JPH052150A - Polarized light source device - Google Patents

Polarized light source device

Info

Publication number
JPH052150A
JPH052150A JP3177810A JP17781091A JPH052150A JP H052150 A JPH052150 A JP H052150A JP 3177810 A JP3177810 A JP 3177810A JP 17781091 A JP17781091 A JP 17781091A JP H052150 A JPH052150 A JP H052150A
Authority
JP
Japan
Prior art keywords
light
wave
polarized light
linearly polarized
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3177810A
Other languages
Japanese (ja)
Inventor
Tomohide Inada
智英 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP3177810A priority Critical patent/JPH052150A/en
Priority to US07/737,456 priority patent/US5237399A/en
Priority to CA002048107A priority patent/CA2048107C/en
Priority to EP19910112869 priority patent/EP0469575A3/en
Priority to KR1019910013211A priority patent/KR950005065B1/en
Publication of JPH052150A publication Critical patent/JPH052150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To convert all light into light which is polarized in the constant direction without using any polarizing plate, to double the quantity of light, and to prevent thermal deterioration of a polarizing plate. CONSTITUTION:Nearly parallel converged light 31 from a light source means 30 is diffracted spectrally by a polarization beam splitter 33 into reflected linearly polarized light (S wave) 35 and transmitted linearly polarized light (P wave) 36. The P wave 36 is inverted by striking on a reflecting means 37, made reversely incident on the polarization beam splitter 33 and transmitted, and transmitted through a linearly polarized light rotating means 32 to become linearly polarized light 38 which is rotated clockwise by 45 deg. and this light is reflected and inverted by a reflector 2, and made incident on and transmitted through the linearly polarized light rotating means 32 to have its polarizing direction rotated clockwise by 45 deg. and linearly polarized light (P wave) which is in phase with the S wave 35 is obtained. This P wave 39 is made incident on the polarization beam splitting means 33, reflected at right angles to the optical axis of natural light 31, and put on the same optical axis with the S wave 35 which is difference spectrally in advance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤(R)、緑(G)、
青(B)別に設けた白黒液晶板の表示映像を加色混合し
て投射する液晶カラー投射型ディスプレイに適用して好
適な偏光光源装置に関するものである。
The present invention relates to red (R), green (G),
The present invention relates to a polarized light source device which is suitable for application to a liquid crystal color projection type display in which display images of black and white liquid crystal plates provided separately for blue (B) are color-mixed and projected.

【0002】[0002]

【従来の技術】近年、テレビジョンの大画面化指向が進
む中で、液晶テレビ・パネルの画像をスクリーンに拡大
投写する液晶方式の投射型ディスプレイが、小型、軽
量、取り扱いの容易さのために注目されている。しか
し、液晶投射型ディスプレイを、現在投射型ディスプレ
イの主流であり完成度が高いCRT(ブラウン管)画像
投写型ディスプレイと比較すると、解像度、明るさとも
未だ不満足で、改善の余地があった。
2. Description of the Related Art In recent years, with the trend toward larger screens of televisions, a liquid crystal projection display for enlarging and projecting an image of a liquid crystal television panel on a screen is required for its small size, light weight and easy handling. Attention has been paid. However, when comparing the liquid crystal projection display with the CRT (cathode ray tube) image projection display, which is currently the mainstream of projection displays and has a high degree of perfection, the resolution and brightness are still unsatisfactory, and there is room for improvement.

【0003】解像度に関しては、高精細液晶テレビ・パ
ネルの開発が進んでいる。明るさに関しては、画像形成
と光源を分離できる液晶投射型ディスプレイの方が有利
とされるが、標準的なCRT方式に比べて1/2〜1/
3程度で未だ及ばない。投射光束を増加させるための手
っ取り早い方法は高光出力ランプを使用することである
が、この場合は消費電力の増大、装置温度の上昇による
部品の劣化をもたらすため実用的でない。
Regarding resolution, development of high-definition liquid crystal television panels is in progress. Regarding brightness, a liquid crystal projection display that can separate the image formation and the light source is more advantageous, but it is 1/2 to 1/1 compared to the standard CRT method.
It is still around 3 A quick way to increase the projected light flux is to use a high light output lamp, but this is not practical because it results in increased power consumption and component degradation due to increased device temperature.

【0004】図3は光の色分離および混合にダイクロイ
ックミラーを用いたミラー方式と呼ばれる液晶カラー投
射型ディスプレイの従来例を示す模式図である。同図に
おいて、1はキセノンランプ等の光源であり、この光源
1から放射された光は、反射面が放物面で光源光を光軸
と平行な平行光にする反射鏡2で反射され、液晶板7、
12、15の直前に配置した不図示のコンデンサレンズ
によって投射光学系19に向けて収束される。この時、
収束された平行光線は、青色光のみを分離反射する青ダ
イクロイックミラー4に入射する。青ダイクロイックミ
ラー4で分離された青色光5はミラー6で収束光学系3
の光軸と平行に反射されて、透過型液晶パネル7に入射
する。液晶パネル7には投射すべき任意の映像の構成画
素に応じて選択的に電圧が供給されており、該液晶パネ
ル7を透過した青色光5は映像信号を有する青色映像光
5aとなる。
FIG. 3 is a schematic view showing a conventional example of a liquid crystal color projection type display called a mirror system using a dichroic mirror for color separation and mixing of light. In the figure, reference numeral 1 denotes a light source such as a xenon lamp, and the light emitted from the light source 1 is reflected by a reflecting mirror 2 which has a reflecting surface having a parabolic surface and which makes the light source light parallel light parallel to the optical axis. Liquid crystal plate 7,
A condenser lens (not shown) arranged immediately before the lenses 12 and 15 converges the light toward the projection optical system 19. At this time,
The converged parallel rays enter the blue dichroic mirror 4 that separates and reflects only the blue light. The blue light 5 separated by the blue dichroic mirror 4 is converged by the mirror 6 in the optical system 3
The light is reflected in parallel to the optical axis of and enters the transmissive liquid crystal panel 7. A voltage is selectively supplied to the liquid crystal panel 7 according to constituent pixels of an arbitrary image to be projected, and the blue light 5 transmitted through the liquid crystal panel 7 becomes a blue image light 5a having a video signal.

【0005】青ダイクロイックミラー4で青色成分5を
失いそのミラー4を透過した光は黄色になる。その黄色
光8は赤ダイクロイックミラー9に入射し、赤色光10
が分離され、残る緑色光11はそのミラー9を透過す
る。分離された赤色光10は前記液晶パネル7と同一構
成からなる透過型液晶パネル12に入射し赤色映像光1
0aとなる。青色映像光5aと赤色映像光10aは混合
用ダイクロイックミラー13で混合されてマゼンタ色映
像光14となる。
The blue dichroic mirror 4 loses the blue component 5 and the light transmitted through the mirror 4 becomes yellow. The yellow light 8 is incident on the red dichroic mirror 9, and the red light 10
Is separated, and the remaining green light 11 passes through the mirror 9. The separated red light 10 is incident on a transmissive liquid crystal panel 12 having the same structure as the liquid crystal panel 7, and the red image light 1
It becomes 0a. The blue image light 5a and the red image light 10a are mixed by the mixing dichroic mirror 13 to become magenta image light 14.

【0006】一方、緑色光11はやはり前記液晶パネル
7と同一構成の透過型液晶パネル15に入射し、緑色映
像光11aとなり、ミラー16で反射されて混合用ダイ
クロイックミラー17に入射する。緑色映像光11aと
マゼンタ色映像光14は混合用ダイクロイックミラー1
7で混合されて、RGB加色混合映像光18となり、投
射光学系19を介して大型スクリーン20に拡大投射さ
れて、カラー映像が再生される。
On the other hand, the green light 11 also enters the transmission type liquid crystal panel 15 having the same structure as the liquid crystal panel 7, becomes green image light 11a, is reflected by the mirror 16 and enters the mixing dichroic mirror 17. The green image light 11a and the magenta color image light 14 are mixed with the dichroic mirror 1 for mixing.
7 is mixed and becomes the RGB additive color mixed image light 18, which is enlarged and projected onto the large screen 20 through the projection optical system 19 to reproduce a color image.

【0007】図4は透過型液晶パネル7(液晶パネル1
2、15も同様)の実際の構成(図3では省略)を示す
図で、両側に設けられた2枚の偏光板21A、21Bを
備えている。その理由は、液晶パネル7に使用される液
晶(ツイステッド・ネマティック液晶)は、電圧の印加
状態によって光を透過したり、遮断したりするのではな
く、入射した光の偏光面を回転させるからである。すな
わち、偏光方向の定まっていない自然光を入射させる
と、電圧の印加状態に関係なく、自然光として出てくる
ため、液晶パネルに画像が形成されていても、認識する
ことはできない。そこで、まず液晶パネル7の前に偏光
板21Aを置き、自然光のうち一定方向の偏光の光だけ
を透過させて、直線偏光の光に変える。つまり、自然光
が偏光板21Aを透過すると、互いに直交する2つの直
線偏光の光に分解され、このうち、偏光方向に平行な成
分は透過し、直交する成分は吸収される。そして、偏光
方向に平行な直線偏光光を液晶パネル7に入射させる
と、画像に応じて部分的に偏光方向が回転し、液晶パネ
ル7から出る。ここで再度偏光板21Bを用いて一定方
向の偏光の光だけを透過させると、初めて濃淡画像が得
られる。なお、偏光方向に直交する成分は偏光板21A
に吸収されると、熱に変換される。
FIG. 4 shows a transmissive liquid crystal panel 7 (liquid crystal panel 1
2 and 15 are also the same) (illustration is omitted in FIG. 3), and two polarizing plates 21A and 21B provided on both sides are provided. The reason is that the liquid crystal used in the liquid crystal panel 7 (twisted nematic liquid crystal) does not transmit or block light depending on the voltage application state, but rotates the polarization plane of incident light. is there. That is, when natural light of which the polarization direction is not determined is incident, it is emitted as natural light regardless of the voltage application state, and therefore, even if an image is formed on the liquid crystal panel, it cannot be recognized. Therefore, first, a polarizing plate 21A is placed in front of the liquid crystal panel 7, and only natural polarized light of a certain direction is transmitted and converted into linear polarized light. That is, when natural light passes through the polarizing plate 21A, it is decomposed into two linearly polarized lights that are orthogonal to each other, and of these, the components parallel to the polarization direction are transmitted and the orthogonal components are absorbed. Then, when linearly polarized light parallel to the polarization direction is incident on the liquid crystal panel 7, the polarization direction is partially rotated according to the image and exits from the liquid crystal panel 7. Here, when the polarizing plate 21B is used again to transmit only light polarized in a certain direction, a grayscale image is obtained. The component orthogonal to the polarization direction is the polarizing plate 21A.
When absorbed by, it is converted into heat.

【0008】[0008]

【発明が解決しようとする課題】以上のことから明らか
なように、従来装置においては自然光から偏光板21A
で偏光した直線偏光光を取り出す段階で少なくとも半分
の光が偏光板21Aに吸収されるため、光の有効利用と
いう点で問題があった。また、吸収された光は熱に変換
され、偏光板21Aの温度を上昇させるため、偏光板2
1Aを劣化させるという付随的な問題もあった。したが
って、自然光から偏光板21Aで一定方向の偏光成分だ
けを取り出すのではなく、光源からの全ての光を一定方
向に偏光した光に変換することができ、光量の増大化
と、熱による偏光板劣化の問題を解消し得る装置の開発
が要望されている。なお、2枚目の偏光板21Bの劣化
の問題は、液晶パネル7の開口部分が全面積の40%程
度(開口率の増大も液晶カラー投射型ディスプレイの高
輝度化の重要なファクタである)であるため、1枚目の
偏光板21Aほど問題にならない。
As is apparent from the above, in the conventional device, the polarizing plate 21A is changed from the natural light.
Since at least half of the light is absorbed by the polarizing plate 21A at the stage of extracting the linearly polarized light polarized in (2), there is a problem in that the light is effectively used. Further, the absorbed light is converted into heat and raises the temperature of the polarizing plate 21A.
There was also an incidental problem of degrading 1A. Therefore, not only the polarized component in a certain direction is extracted from the natural light by the polarizing plate 21A, but all the light from the light source can be converted into the polarized light in the certain direction, and the amount of light is increased and the polarizing plate by heat is generated. There is a demand for the development of a device that can solve the problem of deterioration. The problem of the deterioration of the second polarizing plate 21B is that the opening portion of the liquid crystal panel 7 is about 40% of the total area (the increase of the opening ratio is also an important factor for increasing the brightness of the liquid crystal color projection display). Therefore, it is not a problem as much as the first polarizing plate 21A.

【0009】したがって、本発明は上記したような従来
の問題点に鑑みてなされたもので、その目的とするとこ
ろは、自然光から直線偏光を取り出す段階で偏光板を使
用せず全ての光を一定方向に偏光した光に変換すること
ができ、光量を2倍に増大するに留まらず、熱による偏
光板劣化の問題を解消し得るようにした偏光光源装置を
提供することにある。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to make all light constant without using a polarizing plate at the stage of extracting linearly polarized light from natural light. It is an object of the present invention to provide a polarized light source device capable of being converted into light polarized in a direction and capable of solving the problem of deterioration of a polarizing plate due to heat as well as doubling the amount of light.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するため、回転放物体等のリフレクタを備えた光源手段
と、この光源手段からの略平行な収束光の光軸上に配設
され、その収束光を透過直線偏光光(P波)と反射直線
偏光光(S波)に分光する偏光ビームスプリット手段
と、前記透過直線偏光光を180°反射して前記偏光ビ
ームスプリット手段に逆入射させる反射手段と、この反
射手段によって180°反射され前記偏光ビームスプリ
ット手段を再度透過した透過直線偏光光(P波)の偏光
方向を45°回転させる直線偏光回転手段とを備え、こ
の直線偏光回転手段は前記光源手段と前記偏光ビームス
プリット手段との間に光軸に直交させて配設され、前記
直線偏光回転手段によって偏光方向を45°回転された
前記透過直線偏光光(P波)は前記リフレクタで180
°反射されて前記直線偏光回転手段に逆入射し透過する
際、偏光方向をさらに同方向に45°回転されて前記偏
光ビームスプリット手段に入射し、自然光の光軸と直交
する方向に反射されることにより、前記反射直線偏光光
(S波)に合成されることを特徴とする。
In order to achieve the above object, the present invention is provided with a light source means having a reflector such as a paraboloid of revolution, and a substantially parallel optical axis of convergent light from the light source means. A polarized beam splitting means for splitting the converged light into a transmitted linearly polarized light (P wave) and a reflected linearly polarized light (S wave), and a 180 ° reflection of the transmitted linearly polarized light and a reverse incidence on the polarized beam splitting means. And a linear polarization rotating means for rotating the polarization direction of the transmitted linearly polarized light (P wave) which is reflected by the reflecting means by 180 ° and transmitted through the polarized beam splitting means again by 45 °. The means is disposed between the light source means and the polarized beam splitting means so as to be orthogonal to the optical axis, and the transmitted linearly polarized light whose polarization direction is rotated by 45 ° by the linearly polarized light rotating means ( Waves) in the reflector 180
When the light is reflected and is incident back to the linear polarization rotation means and transmitted therethrough, the polarization direction is further rotated by 45 degrees in the same direction to enter the polarization beam splitting means and reflected in a direction orthogonal to the optical axis of natural light. Thus, the reflected linearly polarized light (S wave) is combined.

【0011】[0011]

【作用】本発明において、光源手段から略平行に収束さ
れて出射した自然光は、自然光には影響を及ぼさず直線
偏光光に対してのみ右回りに45°回転させる直線偏光
回転手段をそのまま透過して偏光ビームスプリット手段
に入射する。偏光ビームスプリット手段は、入射した自
然光を反射直線偏光光(S波)と、透過直線偏光光(P
波)に分離する。S波は自然光の光軸に対して直角方向
に反射し、P波はそのまま透過させる。偏光ビームスプ
リット手段を透過したP波は反射手段によって180°
反射されて元来た光路を戻り、偏光ビームスプリット手
段に逆入射、透過してさらに直線偏光回転手段に入射す
る。直線偏光回転手段に入射したP波は45°右回りに
回転されて透過し、光源手段のリフレクタによって18
0°反射されることにより、再び直線偏光回転手段に入
射する。直線偏光回転手段に入射したP波は更に右回り
に45°回転されることで、その位相がS波と同位相と
なって偏光ビームスプリット手段に入射し、P波の光軸
に対して直角方向に反射されることにより先に分光され
たS波と同じ光軸上に合成される。
In the present invention, the natural light which is converged and emitted from the light source means substantially in parallel does not affect the natural light and is transmitted through the linear polarized light rotating means for rotating the linear polarized light by 45 ° in the clockwise direction as it is. Incident on the polarized beam splitting means. The polarized beam splitting means reflects the incident natural light into reflected linearly polarized light (S wave) and transmitted linearly polarized light (P wave).
Wave). The S wave is reflected in the direction perpendicular to the optical axis of natural light, and the P wave is transmitted as it is. The P wave transmitted through the polarized beam splitting means is 180 ° by the reflecting means.
The reflected light returns through the original optical path, is incident back to the polarized beam splitting means, is transmitted therethrough, and is further incident on the linear polarization rotating means. The P-wave incident on the linearly polarized light rotating means is rotated by 45 ° in the clockwise direction and is transmitted therethrough.
After being reflected by 0 °, it is incident on the linearly polarized light rotating means again. The P wave incident on the linear polarization rotating means is further rotated clockwise by 45 ° so that its phase becomes the same phase as the S wave and enters the polarization beam splitting means, and is orthogonal to the optical axis of the P wave. By being reflected in the direction, it is combined on the same optical axis as the S wave previously dispersed.

【0012】[0012]

【実施例】以下、本発明を図面に示す実施例に基づいて
詳細に説明する。図1は本発明に係る偏光光源装置の一
実施例を示す模式図である。図2は図1における偏光光
の透過状態を説明するための概念図である。これらの図
において、30は光源手段、32は直線偏光回転手段、
33は偏光ビームスプリット手段、37は反射手段で、
これらによって偏光光源装置を構成している。光源手段
30は、従来と同等のアークランプ1及び反射面が放物
面からなるリフレクタ2を備えている。アークランプ1
から出た自然光31は、リフレクタ2で光軸と略平行に
収束された後、直線偏光回転手段32に入射する。この
直線偏光回転手段32は、自然光には影響を及ぼさずに
直線偏光光に対してのみ右回りに回転させるもので、媒
質の複屈折により透過する光の位相を変化させ偏光方向
を45°回転する水晶板等の光学結晶や延伸して複屈折
を生じさせたポリビニルアルコール・フィルムからなる
1/4波長板が使用される。したがって、直線偏光回転
手段32に入射する前記自然光31はそのまま透過す
る。そして、直線偏光回転手段32を透過した自然光3
1は、偏光ビームスプリット手段33に入射し、ここで
図1実線で示す反射直線偏光光(S波)35と、点線で
示す透過直線偏光光(P波)36(図2においてはハッ
チングを施した波形で示す)に分離されて、S波35は
自然光31の光軸に対して直角方向に反射する一方、P
波36はそのまま透過する。偏光ビームスプリット手段
33は、2つの直角プリズムのうちの一方の斜面に誘電
体多層膜34を蒸着し、斜面同士を接合したものであ
り、自然光31を偏光方向が互いに直交する2つの直線
偏光光に分離することができ、その斜面を透過する光が
P偏光の光であり、斜面で反射された光がS偏光の光で
ある。なお、直線偏光光(S波)35は、図1において
紙面に対して垂直方向に振動する成分を持つ直線偏光
光、直線偏光光(P波)36は紙面に対して平行で、か
つ進行方向に対して直交する方向に振動する成分を持つ
直線偏光光である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings. FIG. 1 is a schematic view showing an embodiment of a polarized light source device according to the present invention. FIG. 2 is a conceptual diagram for explaining the transmission state of the polarized light in FIG. In these figures, 30 is a light source means, 32 is a linear polarization rotation means,
33 is a polarized beam splitting means, 37 is a reflecting means,
These constitute a polarized light source device. The light source means 30 includes an arc lamp 1 and a reflector 2 whose reflection surface is a parabolic surface, which is the same as the conventional one. Arc lamp 1
The natural light 31 emitted from the light source is converged by the reflector 2 substantially in parallel with the optical axis, and then enters the linearly polarized light rotating means 32. The linearly polarized light rotating means 32 rotates the linearly polarized light clockwise without affecting the natural light, and changes the phase of the transmitted light by the birefringence of the medium to rotate the polarization direction by 45 °. A quarter wave plate made of an optical crystal such as a quartz plate or a polyvinyl alcohol film stretched to cause birefringence is used. Therefore, the natural light 31 incident on the linearly polarized light rotating means 32 is transmitted as it is. Then, the natural light 3 transmitted through the linear polarization rotation means 32
1 is incident on the polarized beam splitting means 33, where the reflected linearly polarized light (S wave) 35 shown by the solid line in FIG. 1 and the transmitted linearly polarized light (P wave) 36 shown by the dotted line (hatched in FIG. 2). The S wave 35 is reflected in the direction perpendicular to the optical axis of the natural light 31, while P wave
The wave 36 is transmitted as it is. The polarized beam splitting means 33 is one in which a dielectric multilayer film 34 is vapor-deposited on one slanted surface of one of two right-angle prisms, and the slanted surfaces are joined together. The natural light 31 is two linearly polarized light beams whose polarization directions are orthogonal to each other. The light transmitted through the slope is P-polarized light, and the light reflected on the slope is S-polarized light. The linearly polarized light (S wave) 35 is linearly polarized light having a component that oscillates in the direction perpendicular to the paper surface in FIG. 1, and the linearly polarized light (P wave) 36 is parallel to the paper surface and is in the traveling direction. It is linearly polarized light having a component that oscillates in a direction orthogonal to.

【0013】偏光ビームスプリット手段33を透過した
P波36は、該P波の光軸に直交させて配置した全反射
ミラー等の反射手段37によって180°反射されるこ
とにより、元来た光路を通って偏光ビームスプリット手
段33に逆入射して透過し、直線偏光回転手段32に入
射する。このP波36は、反射手段37による反射およ
び偏光ビームスプリット手段33の再透過によってもそ
の位相が変わることはないが、直線偏光回転手段32に
入射すると、上述の直線偏光回転手段32の特性により
その位相が45°右回りに回転されたP波38となって
直線偏光回転手段32を透過し、そのままの位相でリフ
レクタ2によって180°反射されて逆行し、直線偏光
回転手段32に再入射する。
The P-wave 36 transmitted through the polarized beam splitting means 33 is reflected by 180 ° by a reflecting means 37 such as a total reflection mirror arranged orthogonal to the optical axis of the P-wave, so that the original optical path is changed. The light beam passes through the polarized beam splitting means 33 through the reverse direction, passes through the polarized beam splitting means 33, and enters the linear polarization rotating means 32. The phase of this P wave 36 does not change even by reflection by the reflection means 37 and re-transmission of the polarized beam splitting means 33, but when it enters the linear polarization rotation means 32, it will be affected by the characteristics of the linear polarization rotation means 32 described above. The phase becomes a P wave 38 rotated clockwise by 45 °, passes through the linear polarization rotation means 32, is reflected 180 ° by the reflector 2 in the same phase, goes backward, and re-enters the linear polarization rotation means 32. ..

【0014】直線偏光回転手段32に再入射した45°
回転直線偏光光たるP波38は、更に右回りに45°回
転されて、その位相がS波35と同位相、すなわちP波
36に対して90°の位相回転がなされた直線偏光光3
9となって、偏光ビームスプリット手段33に入射し、
自然光31の光軸に対して直角方向に反射されて先の分
光されたS波35と同じ光軸上に合成される。したがっ
て、光源手段30から出た全ての自然光31を、損失な
く反射直線偏光光(S波)として取り出すことができ、
液晶パネルに入射する偏光光の光量を2倍に増大させる
ことができる。また、従来装置と異なり偏光板を必要と
しないので、熱による偏光板劣化の問題も解消すること
ができる。
45 ° re-incident on the linear polarization rotating means 32
The P-wave 38, which is the rotating linearly polarized light, is further rotated clockwise by 45 °, and the phase thereof is the same as that of the S-wave 35, that is, the linearly-polarized light 3 having a phase rotation of 90 ° with respect to the P-wave 36.
9 is incident on the polarized beam splitting means 33,
The natural light 31 is reflected in a direction perpendicular to the optical axis and is combined on the same optical axis as the previously dispersed S wave 35. Therefore, all the natural light 31 emitted from the light source means 30 can be extracted as reflected linearly polarized light (S wave) without loss,
The amount of polarized light that enters the liquid crystal panel can be doubled. Further, unlike the conventional apparatus, since no polarizing plate is required, the problem of deterioration of the polarizing plate due to heat can be solved.

【0015】[0015]

【発明の効果】以上説明したように本発明に係る偏光光
源装置によれば、自然光から直線偏光光を取り出す段階
で、偏光板を使用せず、位相の異なる全ての光を一定方
向に偏光した光に変換することができるので、光の損失
がなく光量を増大させることができ、また、従来のごと
く偏光板を用いた際に生じる光吸収による温度上昇に伴
って引き起こす偏光板の劣化の問題も解消することがで
きる。
As described above, according to the polarized light source device of the present invention, when the linearly polarized light is extracted from the natural light, all the light beams having different phases are polarized in a fixed direction without using the polarizing plate. Since it can be converted into light, the amount of light can be increased without loss of light, and the problem of deterioration of the polarizing plate caused by temperature rise due to light absorption that occurs when a polarizing plate is used as in the past Can also be resolved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る偏光光源装置の一実施例を示す模
式図である。
FIG. 1 is a schematic view showing an embodiment of a polarized light source device according to the present invention.

【図2】図1における偏光光の透過状態を説明するため
の概念図である。
FIG. 2 is a conceptual diagram for explaining a transmission state of polarized light in FIG.

【図3】液晶カラー投射装置の従来例を示す模式図であ
る。
FIG. 3 is a schematic view showing a conventional example of a liquid crystal color projection device.

【図4】液晶パネルと偏光板の構成を示す図である。FIG. 4 is a diagram showing a configuration of a liquid crystal panel and a polarizing plate.

【符号の説明】[Explanation of symbols]

1 光源 4、11 分光用ダイクロイックミラー 7、12、15 液晶パネル 13、17、31 合成用ダイクロイックミラー 30 光源手段 32 直線偏光回転手段 33 偏光ビームスプリット手段 37 反射手段 DESCRIPTION OF SYMBOLS 1 Light source 4, 11 Spectral dichroic mirror 7, 12, 15 Liquid crystal panel 13, 17, 31 Synthetic dichroic mirror 30 Light source means 32 Linearly polarized light rotation means 33 Polarized beam splitting means 37 Reflecting means

Claims (1)

【特許請求の範囲】 【請求項1】 回転放物体等のリフレクタを備えた光源
手段と、この光源手段からの略平行な収束光の光軸上に
配設され、その収束光を透過直線偏光光(P波)と反射
直線偏光光(S波)に分光する偏光ビームスプリット手
段と、前記透過直線偏光光を180°反射して前記偏光
ビームスプリット手段に逆入射させる反射手段と、この
反射手段によって180°反射され前記偏光ビームスプ
リット手段を再度透過した透過直線偏光光(P波)の偏
光方向を45°回転させる直線偏光回転手段とを備え、
この直線偏光回転手段は前記光源手段と前記偏光ビーム
スプリット手段との間に光軸に直交させて配設され、前
記直線偏光回転手段によって偏光方向を45°回転され
た前記透過直線偏光光(P波)は前記リフレクタで18
0°反射されて前記直線偏光回転手段に逆入射し透過す
る際、偏光方向をさらに同方向に45°回転されて前記
偏光ビームスプリット手段に入射し、自然光の光軸と直
交する方向に反射されることにより、前記反射直線偏光
光(S波)に合成されることを特徴とする偏光光源装
置。
Claim: What is claimed is: 1. A light source means having a reflector such as a rotating paraboloid, and a substantially parallel optical axis of the convergent light from the light source means. Polarized beam splitting means for splitting light (P-wave) and reflected linearly polarized light (S-wave), reflecting means for reflecting the transmitted linearly polarized light by 180 ° and making it enter the polarized beam splitting means in reverse, and this reflecting means. Linear polarization rotation means for rotating the polarization direction of the transmitted linearly polarized light (P wave) which is reflected by 180 ° by the above and re-transmitted through the polarized beam splitting means by 45 °,
The linearly polarized light rotating means is disposed between the light source means and the polarized beam splitting means so as to be orthogonal to the optical axis, and the transmitted linearly polarized light (P 18) with the reflector
When it is reflected by 0 ° and is incident back to the linearly polarized light rotating means and is transmitted therethrough, the polarization direction is further rotated by 45 ° in the same direction to enter the polarized beam splitting means and reflected in a direction orthogonal to the optical axis of natural light. The polarized light source device is characterized by being combined with the reflected linearly polarized light (S wave).
JP3177810A 1990-07-31 1991-06-24 Polarized light source device Pending JPH052150A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3177810A JPH052150A (en) 1991-06-24 1991-06-24 Polarized light source device
US07/737,456 US5237399A (en) 1990-07-31 1991-07-29 Liquid crystal color projection apparatus for modifying and projecting display images obtained from liquid crystal panels
CA002048107A CA2048107C (en) 1990-07-31 1991-07-30 Liquid crystal projection apparatus
EP19910112869 EP0469575A3 (en) 1990-07-31 1991-07-31 Liquid crystal projection apparatus
KR1019910013211A KR950005065B1 (en) 1990-07-31 1991-07-31 Liquid crystal color projection apparatus for modifying and projecting display images obtained from liquid crystal panels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3177810A JPH052150A (en) 1991-06-24 1991-06-24 Polarized light source device

Publications (1)

Publication Number Publication Date
JPH052150A true JPH052150A (en) 1993-01-08

Family

ID=16037489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3177810A Pending JPH052150A (en) 1990-07-31 1991-06-24 Polarized light source device

Country Status (1)

Country Link
JP (1) JPH052150A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354881A (en) * 2003-05-30 2004-12-16 Seiko Epson Corp Illuminating device and projection type display device
CN102566075A (en) * 2011-11-22 2012-07-11 北京凯普林光电科技有限公司 Polarization rotating device as well as polarization beam combining method and system of laser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122626A (en) * 1984-11-20 1986-06-10 Sony Corp Polarized light illuminating device
JPH0293580A (en) * 1988-09-30 1990-04-04 Sony Corp Image projection device
JPH02264904A (en) * 1989-04-06 1990-10-29 Nec Corp Light source for linearly polarized light

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122626A (en) * 1984-11-20 1986-06-10 Sony Corp Polarized light illuminating device
JPH0293580A (en) * 1988-09-30 1990-04-04 Sony Corp Image projection device
JPH02264904A (en) * 1989-04-06 1990-10-29 Nec Corp Light source for linearly polarized light

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354881A (en) * 2003-05-30 2004-12-16 Seiko Epson Corp Illuminating device and projection type display device
CN102566075A (en) * 2011-11-22 2012-07-11 北京凯普林光电科技有限公司 Polarization rotating device as well as polarization beam combining method and system of laser

Similar Documents

Publication Publication Date Title
JP2765471B2 (en) Projection type liquid crystal display
KR100241641B1 (en) Efficient optical system for a high resolution projection display employing reflection light valves
KR100221376B1 (en) Image projection apparatus
US7237899B2 (en) Highly efficient single panel and two panel projection engines
JPH0915529A (en) Image projection device
JPH05241103A (en) Projection type liquid crystal display device
JP2002207189A (en) Color separating/synthesizing apparatus
JP2001154268A (en) Optical engine and liquid crystal projector using the same
US6476880B2 (en) Projection type color liquid crystal display apparatus capable of enhancing optical utilization efficiency
JPH05150191A (en) Linear polarized light conversion device
JP2004045907A (en) Image display device
JPH052150A (en) Polarized light source device
JP2674021B2 (en) LCD projector
JP2925696B2 (en) Projection display device
JP2006126458A (en) Optical unit and projection type image display apparatus using same
JPH0566503A (en) Projection type liquid crystal projection
JP3535072B2 (en) Projector lighting equipment
JPH05150190A (en) Linear polarized light conversion device
JPH08179241A (en) Polarization light source device
JP2003021830A (en) Projection type liquid crystal display device
JPH03208013A (en) Polarized light illuminating system for liquid crystal video projector
KR100186269B1 (en) Image device apparatus and method for lcd projector
JPH03192320A (en) Projection type display device
JPS6358414A (en) Projection type display
JP3318760B2 (en) Display device