JPH05214125A - Anion exchange membrane excellent in selectivity between anion - Google Patents

Anion exchange membrane excellent in selectivity between anion

Info

Publication number
JPH05214125A
JPH05214125A JP1746992A JP1746992A JPH05214125A JP H05214125 A JPH05214125 A JP H05214125A JP 1746992 A JP1746992 A JP 1746992A JP 1746992 A JP1746992 A JP 1746992A JP H05214125 A JPH05214125 A JP H05214125A
Authority
JP
Japan
Prior art keywords
membrane
anion
exchange membrane
anion exchange
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1746992A
Other languages
Japanese (ja)
Inventor
Kiyotaka Yoshie
清敬 吉江
Rei Sugishita
玲 杉下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1746992A priority Critical patent/JPH05214125A/en
Publication of JPH05214125A publication Critical patent/JPH05214125A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an anion exchange membrane low in electric resistance and excellent in selective permeability of a monovalent ion between anions. CONSTITUTION:The objective anionic ion exchange membrane is characterized in that an ion exchange group of an anion exchange membrane is crosslinked with an aliphatic hydrocarbon and a thin film of a high polymer having a cation exchange group is formed on the surface of the membrane. The membrane is an anion exchange membrane extremely low in electric resistance and having practical monovalent anion-selective permeability and reduces electric power cost of electric dialysis in a salt producing technique for sea water concentration by electric diagnosis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、陰イオン間のイオン選
択透過性、詳しくは電価の異なる陰イオンに対して、電
価の小さい陰イオンを選択的に透過させる性質を有する
陰イオン交換膜に関する。
FIELD OF THE INVENTION The present invention relates to anion selective permeability between anions, more specifically, an anion exchange having a property of selectively passing anions having a small charge to anions having different charges. Regarding the membrane.

【0002】[0002]

【従来の技術】陰イオン交換膜は、電気透析、電極反応
の隔膜、あるいは、拡散透析等の広範な分野に用いられ
ている。海水濃縮の電気透析においては、多価の陰イオ
ンの透過によって、セッコウ等のスケール発生や電力損
失の問題があり、イオン交換膜の同符号イオン間におけ
る一価イオンの選択透過性を有することは海水濃縮の電
気透析では必須の技術であり数多くの提案がされてい
る。例えば、陰イオン交換膜の表面の縮合系の架橋の緻
密層の形成(特公昭36−15258号)、陰イオン交
換膜の表面のハロアルキル基の架橋(特公昭56−80
49号)、陰イオン交換膜の表面に陽イオン交換基を有
する薄層の形成(特公昭45−19980号)、陰イオ
ン交換膜の表層部の酸化処理(特公昭40−34649
号)、陰イオン交換膜の交換基にアルキル基を設ける
(特開昭55−78021号)等が提案されている。
2. Description of the Related Art Anion exchange membranes are used in a wide range of fields such as electrodialysis, diaphragms for electrode reactions, and diffusion dialysis. In electrodialysis of seawater concentration, there are problems of scale generation such as gypsum and power loss due to permeation of polyvalent anions, and it is not possible to have selective permeability of monovalent ions between ions of the same sign in the ion exchange membrane. It is an essential technique in seawater-concentrated electrodialysis and many proposals have been made. For example, formation of a dense layer of condensed crosslinks on the surface of an anion exchange membrane (Japanese Patent Publication No. 36-15258) and crosslinking of haloalkyl groups on the surface of anion exchange membrane (Japanese Patent Publication No. 56-80).
49), formation of a thin layer having a cation exchange group on the surface of an anion exchange membrane (Japanese Patent Publication No. 45-19980), oxidation treatment of the surface layer portion of the anion exchange membrane (Japanese Patent Publication No. 40-34649).
No.), an alkyl group is provided on the exchange group of the anion exchange membrane (JP-A-55-78021), and the like.

【0003】[0003]

【発明が解決しようとする課題】海水濃縮の電気透析用
陰イオン交換膜に要求される特性は、高い海水濃縮性能
を有すること、多価の陰イオンは透過し難く、1価の陰
イオンは選択的に透過し易い性質を有すること、そし
て、低い電気抵抗を有することである。その為、いかに
して膜の電気抵抗を上げずに陰イオン間の選択性を実用
レベルまで向上させるかが重要である。例えば、陰イオ
ン交換膜の交換基に、炭化水素化合物による架橋を行っ
たり、アルキル基を導入する事によって、陰イオン間の
選択透過性は、改善され、実用レベルの選択性は確保さ
れるが、炭化水素化合物による架橋、又は、アルキル基
を導入する方法のいずれにおいても炭素数を大きくしな
ければならず、その結果、膜の電気抵抗が大きくなって
しまうので一価イオンの選択透過性に優れた低電気抵抗
の膜は実用化に至っていない。又、陰イオン交換膜の表
面に陽イオン交換基を有する薄層を形成し、選択透過性
を付与した膜でも、電気抵抗の低い膜は得られていな
い。特に、近年、イオン交換膜電気透析による製塩にお
いては、輸入の原料塩に対抗する為のコスト低減の追求
がなされており、この点からも電気抵抗の低い膜が強く
望まれているが、膜の緻密性を損なわず、膜の低電気抵
抗の方向は、膜の高交換容量の方向となり、この様な高
交換容量の膜で、陰イオン交換膜の表面に陽イオン交換
基を有する薄層を形成し、陰イオン間の選択透過性を向
上させる技術においては、未だ優れた陰イオンの選択透
過性を有する膜、つまり、低電気抵抗(高交換容量)で
あって一価陰イオン選択透過性にも優れている、という
両方を満足させる膜は現在まだ得られていない。
The characteristics required for anion exchange membranes for electrodialysis for seawater concentration are that they have high seawater concentration performance, that polyvalent anions are difficult to permeate, and monovalent anions are It has a property of easily transmitting selectively and has a low electric resistance. Therefore, it is important to improve the selectivity between anions to a practical level without increasing the electric resistance of the film. For example, by performing crosslinking with a hydrocarbon compound or introducing an alkyl group into the exchange group of the anion exchange membrane, the selective permeability between the anions is improved, and the practical level of selectivity is secured. In any of the methods of cross-linking with a hydrocarbon compound and introducing an alkyl group, the carbon number must be increased, and as a result, the electric resistance of the membrane increases, which results in a selective permeation of monovalent ions. An excellent low electric resistance film has not been put to practical use. Further, even a film having a thin layer having a cation exchange group formed on the surface of an anion exchange film to impart selective permeability, a film having a low electric resistance has not been obtained. In particular, in recent years, in salt production by ion exchange membrane electrodialysis, pursuit of cost reduction to counter imported raw material salt has been made. From this point as well, a membrane having low electric resistance is strongly desired. The direction of the membrane's low electrical resistance is the direction of the membrane's high exchange capacity without impairing the compactness of the membrane, and in such a membrane of high exchange capacity, a thin layer having a cation exchange group on the surface of the anion exchange membrane. In order to improve the selective permeation between anions, the membrane still has an excellent selective permeation of anions, that is, a monovalent anion selective permeation with low electrical resistance (high exchange capacity). A film satisfying both of the excellent properties has not yet been obtained.

【0004】この様に低電気抵抗膜の実用化にとって、
従来技術では、陰イオン間の選択透過性との関係が大き
な問題となっている。
As described above, for practical use of the low electric resistance film,
In the prior art, the relationship with the selective permeability between anions has been a serious problem.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記問題
点を解決する為に膜母体である陰イオン交換膜と表面に
薄層として形成させる陽イオン交換基を有する高分子物
との吸着及び結合という点に着目し鋭意検討を行なった
結果、高交換容量の陰イオン交換膜の交換基を適正な脂
肪族炭化水素によって架橋させる事が上記目的を満足す
る事を見出だし、本発明をなすに至った。
Means for Solving the Problems In order to solve the above-mentioned problems, the inventors of the present invention have used an anion exchange membrane as a membrane matrix and a polymer having a cation exchange group formed as a thin layer on the surface thereof. As a result of intensive investigations focusing on the points of adsorption and binding, it was found that cross-linking the exchange groups of the anion exchange membrane having a high exchange capacity with an appropriate aliphatic hydrocarbon satisfies the above object, and the present invention Came to make.

【0006】即ち、本発明は、陰イオン交換膜のイオン
交換基が脂肪族炭化水素によって架橋されており、膜表
面部には陽イオン交換基を有する高分子物の薄層が形成
されている事を特徴とする陰イオン交換膜である。本発
明者等は、低電気抵抗膜即ち高交換容量膜の陰イオン間
の選択性について検討し、高交換容量の膜程、膜表面の
陽イオン交換基を有する高分子物の量が少なくなってい
る事を確認した。
That is, in the present invention, the ion-exchange groups of the anion-exchange membrane are crosslinked by the aliphatic hydrocarbon, and a thin layer of a polymer having a cation-exchange group is formed on the surface of the membrane. It is an anion exchange membrane that is characterized. The present inventors have examined the selectivity between anions of a low electric resistance film, that is, a high exchange capacity film, and the higher the exchange capacity film, the smaller the amount of the polymer having cation exchange groups on the surface of the film becomes. I confirmed that.

【0007】そして、イオン交換膜母体の疎水性の増加
が陽イオン交換基を有する高分子物の吸着量を増加させ
る事を確認した。更に、陰イオン交換膜の交換基を適正
な脂肪族炭化水素によって架橋させた構造が膜抵抗の上
昇を極に抑えたまま、膜母体の疎水性を上げる事を見出
だし、これらのことから本発明に至った。イオン交換膜
母体の疎水性の増加が、吸着量の増加に有効な理由は、
この吸着においては、疎水結合が支配的なものである為
と考えている。
It was confirmed that the increase in the hydrophobicity of the ion exchange membrane matrix increased the adsorption amount of the polymer having a cation exchange group. Furthermore, we found that the structure in which the exchange groups of the anion-exchange membrane were cross-linked by appropriate aliphatic hydrocarbons increased the hydrophobicity of the membrane matrix while suppressing the increase in membrane resistance to a minimum. Invented. The reason why the increase in the hydrophobicity of the ion exchange membrane matrix is effective in increasing the adsorption amount is as follows.
It is considered that the hydrophobic bond is dominant in this adsorption.

【0008】又、交換基を脂肪族炭化水素によって架橋
させた構造は架橋している為、緻密であり、陰イオン交
換膜の性能を低下させない特徴がある。そして、該架橋
の脂肪族炭化水素の結合炭素数は、陰イオン交換膜母体
の構造、架橋度、交換基種による疎水性及び膜表面の陽
イオン交換基を有する高分子物が有する疎水性によって
適性な炭素数が異なるが、好ましくは、──(CH2
n ──の式で表される肪族炭化水素のうち、n=4〜1
0である。より好ましくは、n=4〜8である。例え
ば、炭素数が小さい場合では、小さ過ぎると膜母体の疎
水性が上がらず、膜表面の陽イオン交換基を有する薄層
の吸着量が少なく、その為陰イオン間の一価イオンの選
択透過性は、十分満足が得られるところまで改善されて
いない。一方、炭素数が大きい場合では、大き過ぎると
膜母体の疎水性は上がるが膜電気抵抗の上昇がみられ
る。その為、適正範囲の炭素数の脂肪族炭化水素を選択
する必要がある。
Further, since the structure in which the exchange group is crosslinked by the aliphatic hydrocarbon is crosslinked, it is dense and has a characteristic that the performance of the anion exchange membrane is not deteriorated. The number of bonded carbon atoms of the aliphatic hydrocarbon depends on the structure of the anion exchange membrane matrix, the degree of crosslinking, the hydrophobicity of the exchange group species, and the hydrophobicity of the polymer having cation exchange groups on the membrane surface. Suitable carbon numbers are different, but preferably ── (CH 2 )
n = 4-1 among the aliphatic hydrocarbons represented by the formula n ──
It is 0. More preferably, n = 4-8. For example, when the carbon number is small, if the carbon number is too small, the hydrophobicity of the membrane matrix does not increase, and the adsorption amount of the thin layer having the cation exchange group on the membrane surface is small, which results in the selective permeation of monovalent ions between anions. The sex has not been improved to the point where sufficient satisfaction is obtained. On the other hand, when the carbon number is large, when the carbon number is too large, the hydrophobicity of the membrane matrix increases but the membrane electric resistance increases. Therefore, it is necessary to select an aliphatic hydrocarbon having an appropriate number of carbon atoms.

【0009】以下、本発明を具体的に説明する。本発明
の陰イオン交換膜の各組成物としては、従来公知で通常
使用される共重合可能なモノマー、又は、重合能を有す
るイオン交換基に転換し得る基を有するモノマー、架橋
剤、ラジカル重合触媒、可塑剤、及び、その他場合に応
じて、該モノマー混合液中で可溶性の線状高分子を用い
る事が出来る。又、必要に応じて基材と組み合わせる事
も出来る。
The present invention will be specifically described below. Each composition of the anion exchange membrane of the present invention includes a conventionally known and usually used copolymerizable monomer, or a monomer having a group capable of being converted into an ion exchange group having polymerization ability, a crosslinking agent, and radical polymerization. A catalyst, a plasticizer, and, depending on other cases, a linear polymer soluble in the monomer mixture may be used. Also, it can be combined with a base material if necessary.

【0010】陰イオン交換膜の各組成物のうち、共重合
可能なモノマー、又は、重合能を有し、イオン交換基に
転換し得る基を有するモノマーとしては、スチレン、ア
クリロニトリル、エチルスチレン、ビニルクロライド、
アクロレイ、メチルビニルケトン、無水マレイン酸、マ
レイン酸及びその塩又はエステル、イタコン酸及びその
塩又はエステル、メチルビニルケトン、ビニルピリジン
及びその誘導体、アクリロニトリル、クロルメチルスチ
レンの中から適宜選択出来る。
Among the respective compositions of the anion exchange membrane, the copolymerizable monomer or the monomer having a group having a polymerization ability and capable of being converted into an ion exchange group includes styrene, acrylonitrile, ethylstyrene and vinyl. Chloride,
It can be appropriately selected from acrolein, methyl vinyl ketone, maleic anhydride, maleic acid and its salts or esters, itaconic acid and its salts or esters, methyl vinyl ketone, vinyl pyridine and its derivatives, acrylonitrile and chloromethyl styrene.

【0011】架橋剤としては、m−、p−、o−ジビニ
ルベンゼン、ジビニルスルホン、ブタジエン、クロロプ
レン、トリビニルベンゼン類、ジビニルナフタリン、ト
リビニルナフタリン等のポリビニル化合物が用いられ
る。ラジカル重合触媒としては、ベンゾイルパーオキサ
イド、アゾイソブチロニトリル、ジクミルパーオキサイ
ド等の公知のラジカル重合開始剤が用いられる。
As the crosslinking agent, polyvinyl compounds such as m-, p-, o-divinylbenzene, divinylsulfone, butadiene, chloroprene, trivinylbenzenes, divinylnaphthalene and trivinylnaphthalene are used. As the radical polymerization catalyst, known radical polymerization initiators such as benzoyl peroxide, azoisobutyronitrile and dicumyl peroxide are used.

【0012】可塑剤としては、ジメチルフタレート、ジ
オクチルフタレート等のフタル酸エステル類、脂肪族
酸、芳香族酸のアルコールエステル類が用いられる。該
モノマー混合液中で必要により用いられる可溶性の線状
高分子物質としては、ポリスチレン類、ポリブタジエン
類、ポリイソブチレン類、ポリブチレン類、スチレン−
ブチジエン共重合物、エチレン−プロピレン共重合物、
ポリハロゲン化オレフィン類、ポリ塩化ビニル微粉末、
ポリエチレン微粉末、ポリプロピレン微粉末が用いられ
る。
As the plasticizer, phthalic acid esters such as dimethyl phthalate and dioctyl phthalate, and alcohol esters of aliphatic acids and aromatic acids are used. Examples of soluble linear polymer substances that are optionally used in the monomer mixture include polystyrenes, polybutadienes, polyisobutylenes, polybutylenes, styrene-
Butydiene copolymer, ethylene-propylene copolymer,
Polyhalogenated olefins, polyvinyl chloride fine powder,
Polyethylene fine powder and polypropylene fine powder are used.

【0013】基材としては、ポリエチレン、ポリプロピ
レン等のポリオレフィン類、ポリ塩化ビニル、ポリ塩化
ビニリデン等のポリハロゲン化オレフィン類、ナイロン
等の中から適宜選択出来、これらのポリマーは、単独あ
るいは他のものとの共重合体でもよく、それらから作ら
れた織布、不織布、網、シートあるいはそれらの多孔性
物等、基材と成りうるものであれば何ら制限されるもの
でない。
The base material can be appropriately selected from polyolefins such as polyethylene and polypropylene, polyhalogenated olefins such as polyvinyl chloride and polyvinylidene chloride, nylon and the like, and these polymers can be used alone or in combination. And a woven cloth, a non-woven cloth, a net, a sheet made of them, or a porous material thereof can be used as the base material without any limitation.

【0014】次ぎに、交換基の導入についてであるが、
交換基導入モノマーに適した、例えば特開昭58−93
729号等の従来公知の手段により交換基に脂肪族炭化
水素での架橋と同時に4級化を行えばよい。本発明にお
いて用いられる陽イオン交換基を有する高分子物として
は、例えば特公昭45−19980号に示される様な、
陽イオン交換基を持つ分子量500以上の高分子電解質
及び線状高分子電解質とか特公昭58−12901号に
示される陽イオン交換基を持つ不溶性高分子等があげら
れる。具体的には、リグニンスルホン酸塩の如きスルホ
ン酸塩、高級アルコールリン酸エステルの如きリン酸エ
ステル塩等のうち分子量500以上の陽イオン交換基を
もつ高分子電解質、メタクリル酸、スチレンスルホン酸
の如きカルボン酸基とかスルホン酸基を持つ単量体ユニ
ットを多数個含む線状高分子電解質、陽イオン交換基を
含むフェノール類とアルデヒド類とを縮合させた物の如
き陽イオン交換基を持つ不溶性高分子で、その交換容量
が0.5meq/g(dry)以上、粒子径100μm
以下、のもの等をあげることが出来る。
Next, regarding the introduction of the exchange group,
Suitable for a monomer having an exchange group, for example, JP-A-58-93
The exchange group may be crosslinked with an aliphatic hydrocarbon and quaternized simultaneously by a conventionally known means such as No. 729. Examples of the polymer having a cation exchange group used in the present invention include those disclosed in JP-B-45-19980.
Examples thereof include a polymer electrolyte having a cation exchange group and a molecular weight of 500 or more, a linear polymer electrolyte, and an insoluble polymer having a cation exchange group shown in JP-B-58-12901. Specifically, among sulfonates such as lignin sulfonates and phosphate ester salts such as higher alcohol phosphates, polyelectrolytes having a cation exchange group having a molecular weight of 500 or more, methacrylic acid, styrene sulfonic acid Such as linear polyelectrolytes containing a large number of monomer units having carboxylic acid groups or sulfonic acid groups, insoluble with cation exchange groups such as those obtained by condensing phenols and aldehydes containing cation exchange groups Polymer, with exchange capacity of 0.5 meq / g (dry) or more, particle size of 100 μm
The following can be listed.

【0015】上記高分子物の薄層を形成させる方法であ
るが、例えば、母体の陰イオン交換膜を該高分子物の水
溶液又は有機物との混合液に浸漬させる方法、母体の陰
イオン交換膜に該高分子物の水溶液又は有機物との混合
液を塗布又は噴霧させる方法、陰・陽イオン交換膜を電
気透析槽に組んだ後、非通電下又は通電下で該高分子物
の水溶液を脱塩室側に通液させる方法等の接触により行
う事が出来る。
The method for forming a thin layer of the above-mentioned polymer is, for example, a method of immersing the anion-exchange membrane of the matrix in an aqueous solution of the polymer or a mixture with an organic substance, an anion-exchange membrane of the matrix. Method of applying or spraying an aqueous solution of the polymer or a mixture of the polymer and the anion / cation exchange membrane in an electrodialysis tank, and then removing the aqueous solution of the polymer with or without electricity. It can be performed by contact such as a method of passing the solution to the salt chamber side.

【0016】その時の温度は、0〜120℃が用いられ
るが、陰イオン交換膜母体の性質、陽イオン交換基を有
する高分子物の性質に応じて、温度、電解質濃度、P
H、時間を適宜選んで行う。本発明の薄層膜の厚さは、
膜中で水の分解を起こすような厚さ以下でなければなら
ないが、その上限は、基礎になる陰イオン交換樹脂膜の
材質、表面の状態等の諸因子により異なってくる。しか
し、その目安の一例としては次のように考えられる。即
ち、膜の両側に0.5規定の電解質溶液をおいて2A/
dm2 の直流電流を陰イオン交換膜側から薄層膜側へ流
したとき、加水分解の電流効率が3%を超えるような厚
さの場合、此の膜は本発明の目的に適合しないものとな
るので、薄層膜の厚さは、それより薄いものにしなけれ
ばならない。
The temperature at that time is 0 to 120 ° C., but depending on the properties of the anion exchange membrane matrix and the polymer having a cation exchange group, the temperature, the electrolyte concentration, and the P
H and time are appropriately selected. The thickness of the thin film of the present invention is
The thickness must be less than the thickness that causes water to be decomposed in the membrane, but the upper limit depends on various factors such as the material of the anion-exchange resin membrane as a base and the state of the surface. However, an example of the standard is considered as follows. That is, 2A / 0.5N electrolyte solution is placed on both sides of the membrane.
When a direct current of dm 2 is applied from the anion exchange membrane side to the thin layer membrane side and the current efficiency of hydrolysis exceeds 3%, this membrane is not suitable for the purpose of the present invention. Therefore, the thickness of the thin film must be smaller than that.

【0017】[0017]

【実施例】以下、本発明を詳しく説明するために実施例
を掲げるが、本発明は下記の実施例の記載により何ら限
定されるものでない。なお、実施例中に使用する記号及
び測定方法について以下に説明する。 (1)R:イオン交換膜の抵抗(Ω・cm2 )、0.5
規定食塩水中での交流1000HZ、温度25℃での測
定値。
EXAMPLES Examples will be given below to explain the present invention in detail, but the present invention is not limited by the description of the following examples. The symbols and measurement methods used in the examples will be described below. (1) R: resistance of the ion exchange membrane (Ω · cm 2 ), 0.5
Measured value at an alternating current of 1000 HZ and a temperature of 25 ° C. in normal saline.

【0018】(2)FSO4 :陰イオン交換膜の塩素イ
オンに対する硫酸根の比選択透過性を示す値。(次の式
1による値:小さい値ほど良い)
(2) FSO 4 : A value indicating the specific selective permeability of sulfate radicals to chlorine ions in the anion exchange membrane. (Value according to the following formula 1: Smaller value is better)

【0019】[0019]

【化1】 [Chemical 1]

【0020】測定方法:電気透析槽の両端部に、銀−塩
化銀電極を設置し、両電極間に陽極側から、夫々の有効
通電面積が4cm×4cmの通常の陽イオン交換膜、本
発明の陰イオン交換膜、通常の陽イオン交換膜を交互に
並置して、電気透析槽を陽極室、希釈室、濃縮室、希釈
室、陰極室の5室に分割する。希釈室には、塩素イオン
0.3632規定、硫酸根0.0368規定、ナトリウ
ムイオン0.3179規定、、マグネシウムイオン0.
0691規定、カルシウムイオン0.0130規定の混
合塩水溶液を毎秒5cmの線速度で通液し、濃縮室に
は、希釈室と同じ組成の混合塩水溶液を充満し、陽極
室、陰極室には、各々0.4規定の食塩水溶液を通液
し、温度25℃、電流密度3.0A/dm2 で電気透析
を行った。
Measurement method: Silver-silver chloride electrodes were installed at both ends of the electrodialysis tank, and an ordinary cation exchange membrane having an effective current-carrying area of 4 cm × 4 cm from the anode side between both electrodes, the present invention. The anion exchange membrane and the ordinary cation exchange membrane are alternately arranged side by side, and the electrodialysis tank is divided into five chambers of an anode chamber, a dilution chamber, a concentration chamber, a dilution chamber and a cathode chamber. Chloride ion 0.3632 normal, sulfate radical 0.0368 normal, sodium ion 0.3179 normal, magnesium ion 0.
A mixed salt aqueous solution of 0691 N and calcium ion 0.0130 N was passed at a linear velocity of 5 cm per second, the concentration chamber was filled with the mixed salt aqueous solution having the same composition as the dilution chamber, and the anode chamber and the cathode chamber were filled with A 0.4 N saline solution was passed through each, and electrodialysis was performed at a temperature of 25 ° C. and a current density of 3.0 A / dm 2 .

【0021】通電を4時間行った後に、新しく溢流して
くる濃縮液を分析し、得られる濃縮液の分析値と希釈液
の組成よりFSO4 を計算する。 (3)NOS:前記電気透析での濃縮液中の塩素イオン
規定度。 (4)交換容量:meq/g−dry膜。
After applying electricity for 4 hours, the newly overflowing concentrated solution is analyzed, and FSO 4 is calculated from the analytical value of the obtained concentrated solution and the composition of the diluted solution. (3) NOS: Normality of chloride ion in the concentrated solution in the electrodialysis. (4) Exchange capacity: meq / g-dry membrane.

【0022】[0022]

【実施例1及び比較例1】 イオン交換膜母体の製造;ジビニルベンゼン(純度56
%)11部、4−ビニルピリジン45部、スチレン44
部、フタル酸ジオクチル15部、アゾビスイソブチルニ
トリル0.2部からなるモノマー混合液中に、予め電子
線照射したポリプロピレン製の平織布を浸した後、空気
が入らない様に2枚のポリエステルシートに挟み、40
℃で20時間、60℃で10時間、更に95℃で10時
間加熱して重合を行い、膜状のイオン交換膜母体を得
た。
Example 1 and Comparative Example 1 Production of Ion Exchange Membrane Base; Divinylbenzene (Purity 56
%) 11 parts, 4-vinylpyridine 45 parts, styrene 44
Part, dioctyl phthalate 15 parts, and azobisisobutyl nitrile 0.2 parts were soaked in a pre-electron-beam-irradiated polypropylene plain weave cloth, and then two polyesters were used to prevent air from entering. Sandwiched between sheets, 40
Polymerization was performed by heating at 20 ° C. for 20 hours, 60 ° C. for 10 hours, and further at 95 ° C. for 10 hours to obtain a membrane-shaped ion exchange membrane matrix.

【0023】[0023]

【実施例1】 脂肪族炭化水素によるイオン交換基の導入と架橋化;上
記イオン交換膜母体を10%ジブロムヘキサン・アセト
ン溶液に40℃で4日間浸漬した後、塩水にて平衡を行
い、選択化処理前膜Aを得た。陽イオン交換基を有する
高分子物による膜の選択化(選択透過性付与);一方ス
チレン100部に対してベンゾイルパーオキサイド1
部、メタノール400部を窒素置換したアンプルに密閉
し、100℃にて48時間振盪し重合せしめて得たポリ
マーをメタノールにて洗浄し乾燥後、濃硫酸にて100
℃24時間処理し、スルホン化を行った。これを200
重量倍の水に溶解し、カセイソーダ水溶液にて中和し、
スルホン酸ナトリウム塩が5%濃度となるようにジベン
ジルアルコールを加えたものを処理液とした。この処理
液に、上記の選択化前膜Aを90℃で20時間浸漬し
た。処理後、膜は多量の塩水と接触させ膜中の有機物を
除いた後、処理膜Aを得た。得られた処理膜の性能は表
1の通りである。
Example 1 Introduction and cross-linking of ion exchange groups with aliphatic hydrocarbons: The above ion exchange membrane matrix was immersed in a 10% dibromohexane / acetone solution at 40 ° C. for 4 days and equilibrated with brine, A pre-selection treatment membrane A was obtained. Membrane selection by a polymer having a cation exchange group (giving selective permeability); on the other hand, benzoyl peroxide 1 to 100 parts of styrene
Parts and 400 parts of methanol were sealed in an ampoule purged with nitrogen, shaken at 100 ° C. for 48 hours for polymerization, and the polymer obtained was washed with methanol, dried, and concentrated with sulfuric acid to 100%.
It was treated at 24 ° C. for 24 hours for sulfonation. 200 this
Dissolve in water twice the weight and neutralize with caustic soda solution,
A treatment solution was prepared by adding dibenzyl alcohol so that the sodium sulfonate had a concentration of 5%. The pre-selection film A was immersed in this treatment liquid at 90 ° C. for 20 hours. After the treatment, the membrane was brought into contact with a large amount of salt water to remove organic substances in the membrane, and then a treated membrane A was obtained. The performance of the obtained treated film is as shown in Table 1.

【0024】表1、実施例1の通り、本発明の架橋炭素
数が大きい場合(6個)では、高い交換容量でもFSO
4 、電気抵抗、共に良好である。
As shown in Table 1 and Example 1, when the number of crosslinked carbons of the present invention is large (6), the FSO is high even with a high exchange capacity.
4 , good electrical resistance.

【0025】[0025]

【比較例1】 脂肪族炭化水素によるイオン交換基の導入と架橋化;上
記イオン交換膜母体を10%ジブロムプロパン・アセト
ン溶液に40℃で4日間浸漬した後塩水にて平衡を行
い、選択化処理前膜Bを得た。陽イオン交換基を有する
高分子物による膜の選択化(選択透過性付与);実施例
1と同様に行ない、処理膜Bを得た。得られた処理膜の
性能は表1の通りである。
[Comparative Example 1] Introduction and cross-linking of ion exchange groups with aliphatic hydrocarbons: The above ion exchange membrane matrix was immersed in a 10% dibromopropane / acetone solution at 40 ° C for 4 days, equilibrated with brine, and then selected. A pre-chemical treatment film B was obtained. Membrane selection with a polymer having a cation exchange group (giving selective permeability): The same procedure as in Example 1 was carried out to obtain a treated membrane B. The performance of the obtained treated film is as shown in Table 1.

【0026】表1、比較例1の通り、架橋炭素数が小さ
い場合(4未満)では、電気抵抗は良好でも、FSO4
が大きくなり1価イオン選択性が悪化している。
As shown in Table 1 and Comparative Example 1, when the number of crosslinked carbon atoms is small (less than 4), the electric resistance is good but FSO 4
Becomes larger and the monovalent ion selectivity deteriorates.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】以上に説明した様に、本発明の陰イオン
交換膜は、電気抵抗が極めて低く実用的な1価陰イオン
選択透過性を有する陰イオン交換膜である。本発明の陰
イオン交換膜を用いた電気透析による海水濃縮の製塩技
術において、電力コストが低減される。
As described above, the anion exchange membrane of the present invention is an anion exchange membrane having extremely low electric resistance and practical monovalent anion selective permeability. In the salt-making technology of seawater concentration by electrodialysis using the anion exchange membrane of the present invention, electric power cost is reduced.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 陰イオン交換膜のイオン交換基が脂肪族
炭化水素によって架橋されており、膜表面部には陽イオ
ン交換基を有する高分子物の薄層が形成されている事を
特徴とする陰イオン交換膜。
1. An anion exchange membrane, wherein ion exchange groups are cross-linked by an aliphatic hydrocarbon, and a thin layer of a polymer having a cation exchange group is formed on the surface of the membrane. Anion exchange membrane to do.
JP1746992A 1992-02-03 1992-02-03 Anion exchange membrane excellent in selectivity between anion Pending JPH05214125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1746992A JPH05214125A (en) 1992-02-03 1992-02-03 Anion exchange membrane excellent in selectivity between anion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1746992A JPH05214125A (en) 1992-02-03 1992-02-03 Anion exchange membrane excellent in selectivity between anion

Publications (1)

Publication Number Publication Date
JPH05214125A true JPH05214125A (en) 1993-08-24

Family

ID=11944881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1746992A Pending JPH05214125A (en) 1992-02-03 1992-02-03 Anion exchange membrane excellent in selectivity between anion

Country Status (1)

Country Link
JP (1) JPH05214125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109954410A (en) * 2017-12-26 2019-07-02 绿邦膜分离技术(江苏)有限公司 A kind of preparation method of half negative phase amberplex

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109954410A (en) * 2017-12-26 2019-07-02 绿邦膜分离技术(江苏)有限公司 A kind of preparation method of half negative phase amberplex

Similar Documents

Publication Publication Date Title
CA1094982A (en) Single film, high performance bipolar membrane
US3657104A (en) Bifunctional cation exchange membranes and their use in electrolyticcells
US7081484B2 (en) Anion exchange membrane, process for its production and solution treating apparatus
JP5120543B2 (en) Cation exchange membrane and method for producing the same
EP2771373A1 (en) Method for melt processing sulfonated block copolymers and articles comprising optionally amine modified sulfonated block copolymers
KR101188267B1 (en) Anion exchange composite membrane with olefin-based additives and method for preparing the same
KR101726658B1 (en) Vinylbenzene-styrene based anion exchange composite membranes with nitrile rubber and method for preparing the same
JP4862229B2 (en) Method for producing cation exchange membrane
EP0330772B1 (en) Method of double decomposition of neutral salt
JP2005521771A (en) Polymer grafted support polymer
JP2010234358A (en) Deionization module and electric device for producing deionized water
US10543463B2 (en) Homogeneous cation-exchange composite membrane having excellent chemical resistance and method for producing the same
US10561991B2 (en) Homogeneous anion-exchange composite membrane having excellent chemical resistance and method for producing the same
JPH05214125A (en) Anion exchange membrane excellent in selectivity between anion
KR101681637B1 (en) Styrene-tert-butyl styrene based cation exchange composite membranes with nitrile rubber and method for preparing the same
WO2019198093A1 (en) Acid and oxidative resistant homogenous cation exchange membrane and its method of preparation thereof
JP2006008993A (en) Monovalent cation selectively permeable cation exchange membrane and method for producing the same
KR101190732B1 (en) Cation exchange composite membranes with olefin-based additives and method for preparing the same
JP3727585B2 (en) Electric desalination equipment
KR100473351B1 (en) Preparation method of Polyethylene/Polystyrene cation-exchange membrane
JP3173099B2 (en) Method for producing cation exchange membrane
KR100447949B1 (en) Preparation of PVC/Polystyren base cation-exchange membrane
JP7448716B1 (en) Electrodialysis membrane for producing hydroiodic acid, bipolar membrane electrodialysis device, and method for producing hydroiodic acid
JP4431710B2 (en) ION CONDUCTIVE SPACER, METHOD FOR PRODUCING THE SAME, ELECTRIC DESALTING DEVICE
Sata et al. Preparation and properties of anion exchange membranes with various pyridinium groups as anion exchange groups

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010424