JP2004045907A - Image display device - Google Patents

Image display device Download PDF

Info

Publication number
JP2004045907A
JP2004045907A JP2002204996A JP2002204996A JP2004045907A JP 2004045907 A JP2004045907 A JP 2004045907A JP 2002204996 A JP2002204996 A JP 2002204996A JP 2002204996 A JP2002204996 A JP 2002204996A JP 2004045907 A JP2004045907 A JP 2004045907A
Authority
JP
Japan
Prior art keywords
light
beam splitter
image display
display device
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002204996A
Other languages
Japanese (ja)
Inventor
Satoru Oishi
大石 哲
Hiroki Yoshikawa
吉川 博樹
Satoshi Ouchi
大内 敏
Taro Imahase
今長谷 太郎
Tomohiro Miyoshi
三好 智浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002204996A priority Critical patent/JP2004045907A/en
Publication of JP2004045907A publication Critical patent/JP2004045907A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable a projector, which decreases in contrast as the lightness is increased and needs to have the lightness decreased to increase the contrast, to have both lightness and a high contrast. <P>SOLUTION: The angle of divergence of light made incident on a polarization beam splitter on the plane containing the incidence direction and reflection direction of a main light beam to and from the polarization beam splitter is made narrower than the angle of divergence of light irradiating a polarization beam splitter on a plane perpendicular to the above plane containing the main light beam. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、液晶パネルあるいは反射型映像表示素子などのライトバルブ素子を使用して、スクリーン上に映像を投影する投射装置、例えば、液晶プロジェクタ装置や、反射式映像表示プロジェクタ装置、投射型ディスプレイ装置等の投写型の画像表示装置に関するものである。
【0002】
【従来の技術】
従来から、例えば特開平11−271683号公報に記載されているように、白色光源とリフレクタから成る光源ユニットと、入射された光を入力映像信号に基づいて光変調して映像信号に応じた光学像を形成する映像表示素子と、前記光源ユニットにより照射された光を色分離し前記映像表示素子からの各色の光学像を合成する色分離合成手段と、合成された光学像を投写する投写手段映像表示素子を出射する映像光を表示する投写手段で構成される画像表示装置がある。
【0003】
【発明が解決しようとする課題】
投写型画像表示装置において、明るさとコントラストは重要な性能であるが、明るさとコントラストの両立は難しい課題である。
【0004】
明るさを得るためには光の利用効率を高める必要が有り、照明光のF値を小さくする方法がある。しかし、F値を小さくすると、明るくなるがコントラストが劣下し、明るさとコントラストの両立は困難であった。
【0005】
コントラストを劣化させるのは、色分離合成手段に用いる偏光ビームスプリッタ(以下PBSと称す)の入射角が大きくなると急激に反射性能が劣下することに起因することが判った。これは反射面への入射角度の大きさと関係があり、F値を小さくして明るさを得ようとするとPBSへの光の入射角が大きくなって反射特性すなわち反射してはいけない偏光光が反射する。そして、反射すべき偏光光が反射せず透過する現象が生じる。その結果、黒の表示画面に本来PBSで反射させて画面に至らせないようにすべき光が、PBSを透過してしまい、黒画面に光を漏れさせコントラストを悪化させる現象である。
【0006】
本発明の目的は、上記従来技術に鑑み、明るさとコントラストを両立する画像表示装置を提供することにある。
【0007】
【課題を解決するための手段】
上記した課題を解決するために、本発明は、光源からの光を照射する光源ユニットと、該光源ユニットにより照射された光を入力画像信号に基づいて光変調して映像信号に応じた光学像を形成する映像表示素子と、前記光源ユニットにより照射された光を色分離し前記映像表示素子からの各色の光学像を合成する色分離合成手段と、合成された光学像を投写する投写手段とを有する画像表示装置であって、前記色分離合成手段は偏光ビームスプリッタを含んで構成され、主光線の前記偏光ビームスプリッタへの入射方向と反射方向を含む平面上での前記偏光ビームスプリッタに入射される光の広がり角を、前記平面に垂直で且つ主光線を含む平面上での前記偏光ビームスプリッタに照射される光の広がり角より狭くなるように構成する。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0009】
図1は、本発明における一実施の形態を示す光学構成図であり、ライトバルブとして反射型映像表示素子13を3枚用いた画像表示装置21を示している。
【0010】
画像表示装置21には光源2を有する光源ユニット1があり、光源2は、超高圧水銀ランプ、メタルハライドランプ、キセノンランプ、水銀キセノンランプ、ハロゲンランプ等の白色ランプである。
【0011】
光源2の電球から放射される光は楕円面または放物面または非球面のリフレクタ3にて集光されて反射される。
【0012】
光源ユニット1から出射した光は、リフレクタ3の出射開口と略同等サイズの矩形枠に設けられた複数の集光レンズにより構成された、複数の2次光源像を形成するための第一のアレイレンズ4に入射する。更に、複数の集光レンズにより構成され、前記複数の2次光源像が形成される近傍に配置され、かつ液晶表示素子13に第一のアレイレンズ4の個々のレンズ像を結像させる第二のアレイレンズ5を通過する。この出射光は第二のアレイレンズ5の各々のレンズ光軸の横方向のピッチに適合するように配置された各々のレンズ幅の略1/2サイズの菱形プリズムの列により構成される偏光変換素子6へ入射する。このプリズム面には偏光分離膜が施されており、入射光は、この偏光分離膜にてP偏光光とS偏光光に分離される。P偏光光は、そのまま偏光分離膜を直行し、このプリズムの出射面に設けられたλ/2位相差板7により、偏光方向が90°回転され、S偏光光に変換され出射される。一方、S偏光光は、偏光分離膜により反射され、隣接する菱形プリズム内で本来の光軸方向にもう一度反射してから出射される。
【0013】
絞り8は、穴を有する遮光板で、穴は縦を1にして、横0.7の比率で開口し、偏光変換素子3から出射する光の縦の広がり角と横の広がり角を制限する。
【0014】
コリメータレンズ9a、9bは正の屈折力を有し、このS偏光光をさらに集光させる作用を持ち、ミラー10を介してコンデンサレンズ11を通過して、各色RGB3枚の反射型液晶表示素子13r、13g、13bを照射するために、まず色分離ミラー12あるいは図示していないが、色分離プリズムにより、GB光とR光とに2分割され、各波長域専用にコントラストが良くなるように膜を設計したPBSであるPBS14、15に入射する。
【0015】
すなわち、R光は、色分離ミラー12を透過後、R専用PBS14に入射、その後S偏光光なのでR用反射型液晶表示素子13r側へ反射され、これを照射する。
【0016】
また、B光とG光は、色分離ミラー12で反射し、特定波長域のみ偏光方向を変換する特定波長選択波長板16aを通過してB光の偏光をS偏光光からP偏光光に変換して、偏光を変換されたP偏光光であるB光は、GB専用PBS15を通過してB専用反射型液晶表示素子13bを照射する。一方、G光は特定波長選択波長板16aを通過した後もS偏光光なのでGB専用PBS15にて反射された後、G専用反射型液晶表示素子13gを照射する。もちろん、上記例はひとつの具体例であり、実施例はこれに限定するものではない。
【0017】
その後、各色専用の反射型映像表示素子13で偏光を変換され、光は再び各色専用PBS14、15に入射し、S偏光光は反射され、P偏光光は透過する。
【0018】
この反射型映像表示素子13は、表示する画素に対応する(例えば横1365画素縦768画素各3色など)数の液晶表示部が設けてある。そして、外部より駆動される信号に従って、表示素子13の各画素の偏光角度が変わり、偏光方向の一致した光がG光とB光はPBS15にて、R光はPBS14にて検光される。この途中の角度の偏光を持った光は、PBS15及び14の偏光度との関係で、PBSを通る光の量と検光される量とが決まる。このようにして、外部より入力する信号に従った画像を投影する。この時、反射型映像表示素子13が黒表示を行う場合に、偏光方向は入射光と同等であり、そのまま入射光路に沿って光源側に戻される。
【0019】
ところで、各色の反射型液晶表示素子13r、13g、13bの直前に配置したλ/4位相差板17r、17g、17bを回転調整して、コントラストを向上させることができる。
【0020】
その後、特定波長域のみ偏光方向を変換する特定波長選択波長板16bを通過してG光の偏光をP偏光光からS偏光光に変換する。特定波長選択波長板16bに入射する光は、G光がP偏光光、B光がS偏光光であり、ここでは、G光のみ偏光変換されるので、G光とB光は共にS偏光光として、PBS18に入射する。R光のR専用PBS14を透過した光は、P偏光光としてPBS18に入射する。PBS18にて、R光とGB光は、再び色合成されて、光は、例えばズームレンズであるような投射レンズ19を通過し、スクリーンに到達する。前記投射レンズ19により、反射型映像表示素子13r、13g、13bに形成された画像は、スクリーン上に拡大投影され表示装置として機能するものである。電源20により、光源2および映像表示素子13に電力を供給し、各々の駆動回路(図示せず)にて駆動している。また、RGB光の色純度を改善するための色フィルター(図示せず)や一定の偏光光を得るための偏光フィルタ(図示せず)を光路中に介在させている。
【0021】
ここで、図2に、S偏光光を反射させ、P偏光光を透過させることを目的とするPBSへP偏光光を入射した場合のP偏光光の反射率を示す。同図において、横軸はPBSへの入射角度を、縦軸はP偏光光の反射率である。横方向は、主光線のPBSへの入射方向と反射方向を含む平面上でのP偏光光を入射した場合の入射角度に対するP偏光光の反射率を示す。また、縦方向は、主光線のPBSへの入射方向と反射方向を含む平面に垂直で且つ主光線を含む平面でのP偏光光を入射した場合の入射角度に対するP偏光光の反射率を示す。理想的にはP偏光光を入射した場合、P偏光光の反射率は0となる。
【0022】
図2から、主光線の入射方向と反射方向を含む平面でのP偏光光を入射したときの反射特性と、主光線を含み該平面に垂直な平面でのP偏光光を入射したときの反射特性は異なり、主光線の入射方向と反射方向を含む平面での場合の反射特性の劣化が著しいことが明らかである。
【0023】
これは、反射面への入射角度により偏光軸が回転したり、反射膜が薄膜を多数積層して成るため入射角によって反射性能がシフトするなどで反射特性が変わるためである。特に主光線の入射方向と反射方向を含む平面での入射の場合、反射面が45°傾いているため、入射の向きにより反射面への入射角が大きくことなるため反射特性がより顕著に変わる。
【0024】
そこで本実施の形態では、縦を1として横を0.7と成るように光の広がり角を制限する絞り8を設けている。これにより、G光とB光はPBS15にて、R光はPBS14にて検光されるとき、前記した主光線の入射方向と反射方向を含む平面での反射特性が顕著に劣下する角度の光が少ないため、反射すべきでない偏光光が反射し、反射すべき偏光光が反射しない現象が生じにくくなる。従って、PBSの光の漏れによるコントラストの著しい劣下を防止でき、絞りのない従来技術による場合に比べ、明るさは絞りによって約15%劣下したが、コントラストは倍以上に良好になった。なお、光源の光の角度分布は角度が広がるほど明るさが落ちるため、絞りの大きさに比べて明るさの低下は少なく抑えることができ、結果的に明るさを著しく低下させずにコントラストを改善できた。
【0025】
上記の実施の形態の場合には、光の広がり角を制限するのに絞りを設けたが、本発明はそれに限るものではない。縦と横の光の広がり角を異なる大きさに制限する方法、すなわち照明光学系の映像表示素子側のコリメータレンズ群の主点位置を縦と横で異なるようにすればよく、従来の光学設計で容易に実現できる。例えば、照明光学系のコリメータレンズ群内にシリンドリカルレンズを1個以上設ければよいが、具体的には、設計的な事項なので省略する。このような構成は、先の実施の形態に示した絞りとは違って、光源の光を制限していないため明るく、コントラストの良い画像表示装置を実現できる。
【0026】
上記各実施の形態は、映像表示素子を3枚使用する3板式の画像表示装置について説明したが、本発明は3板式に限るものではなく、映像表示素子を1枚使用する単板式、映像表示素子を2枚使用する2板式の場合に於いても適用可能であることは言うまでも無く、本発明はこれら実施の形態に限定するものではない。
【0027】
【発明の効果】
本発明によれば、コントラスト劣下の要因となる横方向のPBSへの入射角度を小とすることにより、明るさ、コントラストを維持した画像表示装置を達成できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す画像表示装置のブロック図である。
【図2】本発明を説明するためのPBSへのP偏光光の入射角度に対するP偏光光の反射率を示す特性図である。
【符号の説明】
1…光源ユニット、2…光源、3…リフレクタ、4…第一アレイレンズ、 5…第二アレイレンズ、6…偏光変換素子、7…1/2波長位相差板、8…絞り、9a、9b…コリメータレンズ、10…ミラー、11…コンデンサレンズ、12…ダイクロミラー、13…映像表示素子、13r…反射型映像表示素子、13b…青色光用反射型映像表示素子、13g…緑色光用反射型映像表示素子、14、15、18…偏光ビームスプリッタ、16a、16b…特定波長選択波長板、17r、17g、17b…λ/4位相差板、19…投射レンズ、20…電源、21…画像表示装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a projection apparatus for projecting an image on a screen using a light valve element such as a liquid crystal panel or a reflection type image display element, for example, a liquid crystal projector apparatus, a reflection type image display projector apparatus, and a projection type display apparatus. And the like.
[0002]
[Prior art]
Conventionally, as described in, for example, JP-A-11-271683, a light source unit including a white light source and a reflector, and an optical device that modulates incident light based on an input video signal and performs light modulation according to the video signal. A video display element for forming an image, color separation / combination means for color-separating the light emitted by the light source unit and combining optical images of the respective colors from the video display element, and projection means for projecting the combined optical image 2. Description of the Related Art There is an image display device including projection means for displaying image light emitted from an image display element.
[0003]
[Problems to be solved by the invention]
In a projection type image display device, brightness and contrast are important performances, but it is difficult to achieve both brightness and contrast.
[0004]
In order to obtain brightness, it is necessary to increase light use efficiency, and there is a method of reducing the F value of illumination light. However, when the F value is reduced, the image becomes bright but the contrast is inferior, and it is difficult to achieve both the brightness and the contrast.
[0005]
It has been found that the deterioration of the contrast is caused by the sudden deterioration of the reflection performance when the incident angle of the polarizing beam splitter (hereinafter referred to as PBS) used in the color separation / combination means increases. This is related to the size of the angle of incidence on the reflecting surface. If the F value is reduced to obtain brightness, the angle of incidence of the light on the PBS increases and the reflection characteristics, that is, polarized light that must not be reflected, reflect. Then, a phenomenon occurs in which the polarized light to be reflected is transmitted without being reflected. As a result, light that should be reflected on the black display screen by the PBS so as not to reach the screen is transmitted through the PBS, leaking light to the black screen, and deteriorating the contrast.
[0006]
An object of the present invention is to provide an image display device that achieves both brightness and contrast in view of the above-described related art.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a light source unit for irradiating light from a light source, and an optical image corresponding to a video signal by light-modulating the light radiated by the light source unit based on an input image signal. And a color separation / combination means for color-separating the light emitted by the light source unit and combining the optical images of the respective colors from the video display element, and a projection means for projecting the combined optical image. Wherein the color separation / combination means is configured to include a polarization beam splitter, and the principal ray is incident on the polarization beam splitter on a plane including a direction of incidence on the polarization beam splitter and a direction of reflection. The divergence angle of the light to be irradiated is narrower than the divergence angle of the light applied to the polarization beam splitter on a plane perpendicular to the plane and including the principal ray.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0009]
FIG. 1 is an optical configuration diagram showing one embodiment of the present invention, and shows an image display device 21 using three reflective video display elements 13 as light valves.
[0010]
The image display device 21 includes a light source unit 1 having a light source 2, and the light source 2 is a white lamp such as an ultra-high pressure mercury lamp, a metal halide lamp, a xenon lamp, a mercury xenon lamp, and a halogen lamp.
[0011]
Light emitted from the light bulb of the light source 2 is condensed and reflected by the elliptical, parabolic, or aspherical reflector 3.
[0012]
Light emitted from the light source unit 1 is a first array for forming a plurality of secondary light source images, which is constituted by a plurality of condenser lenses provided in a rectangular frame having substantially the same size as the exit aperture of the reflector 3. The light enters the lens 4. Furthermore, a second condenser lens is provided, which is arranged in the vicinity where the plurality of secondary light source images are formed, and forms the individual lens images of the first array lens 4 on the liquid crystal display element 13. Pass through the array lens 5. This emitted light is converted into a polarized light by a row of rhombic prisms each having a size approximately half the width of each lens and arranged so as to match the lateral pitch of the optical axis of each lens of the second array lens 5. The light enters the element 6. The prism surface is provided with a polarization separation film, and the incident light is separated by this polarization separation film into P-polarized light and S-polarized light. The P-polarized light goes straight through the polarization separation film as it is, and its polarization direction is rotated by 90 ° by the λ / 2 retardation plate 7 provided on the exit surface of this prism, and is converted to S-polarized light and emitted. On the other hand, the S-polarized light is reflected by the polarization splitting film, reflected again in the original optical axis direction in the adjacent rhombic prism, and emitted.
[0013]
The diaphragm 8 is a light-shielding plate having a hole. The hole has a length of 1 and is opened at a ratio of 0.7 horizontally to limit the vertical spread angle and the horizontal spread angle of light emitted from the polarization conversion element 3. .
[0014]
The collimator lenses 9a and 9b have a positive refracting power, have the function of further condensing the S-polarized light, and pass through the condenser lens 11 via the mirror 10 to form three reflective RGB liquid crystal display elements 13r for each color RGB. , 13g, and 13b, first, the color separation mirror 12 or a color separation prism (not shown) is used to divide the light into GB light and R light by a color separation prism, so that the contrast is improved exclusively for each wavelength region. Are incident on PBSs 14 and 15 which are the designed PBSs.
[0015]
That is, the R light is transmitted through the color separation mirror 12, then enters the R-dedicated PBS 14, and then is S-polarized light, is reflected toward the R-type reflective liquid crystal display element 13r, and irradiates it.
[0016]
The B light and the G light are reflected by the color separation mirror 12, pass through a specific wavelength selection wavelength plate 16a that changes the polarization direction only in a specific wavelength range, and convert the polarization of the B light from S-polarized light to P-polarized light. Then, the B light, which is the P-polarized light whose polarization has been converted, passes through the GB dedicated PBS 15 and irradiates the B dedicated reflective liquid crystal display element 13b. On the other hand, since the G light is an S-polarized light even after passing through the specific wavelength selection wavelength plate 16a, it is reflected by the GB dedicated PBS 15, and then illuminates the G dedicated reflective liquid crystal display element 13g. Of course, the above example is one specific example, and the embodiment is not limited to this.
[0017]
Thereafter, the polarization is converted by the reflection type image display device 13 dedicated to each color, the light is again incident on the PBSs 14 and 15 dedicated to each color, the S-polarized light is reflected, and the P-polarized light is transmitted.
[0018]
The reflection-type image display element 13 is provided with liquid crystal display units of the number corresponding to the pixels to be displayed (for example, 1365 pixels in width and 768 pixels in 3 colors). Then, the polarization angle of each pixel of the display element 13 changes in accordance with a signal driven from the outside, and the G light and the B light having the same polarization direction are detected by the PBS 15 and the R light is detected by the PBS 14. The amount of light passing through the PBS and the amount of light to be analyzed are determined by the relationship between the PBS 15 and the polarization degree of the PBS 15 and 14 for the polarized light having an intermediate angle. In this way, an image is projected according to a signal input from the outside. At this time, when the reflective image display element 13 performs black display, the polarization direction is the same as that of the incident light, and the light is returned to the light source side along the incident light path.
[0019]
By the way, the contrast can be improved by rotating and adjusting the λ / 4 retardation plates 17r, 17g, 17b disposed immediately before the reflective liquid crystal display elements 13r, 13g, 13b of each color.
[0020]
Thereafter, the light passes through a specific wavelength selection wavelength plate 16b that converts the polarization direction only in a specific wavelength range, and converts the polarization of the G light from P-polarized light to S-polarized light. The light incident on the specific wavelength selection wavelength plate 16b is such that G light is P-polarized light and B light is S-polarized light. Here, only G light is polarization-converted, so that both G light and B light are S-polarized light. And enters the PBS 18. The light of the R light transmitted through the R dedicated PBS 14 enters the PBS 18 as P polarized light. In the PBS 18, the R light and the GB light are color-combined again, and the light passes through a projection lens 19 such as a zoom lens and reaches a screen. The images formed on the reflective video display elements 13r, 13g, and 13b by the projection lens 19 are enlarged and projected on a screen to function as a display device. Power is supplied to the light source 2 and the image display element 13 by the power supply 20, and each of the driving circuits (not shown) drives the light source 2 and the image display element 13. Further, a color filter (not shown) for improving the color purity of the RGB light and a polarization filter (not shown) for obtaining a fixed polarized light are interposed in the optical path.
[0021]
Here, FIG. 2 shows the reflectance of the P-polarized light when the P-polarized light is incident on the PBS for reflecting the S-polarized light and transmitting the P-polarized light. In the figure, the horizontal axis represents the angle of incidence on the PBS, and the vertical axis represents the reflectance of P-polarized light. The horizontal direction indicates the reflectance of the P-polarized light with respect to the incident angle when the P-polarized light is incident on a plane including the incident direction and the reflection direction of the principal ray on the PBS. The vertical direction indicates the reflectance of the P-polarized light with respect to the incident angle when the P-polarized light is incident on a plane perpendicular to the plane including the incident direction and the reflection direction of the principal ray to the PBS and including the principal ray. . Ideally, when P-polarized light is incident, the reflectance of P-polarized light is zero.
[0022]
From FIG. 2, it can be seen that the reflection characteristics when the P-polarized light is incident on the plane including the incident direction and the reflection direction of the principal ray, and the reflection when the P-polarized light is incident on the plane including the principal ray and perpendicular to the plane. It is apparent that the characteristics are different, and that the reflection characteristics are significantly deteriorated in a plane including the incident direction and the reflection direction of the principal ray.
[0023]
This is because the reflection characteristics change due to the rotation of the polarization axis depending on the angle of incidence on the reflection surface, or the reflection performance is shifted depending on the angle of incidence because the reflection film is formed by laminating many thin films. In particular, in the case of incidence on a plane including the incident direction and the reflection direction of the principal ray, the reflection surface is inclined by 45 °, so that the angle of incidence on the reflection surface becomes large depending on the direction of incidence, so that the reflection characteristics change more remarkably. .
[0024]
Therefore, in this embodiment, the stop 8 is provided to limit the spread angle of light so that the length is 1 and the width is 0.7. As a result, when the G light and the B light are analyzed by the PBS 15 and the R light is analyzed by the PBS 14, the angle at which the reflection characteristic on the plane including the incident direction and the reflection direction of the principal ray is significantly deteriorated is reduced. Since there is little light, polarized light that should not be reflected is reflected, and the phenomenon that polarized light to be reflected is not reflected is less likely to occur. Therefore, it was possible to prevent the contrast from being significantly deteriorated due to the leakage of light from the PBS, and the brightness was reduced by about 15% due to the aperture, but the contrast was more than doubled as compared with the conventional technique without the aperture. In addition, since the angle distribution of the light from the light source decreases in brightness as the angle increases, the decrease in brightness can be suppressed to a small degree compared to the size of the aperture. As a result, the contrast can be reduced without significantly reducing the brightness. I could improve it.
[0025]
In the above-described embodiment, the stop is provided to limit the spread angle of light, but the present invention is not limited to this. The method of limiting the spread angle of the vertical and horizontal light to different sizes, that is, the principal point position of the collimator lens group on the image display element side of the illumination optical system may be different in the vertical and horizontal directions, and the conventional optical design Can be easily realized. For example, one or more cylindrical lenses may be provided in the collimator lens group of the illumination optical system. Unlike the diaphragm described in the above embodiment, such a configuration does not limit the light of the light source, and thus can realize a bright and high-contrast image display device.
[0026]
In each of the above embodiments, a three-panel image display device using three video display elements has been described. However, the present invention is not limited to the three-panel type image display device. It goes without saying that the present invention is also applicable to the case of a two-plate type using two elements, and the present invention is not limited to these embodiments.
[0027]
【The invention's effect】
According to the present invention, it is possible to achieve an image display device that maintains brightness and contrast by reducing the angle of incidence on the PBS in the horizontal direction, which is a cause of poor contrast.
[Brief description of the drawings]
FIG. 1 is a block diagram of an image display device according to an embodiment of the present invention.
FIG. 2 is a characteristic diagram showing the reflectance of P-polarized light with respect to the angle of incidence of P-polarized light on PBS for explaining the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Light source unit, 2 ... Light source, 3 ... Reflector, 4 ... First array lens, 5 ... Second array lens, 6 ... Polarization conversion element, 7 ... 1/2 wavelength phase difference plate, 8 ... Stop, 9a, 9b ... Collimator lens, 10 ... Mirror, 11 ... Condenser lens, 12 ... Dichroic mirror, 13 ... Video display element, 13r ... Reflection type video display element, 13b ... Reflection type video display element for blue light, 13g ... Reflection type for green light Image display elements, 14, 15, 18: polarization beam splitters, 16a, 16b: specific wavelength selection wavelength plates, 17r, 17g, 17b: λ / 4 phase difference plate, 19: projection lens, 20: power supply, 21: image display apparatus.

Claims (4)

光源からの光を照射する光源ユニットと、該光源ユニットにより照射された光を入力画像信号に基づいて光変調して映像信号に応じた光学像を形成する映像表示素子と、前記光源ユニットにより照射された光を色分離し前記映像表示素子からの各色の光学像を合成する色分離合成手段と、合成された光学像を投写する投写手段とを有する画像表示装置であって、
前記色分離合成手段は偏光ビームスプリッタを含んで構成され、主光線の前記偏光ビームスプリッタへの入射方向と反射方向を含む平面上での前記偏光ビームスプリッタに入射される光の広がり角を、前記平面に垂直で且つ主光線を含む平面上での前記偏光ビームスプリッタに照射される光の広がり角より狭くなるように構成したことを特徴とする画像表示装置。
A light source unit that emits light from a light source; a video display element that forms an optical image corresponding to a video signal by optically modulating the light emitted by the light source unit based on an input image signal; An image display device comprising: a color separation / combination unit that performs color separation of the combined light and combines an optical image of each color from the video display element, and a projection unit that projects the combined optical image,
The color separation / combination unit is configured to include a polarization beam splitter, and a divergence angle of light incident on the polarization beam splitter on a plane including an incident direction and a reflection direction of the principal ray on the polarization beam splitter, An image display device characterized in that it is configured to be narrower than a spread angle of light applied to the polarizing beam splitter on a plane perpendicular to the plane and including a principal ray.
前記光源ユニットは、前記偏光ビームスプリッタに照射する光の広がり角を制限する絞り手段を有することを特徴とする請求項1に記載の画像表示装置。The image display device according to claim 1, wherein the light source unit includes a diaphragm unit that limits a spread angle of light applied to the polarization beam splitter. 前記光源ユニットからの光を前記映像表示素子に照射する複数のレンズから構成される照明光学系を有し、
主光線の前記偏光ビームスプリッタへの入射方向と反射方向を含む平面と、該平面に垂直な平面とで、前記複数のレンズの主点位置が異なることを特徴とする請求項1に記載の画像表示装置。
An illumination optical system including a plurality of lenses for irradiating the light from the light source unit to the image display element,
The image according to claim 1, wherein principal plane positions of the plurality of lenses are different between a plane including an incident direction and a reflecting direction of the principal ray on the polarization beam splitter and a plane perpendicular to the plane. Display device.
前記複数のレンズは、シリンドリカルレンズを含んで構成されることを特徴とする請求項3に記載の画像表示装置。The image display device according to claim 3, wherein the plurality of lenses include a cylindrical lens.
JP2002204996A 2002-07-15 2002-07-15 Image display device Pending JP2004045907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002204996A JP2004045907A (en) 2002-07-15 2002-07-15 Image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204996A JP2004045907A (en) 2002-07-15 2002-07-15 Image display device

Publications (1)

Publication Number Publication Date
JP2004045907A true JP2004045907A (en) 2004-02-12

Family

ID=31710410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204996A Pending JP2004045907A (en) 2002-07-15 2002-07-15 Image display device

Country Status (1)

Country Link
JP (1) JP2004045907A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1648177A2 (en) * 2004-10-14 2006-04-19 Canon Kabushiki Kaisha Illumination optical system and image display apparatus making use thereof
US7114812B2 (en) 2003-02-12 2006-10-03 Canon Kabushiki Kaisha Illumination optical system and projection display optical system
JP2006337791A (en) * 2005-06-03 2006-12-14 Hitachi Ltd Projection type video display device, and optical unit and polarized beam splitting member to be used therefor
JP2007079029A (en) * 2005-09-13 2007-03-29 Canon Inc Illumination optical system and projection display device using it
US7931375B2 (en) 2008-03-06 2011-04-26 Nec Display Solutions, Ltd. Illuminating optical system for projector including first and second integrators
JP2011232761A (en) * 2011-05-02 2011-11-17 Canon Inc Illumination optical system and image display device using the same
US8182101B2 (en) 2008-02-15 2012-05-22 Canon Kabushiki Kaisha Illumination optical system having the longest air interspace distance between a first and a second optical unit where a specific condition is satisfied for the optical system
JP2012212144A (en) * 2006-06-08 2012-11-01 Canon Inc Illumination optical system, optical system for image projection, and image projection apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7114812B2 (en) 2003-02-12 2006-10-03 Canon Kabushiki Kaisha Illumination optical system and projection display optical system
US7131730B2 (en) 2003-02-12 2006-11-07 Canon Kabushiki Kaisha Illumination optical system and projection display optical system
US7264358B2 (en) 2003-02-12 2007-09-04 Canon Kabushiki Kaisha Illumination optical system and projection display optical system
EP2261723A2 (en) 2004-10-14 2010-12-15 Canon Kabushiki Kaisha Illumination optical system and image display apparatus making use thereof
EP1648177A3 (en) * 2004-10-14 2006-06-21 Canon Kabushiki Kaisha Illumination optical system and image display apparatus making use thereof
EP2261723A3 (en) * 2004-10-14 2016-08-31 Canon Kabushiki Kaisha Illumination optical system and image display apparatus making use thereof
US7575328B2 (en) 2004-10-14 2009-08-18 Canon Kabushiki Kaisha Illumination optical system and image display apparatus making use thereof
EP1648177A2 (en) * 2004-10-14 2006-04-19 Canon Kabushiki Kaisha Illumination optical system and image display apparatus making use thereof
JP2006337791A (en) * 2005-06-03 2006-12-14 Hitachi Ltd Projection type video display device, and optical unit and polarized beam splitting member to be used therefor
US7690793B2 (en) 2005-09-13 2010-04-06 Canon Kabushiki Kaisha Illumination optical system and projection-type image display apparatus
JP2007079029A (en) * 2005-09-13 2007-03-29 Canon Inc Illumination optical system and projection display device using it
JP2012212144A (en) * 2006-06-08 2012-11-01 Canon Inc Illumination optical system, optical system for image projection, and image projection apparatus
US8182101B2 (en) 2008-02-15 2012-05-22 Canon Kabushiki Kaisha Illumination optical system having the longest air interspace distance between a first and a second optical unit where a specific condition is satisfied for the optical system
US7931375B2 (en) 2008-03-06 2011-04-26 Nec Display Solutions, Ltd. Illuminating optical system for projector including first and second integrators
US8128233B2 (en) 2008-03-06 2012-03-06 Nec Display Solutions, Ltd. Illuminating optical system for projector including condenser lens and field lens
JP2011232761A (en) * 2011-05-02 2011-11-17 Canon Inc Illumination optical system and image display device using the same

Similar Documents

Publication Publication Date Title
US6388718B1 (en) LCD projector of two-plate type
JP3635867B2 (en) Projection type liquid crystal display device
US7824037B2 (en) Color separation device, imaging optical engine, and projection apparatus
JP3858548B2 (en) Optical engine and liquid crystal projector using the same
US20070216869A1 (en) Projection type image display apparatus
JP2004020621A (en) Reflection type image projection apparatus, projection type image display using the same, and light source apparatus to be used therefor
US7690793B2 (en) Illumination optical system and projection-type image display apparatus
US6582081B2 (en) Projection display device
JP2006145644A (en) Polarization splitter and projection display apparatus using the same
JP5245374B2 (en) Projection-type image display device and polarization conversion element
JP4258293B2 (en) Projection-type image display device
JP2004070095A (en) Optical waveguide, optical unit, and video display unit using same
JP2004045907A (en) Image display device
JP4422986B2 (en) Image display device
JP3757701B2 (en) Light flux compression unit, optical engine, and video display device using the same
JP4033137B2 (en) Projection-type image display device and optical system
JP2985799B2 (en) Projection type liquid crystal display
JPH1010467A (en) Projection and display device
US20040021832A1 (en) Polarizing illumination optical system and projection-type display device which uses same
JP4396213B2 (en) Image display device
CN100445863C (en) Image display apparatus
JP2004012864A (en) Projection type image display device
JP2004157252A (en) Projection type image display device and optical unit used for the same
JP2008158365A (en) Projection type video display device
JP2004286947A (en) Projection type video display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407