air bearing composed of the static pressure pad 5a and the permanent magnet 11a, the gap 6a is passively determined by the balance between the supply amount of compressed air and the attraction force of the permanent magnet. The adjustable part is the gap 6 of the part of the static pressure pad 5b provided with the magnetic field modulation coil 13b.
b.
【0022】また、図1の実施例と図2の実施例におい
ては何れも定盤7の平面度が良好の場合であり、隙間6
a、6bを磁場変調用コイルに通電する電流によって調
整するものである。しかしながら、本発明によれば、定
盤7の平面度が良好でない場合においても高速高精度な
位置決め動作を実現できる。以下、定盤7の平面度がで
ていない場合における位置決め制御装置の構成を示す。In both the embodiment shown in FIG. 1 and the embodiment shown in FIG. 2, the flatness of the surface plate 7 is good, and the gap 6
The values a and 6b are adjusted by the current supplied to the magnetic field modulation coil. However, according to the present invention, high-speed and high-accuracy positioning operation can be realized even when the flatness of the surface plate 7 is not good. The configuration of the positioning control device when the flatness of the surface plate 7 is not shown will be described below.
【0023】一般に、案内面となる定盤には高い平面度
が要求されるが、この表面には表面うねりが存在する。
短ピッチの表面うねりは静圧空気軸受の平均化効果によ
って移動体に与える姿勢変化への影響は軽減される。し
かし、長ピッチのうねりが存在する場合には移動体の姿
勢変化に及ぼす影響は大きい。Generally, a high flatness is required for a surface plate which serves as a guide surface, but surface undulation exists on this surface.
Due to the averaging effect of the static pressure air bearing, the short pitch surface waviness reduces the influence on the posture change of the moving body. However, when there is a long pitch swell, it has a great influence on the posture change of the moving body.
【0024】図3は定盤7の中央部が盛り上がった形状
の案内面に沿って移動体1を水平方向に位置決めする場
合において、ピッチング運動を抑制するための位置決め
制御装置構成を示す。このような形状の定盤7に沿って
移動体1を高速高精度に位置決めするためには、特定の
場所のみで隙間6a6bを調整するだけでは済まされな
い。つまり、移動体1のピッチング運動を抑制すべく移
動場所毎に隙間6a、6bは調整される必要がある。FIG. 3 shows the configuration of a positioning control device for suppressing the pitching motion when the movable body 1 is horizontally positioned along the guide surface in which the central portion of the surface plate 7 is raised. In order to position the moving body 1 along the surface plate 7 having such a shape at high speed and with high accuracy, it is not enough to adjust the gap 6a6b only at a specific place. That is, the gaps 6a and 6b need to be adjusted for each moving place in order to suppress the pitching movement of the moving body 1.
【0025】同図において、15はミラー、16はレー
ザ光線、17は干渉計ヘッド、18は位置検出器であ
り、これらは位置検出手段となる。さらに、19は分配
器、20aと20bは電力増幅器、そして21は補償器
である。この装置構成において、移動体1の水平方向位
置はこれに搭載されるミラー15へレーザ光線16を照
射して反射光を干渉計ヘッド17で受光することにより
位置検出器18において検出される。いま、磁場変調用
コイル13a、13bへの電流供給が無い場合を考え
る。この場合には、永久磁石12a、12bの発生する
吸引力と静圧パッド5a、5bの浮上力のバランスによ
って隙間6a、6bが決まる。しかし、この状態で、中
央部が凸の案内面に沿って移動体1を位置決めした場合
には、案内面の定盤7の平面度がでていないためにピッ
チング運動を発生して位置決め性能を著しく阻害する。
しかし、移動場所毎に移動体1のピッチング量は予め知
ることができる。例えばオートコリメータによる計測に
よってピッチング量は既知となる。あるいは、移動場所
毎に周波数特性を測定してピッチング運動の周波数応答
上の変化をみることによっても間接的に移動体1のピッ
チング運動の様子は把握可能である。したがって、ピッ
チングを抑制するための隙間6の補正量は移動体1の位
置ごとに既知となる。図3の構成では、移動体1の絶対
位置が位置検出器18で計測され、この信号は分配器1
9に導かれている。この分配器19では、磁場変調用コ
イル13a、13bに供給すべき電流の分配率を格納し
たテーブルを有しており、移動体1の絶対位置に応じて
電力増幅器20a、20bを励起して磁場変調用コイル
13へ電流を流して隙間6a、6bを調整する。このよ
うにすれば、ピッチング運動を生じさせることなく安定
に移動体1を位置決め駆動できる。ただし、同図におい
ては、21は移動体1の位置決め制御系用補償器であ
り、端子Rから印加される目標信号と位置検出器18の
出力との偏差信号で動作する。この出力は図示していな
いが移動体1を位置決め駆動するアクチュエータへ導か
れている。なお、図3は移動体1のピッチング運動を抑
制するための位置決め制御装置構成であったが、移動体
1が図面に対して垂直方向に動く場合には、その方向の
位置検出出力を使ったローリング運動抑制の位置決め制
御装置になることは言うまでもない。In the figure, 15 is a mirror, 16 is a laser beam, 17 is an interferometer head, and 18 is a position detector, which serve as position detecting means. Further, 19 is a distributor, 20a and 20b are power amplifiers, and 21 is a compensator. In this device configuration, the horizontal position of the moving body 1 is detected by the position detector 18 by irradiating the mirror 15 mounted on the moving body 1 with the laser beam 16 and receiving the reflected light by the interferometer head 17. Now, consider the case where no current is supplied to the magnetic field modulation coils 13a and 13b. In this case, the gaps 6a and 6b are determined by the balance between the attraction force generated by the permanent magnets 12a and 12b and the levitation force of the static pressure pads 5a and 5b. However, in this state, when the moving body 1 is positioned along the guide surface having a convex central portion, since the flatness of the surface plate 7 of the guide surface is insufficient, a pitching motion is generated to improve the positioning performance. It significantly inhibits.
However, the pitching amount of the moving body 1 can be known in advance for each moving place. For example, the pitching amount is known by measurement with an autocollimator. Alternatively, the state of the pitching motion of the moving body 1 can be indirectly grasped by measuring the frequency characteristic for each moving place and observing the change in the frequency response of the pitching motion. Therefore, the correction amount of the gap 6 for suppressing the pitching is known for each position of the moving body 1. In the configuration of FIG. 3, the absolute position of the moving body 1 is measured by the position detector 18, and this signal is sent to the distributor 1
It is led to 9. The distributor 19 has a table in which the distribution ratios of the currents to be supplied to the magnetic field modulation coils 13a and 13b are stored, and the power amplifiers 20a and 20b are excited in accordance with the absolute position of the moving body 1 to generate magnetic fields. A current is passed through the modulation coil 13 to adjust the gaps 6a and 6b. By doing so, the movable body 1 can be stably positioned and driven without causing a pitching motion. However, in the figure, reference numeral 21 is a compensator for the positioning control system of the moving body 1, which operates with a deviation signal between the target signal applied from the terminal R and the output of the position detector 18. Although not shown, this output is led to an actuator for positioning and driving the moving body 1. Although FIG. 3 shows the configuration of the positioning control device for suppressing the pitching motion of the moving body 1, when the moving body 1 moves in the direction perpendicular to the drawing, the position detection output in that direction is used. It goes without saying that it becomes a positioning control device for suppressing rolling motion.
【0026】さらに、図4は静圧空気軸受が両側面に配
置された位置決め装置の移動体1を上面からみたもので
あり、ヨーイング運動抑制のための位置決め装置構成を
示している。同図に示すように、Y方向に移動する移動
体1には水平X方向に可動な位置決め装置の移動体22
も搭載されている。このような位置決め装置において
は、移動体22が移動することにより移動体1の重心が
変化する。したがって、移動体1の駆動点とその重心に
差異があることに原因したヨーイング運動が発生する。
もちろん、ヨーガイド23a、23bに表面うねりが存
在したり、あるいは両ヨーガイドの平行度が悪い場合に
もヨーイング運動を引起こす。しかし、図示のような位
置決め制御装置を構成すればヨーイング運動は制御可能
となる。つまり同図において、移動体1の水平2軸方向
の絶対位置のうち、X方向については干渉計ヘッド17
x、レーザ光線16x、ミラー15x、位置検出器18
xからなる位置検出手段により、Y方向については干渉
計ヘッド17y、レーザ光線16y、ミラー15y、位
置検出器18yからなる位置検出手段とにより各々検出
される。そして、位置検出器18xと18yの出力は分
配器24に導かれている。Further, FIG. 4 is a top view of the moving body 1 of the positioning device in which static pressure air bearings are arranged on both side surfaces, and shows a positioning device structure for suppressing the yawing motion. As shown in the figure, the movable body 1 that moves in the Y direction includes the movable body 22 of the positioning device that is movable in the horizontal X direction.
Is also installed. In such a positioning device, the center of gravity of the moving body 1 changes as the moving body 22 moves. Therefore, the yawing motion is generated due to the difference between the driving point of the moving body 1 and its center of gravity.
Of course, the yawing motion is caused even when there is surface waviness on the yaw guides 23a and 23b or the parallelism between the two yaw guides is poor. However, the yawing motion can be controlled by configuring the positioning control device as shown. That is, in the figure, of the absolute positions of the moving body 1 in the horizontal two-axis directions, the interferometer head 17 is used in the X direction.
x, laser beam 16x, mirror 15x, position detector 18
The Y-direction is detected by the position detecting means including x, and the position detecting means including the interferometer head 17y, the laser beam 16y, the mirror 15y, and the position detector 18y. The outputs of the position detectors 18x and 18y are guided to the distributor 24.
【0027】分配器24では移動体1および移動体22
の位置に応じて磁場変調用コイル13a、13b、13
c、13dに供給すべき電流の分配率を格納したテーブ
ルを持っている。したがって、移動体1および移動体2
2の絶対位置に応じて電力増幅器20a、20b、20
c、20dが励起されて磁場変調用コイル13a、13
b、13c、13dへ電流が流れる結果として各部4カ
所の静圧空気軸受部の隙間が調整される。したがって、
移動体1のヨーイング運動を抑制することが可能とな
り、高速高精度位置決めを実現することができる。もち
ろん、位置検出器18x、18yの出力は分配器24へ
の入力になるとともに、図3の構成と同様に、移動体2
2と移動体1を駆動する補償器へ導かれている(図示せ
ず)。In the distributor 24, the moving body 1 and the moving body 22 are
Magnetic field modulation coils 13a, 13b, 13 depending on the position of
It has a table in which the distribution ratios of the currents to be supplied to c and 13d are stored. Therefore, the moving body 1 and the moving body 2
Power amplifiers 20a, 20b, 20 according to the absolute position of 2
c and 20d are excited to generate magnetic field modulation coils 13a and 13d.
As a result of the current flowing to b, 13c, and 13d, the clearances of the static pressure air bearing portions at the four places of each portion are adjusted. Therefore,
The yawing motion of the moving body 1 can be suppressed, and high-speed and high-precision positioning can be realized. Of course, the outputs of the position detectors 18x and 18y are input to the distributor 24, and the moving body 2 is also provided in the same manner as the configuration of FIG.
2 and a compensator for driving the moving body 1 (not shown).
【0028】[0028]
【発明の効果】以上説明したように、本発明によれば、
永久磁石による吸引力を磁場変調コイルに通電する電流
によって可変にできるので、静圧空気軸受の隙間を調整
することができる。したがって、剛性の調整が可能とな
る。剛性値は位置決め装置の位置決め性能を規定するパ
ラメータであるが、剛性値を常に目標値どおり設定でき
るため位置決めの信頼性が向上し常に所望の最適位置に
維持させることが可能になる。As described above, according to the present invention,
Since the attractive force of the permanent magnet can be varied by the current flowing through the magnetic field modulation coil, the gap of the static pressure air bearing can be adjusted. Therefore, the rigidity can be adjusted. The rigidity value is a parameter that defines the positioning performance of the positioning device, but since the rigidity value can always be set as the target value, the reliability of positioning is improved and it is possible to always maintain the desired optimum position.
【0029】さらに、本発明によれば移動体の位置決め
時における姿勢変化を軽減ないし除去することが可能と
なる。従来静圧空気軸受を位置決め装置の各部に使用し
た移動機構では、移動場所毎に空気軸受の間隙が微妙に
異なり、これが原因で共振特性が変動し姿勢変化を生じ
ていた。また、これにより制御系のパラメータ調整を面
倒なものとし、例えば、移動場所ごとに制御系のゲイン
を変えるというゲインスケジューリングを施していた。
しかし、本発明によれば、移動体の移動場所ごとに変化
する間隙が磁場変調用コイルに通電する電流値によって
調整可能となるので、移動体の移動全域にわたって共振
特性を一定にし、かつ姿勢変化を無くすことが可能とな
る。したがって、制御系のパラメータ調整が容易にでき
る。さらに位置決め時間および位置決め精度が移動場所
によらず一定となる効果がある。Further, according to the present invention, it is possible to reduce or eliminate the posture change at the time of positioning the moving body. Conventionally, in a moving mechanism using a static pressure air bearing for each part of a positioning device, the air bearing gap is slightly different depending on the moving place, which causes the resonance characteristics to fluctuate and the posture to change. Further, this makes the control system parameter adjustment troublesome, and, for example, performs gain scheduling by changing the gain of the control system for each moving location.
However, according to the present invention, since the gap that changes depending on the moving position of the moving body can be adjusted by the value of the electric current supplied to the magnetic field modulation coil, the resonance characteristic is kept constant over the entire moving range of the moving body, and the posture change is achieved. Can be eliminated. Therefore, the control system parameters can be easily adjusted. Further, there is an effect that the positioning time and the positioning accuracy are constant regardless of the moving place.
【図1】 本発明の一実施例に係る磁場変調用コイルを
備えた静圧空気軸受取付け部の拡大断面図である。FIG. 1 is an enlarged sectional view of a static pressure air bearing mounting portion including a magnetic field modulation coil according to an embodiment of the present invention.
【図2】 本発明の他の実施例に係る磁場変調用コイル
を備えた静圧軸受取付け部の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a static pressure bearing mounting portion including a magnetic field modulation coil according to another embodiment of the present invention.
【図3】 ピッチング運動抑制のための位置決め制御装
置の構成説明図である。FIG. 3 is a structural explanatory view of a positioning control device for suppressing pitching movement.
【図4】 ヨーイング運動抑制のための位置決め制御装
置の構成説明図である。FIG. 4 is a configuration explanatory view of a positioning control device for suppressing yawing motion.
【図5】 静圧空気軸受を用いた1軸の位置決め装置の
斜視図である。FIG. 5 is a perspective view of a uniaxial positioning device using a hydrostatic air bearing.
【図6】 従来の静圧空気軸受取付け部の拡大断面図で
ある。FIG. 6 is an enlarged sectional view of a conventional static pressure air bearing mounting portion.
1;移動体、2;静圧空気軸受、3;駆動用ボールネ
ジ、4;カップリング、5a、5b;静圧パッド、6
a、6b;隙間、7;定盤、8a、8b;供給チュー
ブ、9a、9b;静圧パッドホルダ、10a、10b;
磁石ホルダ、11a、11b;永久磁石、12a、12
b;永久磁石、13a、13b、13c、13d;磁場
変調用コイル、14a、14b;ヨーク、15、15
x、15y;ミラー、16、16x、16y;レーザ光
線、17、17x、17y;干渉計ヘッド、18、18
x、18y;位置検出器、19;分配器、20a、20
b、20c、20d;電力増幅器、21;補償器、2
2;移動体、23a、23b;ヨーガイド、24;分配
器。1; moving body, 2; static pressure air bearing, 3; drive ball screw, 4; coupling, 5a, 5b; static pressure pad, 6
a, 6b; gap, 7; surface plate, 8a, 8b; supply tube, 9a, 9b; static pressure pad holder, 10a, 10b;
Magnet holder, 11a, 11b; Permanent magnet, 12a, 12
b; permanent magnets, 13a, 13b, 13c, 13d; magnetic field modulation coils, 14a, 14b; yokes, 15, 15
x, 15y; mirror, 16, 16x, 16y; laser beam, 17, 17x, 17y; interferometer head, 18, 18
x, 18y; position detector, 19; distributor, 20a, 20
b, 20c, 20d; power amplifier, 21; compensator, 2
2; moving body, 23a, 23b; yaw guide, 24; distributor.
Claims (4)
対向面との間に隙間を保つための静圧パッドと、前記隙
間を減少させる方向に作用するバイアス用磁石と、該バ
イアス用磁石の磁場変調用コイルとを備えたことを特徴
とする静圧流体軸受。1. A static pressure pad for ejecting a fluid to an opposing surface to maintain a gap between the fluid and the opposing surface by the static pressure, a bias magnet acting to reduce the gap, and a biasing member. A hydrostatic bearing comprising a magnetic field modulation coil of a magnet.
移動体側に設け、該移動体を対向する静止案内面上に非
接触状態で可動的に支持することを特徴とする請求項1
の静圧流体軸受。2. The static pressure pad and the bias magnet are provided on the moving body side, and the moving body is movably supported in a non-contact state on a stationary guide surface facing the moving body.
Hydrostatic bearing.
測手段の出力に応じて補正すべき前記隙間の量を格納し
たテーブルを有する分配器と、該分配器の出力に応じ
て、前記磁場変調用コイルに通電する電流を発生する電
力増幅器を備えたことを特徴とする請求項2記載の静圧
流体軸受を用いた位置決め制御装置。3. A position measuring means of the moving body, a distributor having a table storing the amount of the gap to be corrected according to the output of the position measuring means, and the distributor according to the output of the distributor. The positioning control device using the hydrostatic bearing according to claim 2, further comprising a power amplifier that generates a current that flows through the magnetic field modulation coil.
なる軸受ユニットを移動体の複数箇所に設けたことを特
徴とする請求項3の位置決め制御装置。4. The positioning control device according to claim 3, wherein bearing units each including the static pressure pad and the bias magnet are provided at a plurality of positions of the moving body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4046384A JPH05215133A (en) | 1992-02-03 | 1992-02-03 | Static pressure fluid bearing and positioning control device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4046384A JPH05215133A (en) | 1992-02-03 | 1992-02-03 | Static pressure fluid bearing and positioning control device thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05215133A true JPH05215133A (en) | 1993-08-24 |
Family
ID=12745647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4046384A Pending JPH05215133A (en) | 1992-02-03 | 1992-02-03 | Static pressure fluid bearing and positioning control device thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05215133A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6064467A (en) * | 1997-04-21 | 2000-05-16 | Canon Kabushiki Kaisha | Alignment apparatus, and exposure apparatus with the alignment apparatus |
WO2011111100A1 (en) * | 2010-03-10 | 2011-09-15 | 黒田精工株式会社 | Parallel slider device of pneumatic linear guide method, control method of same, and measurement device |
JP2013533810A (en) * | 2011-05-31 | 2013-08-29 | コリア・インスティテュート・オブ・マシナリー・アンド・マテリアルズ | Active correction stage having 5-DOF motion error correction function and motion error correction method thereof |
EP3458733A4 (en) * | 2016-05-17 | 2019-11-20 | Aly El-Shafei | Integrated journal bearing |
-
1992
- 1992-02-03 JP JP4046384A patent/JPH05215133A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6064467A (en) * | 1997-04-21 | 2000-05-16 | Canon Kabushiki Kaisha | Alignment apparatus, and exposure apparatus with the alignment apparatus |
WO2011111100A1 (en) * | 2010-03-10 | 2011-09-15 | 黒田精工株式会社 | Parallel slider device of pneumatic linear guide method, control method of same, and measurement device |
US8984971B2 (en) | 2010-03-10 | 2015-03-24 | Kuroda Precision Industries Ltd. | Parallel slider device with a pneumatic linear guide, control method therefor and measuring device using same |
JP2013533810A (en) * | 2011-05-31 | 2013-08-29 | コリア・インスティテュート・オブ・マシナリー・アンド・マテリアルズ | Active correction stage having 5-DOF motion error correction function and motion error correction method thereof |
US9079279B2 (en) | 2011-05-31 | 2015-07-14 | Korea Institute Of Machinery & Materials | Actively compensated stage having 5-DOF motion error compensation and motion error compensating method thereof |
EP3458733A4 (en) * | 2016-05-17 | 2019-11-20 | Aly El-Shafei | Integrated journal bearing |
AU2017268318B2 (en) * | 2016-05-17 | 2021-03-11 | Aly El-Shafei | Integrated journal bearing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0811899B1 (en) | Supporting apparatus using magnetic power | |
JP3709896B2 (en) | Stage equipment | |
US10661399B2 (en) | Single-drive rigid-flexible coupling precision motion platform and realization method and application thereof | |
US7271879B2 (en) | Decoupled planar positioning system | |
US9898000B2 (en) | Planar positioning system and method of using the same | |
US5040431A (en) | Movement guiding mechanism | |
JP2003197519A (en) | Exposure system and exposure method | |
US6538348B2 (en) | Stage device capable of moving an object to be positioned precisely to a target position | |
WO2019225110A1 (en) | Stage device, charged particle beam device, and vacuum device | |
EP0443831B1 (en) | Motion guiding device | |
EP1917447B1 (en) | Static bearing apparatus having magnetically preloading and motional error correcting functions | |
JPH05215133A (en) | Static pressure fluid bearing and positioning control device thereof | |
JP4376592B2 (en) | Shape measuring device | |
JP2001116867A (en) | Xy stage | |
JP3540239B2 (en) | Stage equipment | |
US12044520B2 (en) | Positioning system for positioning an object | |
JP3732763B2 (en) | Stage equipment | |
JPH01188241A (en) | Shift guiding device | |
EP3572764B1 (en) | Shape measuring probe | |
US6307284B1 (en) | Positioning apparatus, information recording/reproducing apparatus, and inspection apparatus | |
KR100264394B1 (en) | Six-axis high-precision position decision device | |
JP2665740B2 (en) | Fluid bearing device | |
Tsumura et al. | Magnetically preloaded aerostatic guideway for high speed nanometer positioning | |
KR100675798B1 (en) | Long range stage using active controlled bearing apparatus | |
JP2997273B2 (en) | Stage movable support device |