JP4862229B2 - Method for producing cation exchange membrane - Google Patents

Method for producing cation exchange membrane Download PDF

Info

Publication number
JP4862229B2
JP4862229B2 JP2001201021A JP2001201021A JP4862229B2 JP 4862229 B2 JP4862229 B2 JP 4862229B2 JP 2001201021 A JP2001201021 A JP 2001201021A JP 2001201021 A JP2001201021 A JP 2001201021A JP 4862229 B2 JP4862229 B2 JP 4862229B2
Authority
JP
Japan
Prior art keywords
monomer
cation exchange
exchange membrane
thermoplastic polymer
unsaturated bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001201021A
Other languages
Japanese (ja)
Other versions
JP2003012835A (en
Inventor
良雄 菅家
良輔 青木
幸夫 松村
洋 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001201021A priority Critical patent/JP4862229B2/en
Publication of JP2003012835A publication Critical patent/JP2003012835A/en
Application granted granted Critical
Publication of JP4862229B2 publication Critical patent/JP4862229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、陽イオン交換膜の製造方法に関する。
【0002】
【従来の技術】
実用的で有益な陽イオン交換膜として、スチレン−ジビニルベンゼン共重合体と熱可塑性重合体の混合物からなる膜状重合物をスルホン化し、陽イオン交換基を導入した陽イオン交換膜が知られている。この膜は耐薬品性、耐熱性に加え、ジビニルベンゼンの含有量を変えることにより架橋の程度を調整することができ、イオン交換特性やイオン選択透過性を制御できることから、幅広い用途に用いられ、発展してきた。
【0003】
ポリ塩化ビニルやニトリルゴム等の熱可塑性樹脂と、スチレンモノマーおよびジビニルベンゼンモノマーとを混合した粘稠液を、ポリ塩化ビニル製のクロスからなる多孔性の膜支持材料に含浸させ、重合させた膜状体を濃硫酸等でスルホン化して得られる陽イオン交換膜が知られている。この膜は、イオン交換樹脂からなる相と膜支持材料との親和性が高く、電気抵抗が低く、イオン選択透過性は優れているが、耐熱性および耐薬品性は充分ではない。
【0004】
一方、耐熱性、耐薬品性および機械的性質の優れたポリエチレン、ポリプロピレン等のポリオレフィン系のクロスを膜支持材料として用いた場合は、その無極性のためイオン交換樹脂層との親和性が充分ではなく、イオン選択透過性が低下し、イオン交換樹脂相が膜支持材料から剥離する場合もある。
【0005】
この問題を解決する方法として、ポリオレフィン系の膜支持材料をパーオキサイド化処理する方法(特公昭44−19253号報)やポリオレフィン系の膜支持材料にハロゲン基、ハロスルホン基、ニトロ基を導入する方法(特開昭50−3088号報)、電離性放射線で処理する方法(特開昭51−52489)等が提案されているが、イオン交換樹脂相と膜支持材料との親和性を高めようとすると膜支持材料の機械的性質や耐薬品性が低下する問題があった。
【0006】
また、イオン交換樹脂相を形成する熱可塑性樹脂について、耐薬品性の改善を目的として、主鎖に不飽和結合が少ないスチレン系エラストマーを使用した陰イオン交換膜が提案されている(特開平4−215856、特開平6−329815)。しかし、本発明者らの研究によると、この熱可塑性樹脂を陽イオン交換膜に用いた場合は、スチレン系エラストマーがスルホン化されるため、機械的性質やイオン選択透過性が低下する問題があった。
【0007】
【発明が解決しようとする課題】
本発明は、イオン選択透過性、機械的強度、耐熱性および耐薬品性に優れた陽イオン交換膜の提供を目的とする。
【0008】
【課題を解決するための手段】
本発明は、式1で示される単量体(ただし、Aは炭素数1〜8のアルキレン基、または総炭素数2〜9のアルキレンオキシアルキレン基を示し、Zは塩素、臭素、ヨウ素または水酸基を示す。)を6質量%以上含有する、不飽和結合を有する単量体100質量部と、前記式1で示される単量体のAZ基と反応して結合できる部位を有し、主鎖の不飽和結合率が3%以下である熱可塑性重合体2.0〜400質量部とを混合した後、単量体を重合し、前式1で示される単量体にもとづく重合体と上記熱可塑性重合体とを結合し、さらにスルホン化する工程を備え、前記熱可塑性重合体がスチレン系熱可塑性エラストマーであることを特徴とする陽イオン交換膜の製造方法を提供する。
【0009】
【化2】

Figure 0004862229
【0010】
本発明の製造方法により得られる陽イオン交換膜は、式1で示される単量体にもとづく重合単位のベンゼン環と、熱可塑性樹脂のAZ基と反応して結合できる部位とが結合基Aにより結合されることから、優れた機械的性質を示す。また、このような結合構造を有する重合体にスルホン酸基が導入されることから、イオン交換基あたりの膨潤水の量が減り、高いイオン選択透過性を示す。
【0011】
なお、本発明の製造方法において、式1で示される単量体にもとづく重合体と熱可塑性重合体との結合は、スルホン化の前後に行ってもよいが、濃硫酸を用いてスルホン化とともに行うのが好ましい。
【0012】
また、熱可塑性重合体が、主鎖不飽和結合率が3%以下であることから、得られる陽イオン交換膜を長期間使用したときの耐熱性および耐薬品性に優れる。これは、含有される不飽和結合が少ないため、長期間使用したときの不飽和結合の切断に起因する耐熱性および耐薬品性の低下が、ほとんど起こらないためと考えられる。
【0013】
なお、主鎖の不飽和結合率とは、主鎖を構成する炭素どうしの全結合数に対する、不飽和結合(2重結合および3重結合)の数を百分率で表したものである。例えば、ポリブタジエンポリマーの不飽和結合率は25%であり、スチレン−ブタジエンの1:1(モル比)の共重合体の不飽和結合率が16.7%である。
【0014】
【発明の実施の形態】
本発明においては、不飽和結合を有する単量体として、式1で示される単量体を6質量%以上含有する。式1で示される単量体が6質量%未満では熱可塑性重合体との結合が不足し、イオン選択透過性が低く、機械的強度も充分ではない。式1で示される単量体の含有量は、特には10〜80質量%であるのが好ましい。
【0015】
式1において、Aは炭素数1〜8のアルキレン基、または総炭素数2〜9のアルキレンオキシアルキル基を示す。ここで、アルキレン基は直鎖状であっても分岐のあるものであってもよい。Aが炭素数が8を超えるアルキレン基、または総炭素数が9を超えるオキシアルキレン基であるものを用いた場合は、質量あたりのイオン交換容量が低下することから、膜の電気抵抗が増加し、イオン選択透過性が低下する。
【0016】
Aとしては、具体的には、−(CH−(nは1〜6の整数)、テトラメチレンオキシメチル基(−(CH−O−CH−、テトラメチレン基側がZと結合したもの)、ペンタメチレンオキシメチル基(−(CH−O−CH−、ペンタメチレン基側がZを結合したもの)が好ましい。また、AZ基としては、一般的に入手が容易なことから、Aがメチレン基であり、Zが塩素であるクロロメチル基が好ましい。
【0017】
なお、式1で示される単量体のベンゼン環に結合した水素原子は、アルキル基またはハロゲン原子で置換されていてもよい。例えば、アルキル基としては、メチル基またはエチル基が挙げられ、ハロゲン原子としては、塩素、臭素、フッ素が挙げられる。
【0018】
本発明においては、不飽和結合を有する単量体100質量部に対し、AZ基と反応して結合できる部位を有する熱可塑性重合体2〜400質量部を混合する。上記熱可塑性重合体が2質量部未満である場合は得られる膜が脆く、機械的強度が不十分であり、400質量部を超える場合は得られる膜のイオン選択透過性が低下する。上記熱可塑性重合体は、特には4〜200質量部を混合するのが好ましい。
【0019】
また、不飽和結合を有する単量体としては、式1で示される単量体の他に以下に挙げる単量体を含有するものが好ましい。これによりイオン選択性や機械的強度等を所望の値に制御できる。
(1)スルホン酸基が導入されやすい芳香族環を有する単量体。スチレン、ビニルトルエン等。
(2)カルボン酸基、またはニトリル基を有する単量体。アクリル酸エステル、メタクリル酸エステル、アクリロニトリル等。このとき、耐熱性や耐久性の観点から、全イオン交換基における芳香族環に導入されたスルホン酸基の含有割合を50mol%以上とすることが好ましい。
(3)架橋構造を導入できる単量体。ビニル基を2個有するもの。例えば、ジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、ジビニルナフタレン、エチレングリコールジメタクリレート等。
(4)架橋にもイオン交換にも寄与しない単量体。例えば、エチレン、プロピレン、酢酸ビニル、ビニルピロリドン等を添加することにより親水性を制御できる。
【0020】
本発明において、AZ基と反応して結合できる部位を有する熱可塑性重合体としては、式1で示される単量体と均一に混合できるものが好ましいが、特には、ニトリル基、塩素原子、クロロスルホン基、芳香族環(芳香族環を形成する炭素原子のみを示す。以下同様。)からなる群から選ばれる少なくとも1つの原子団を5質量%以上含有するものが好ましく、なかでも上記熱可塑性重合体が芳香族環を5質量%以上含有するものが好ましい。
【0021】
ニトリル基、塩素原子、クロロスルホン基、芳香族環からなる群から選ばれる少なくとも1つの原子団を5質量%以上含有する熱可塑性重合体は、スルホン化するときに式1で示される単量体のAZ基と反応しやすく、架橋構造を形成することから得られる膜の機械的強度、イオン選択透過性が向上すると考えられる。上記原子団の含有量は、特には10質量%以上であるのが好ましい。
【0022】
このような熱可塑性重合体としては、具体的には、ポリ塩化ビニル、塩素化ポリ塩化ビニル、エチレン−塩化ビニルの共重合体、塩化ビニル系エラストマー、塩素化ポリエチレン、クロロスルホン化ポリエチレン、スチレン系熱可塑性エラストマー、または水素添加スチレン−ブタジエンゴムや水素添加ニトリルゴム、水素添加ピリジンゴム、およびそれらの混合物が挙げられるが、本発明ではスチレン系熱可塑性エラストマーを用いる。
【0023】
ここで、スチレン系熱可塑性エラストマーとは、ポリスチレンからなるハードセグメントと、ソフトセグメントとを有する共重合体をいう。ソフトセグメントとしては、ポリブタジエン、ポリイソプレン、ビニルポリイソプレン、エチレン−ブチレンの交互共重合体、エチレン−プロピレンの交互共重合体等からなるものが好ましい。
【0024】
スチレン系熱可塑性エラストマーとしては、スルホン化するときに式1で示される単量体のAZ基と反応しやすく、かつ、スルホン酸基が導入されやすいことから、ポリスチレン−水素添加ポリブタジエン−ポリスチレン共重合体(H−SBS)、ポリスチレン−(ポリエチレン/ブチレンゴム)−ポリスチレン共重合体(SEBS)、ポリスチレン−水素添加ポリイソプレンゴム−ポリスチレン共重合体(H−SIS)、ポリスチレン−(ポリエチレン/プロピレンゴム)−ポリスチレン共重合体(SEPS)、ポリスチレン−ポリエチレン−(ポリエチレン/プロピレンゴム)−ポリスチレン共重合体(SEEPS)、ポリスチレン−ビニルポリイソプレン−ポリスチレン共重合体等が好ましい。
【0025】
上記不飽和結合を有する単量体と上記熱可塑性重合体との混合物におけるベンゼン環の含有量は2.0〜9.0mmol/gであるのが好ましい。ベンゼン環の含有量が上記範囲である場合は、膜の電気抵抗が低く、かつ、イオン選択透過性および機械的強度が優れる。上記ベンゼン環の含有量は、特には3.0〜8.0mmol/g、さらには4.0〜7.0mmol/gであるのが好ましい。
【0026】
本発明の製造方法により得られる陽イオン交換膜の好ましいイオン交換容量は、使用目的により異なるが、対イオンがNaである場合に0.5〜4ミリ当量/g乾燥樹脂であるのが好ましい。以下、本明細書において、イオン交換容量とは対イオンがNaの場合の値を示す。イオン交換容量が0.5ミリ当量/g乾燥樹脂より小さい場合は膜の電気抵抗が高くなり、4ミリ当量/g乾燥樹脂より大きい場合は膜の機械的強度や長期耐久性が低下する。
【0027】
膜の使用寸法が大きい場合、機械的強度や寸法安定性がより要求される場合等は、得られる重合体を多孔性基材に支持させることが好ましい。例えば、上記不飽和結合を有する単量体と上記熱可塑性重合体とを混合したものを、多孔性基材に含浸させた後、単量体を重合させる方法が挙げられる。
【0028】
また、多孔性基材をあらかじめ上記熱可塑性重合体からなる膜状体に熱プレス等で埋め込み、これに上記不飽和結合を有する単量体からなる溶液を含浸させた後、重合させることにより、重合体を多孔性基材に支持させてもよい。
【0029】
多孔性基材としては、熱可塑性重合体より単量体との溶解性が小さい材料からなる多孔性基材が好ましい。具体的には、ポリ塩化ビニルまたはポリ塩化ビニリデンからなる織物、不織布または微多孔性膜が使用できるが、高いpH溶液や高温下での長期耐久性の点から、ポリエチレン、ポリプロピレンまたは含フッ素オレフィンからなる織物または微多孔性膜が好ましい。
【0030】
多孔性基材として、ポリエチレン、ポリプロピレンまたは含フッ素オレフィンからなるものを用いる場合は、多孔性基材と膜との密着性を改善する目的から、上記不飽和結合を有する単量体と上記熱可塑性重合体とを混合したものを多孔性基材に含浸させる前、または含浸させるときに、多孔性基材に電子線またはγ線を照射するのが好ましい。これにより得られる陽イオン交換膜の電気抵抗、機械的強度および長期耐久性を向上できる。
【0031】
また、多孔性基材と膜との密着性を向上させる別の好ましい方法として、多孔性基材にあらかじめスルホン化またはハロゲン化等の化学的処理を行う方法が挙げられる。
【0032】
多孔性基材を支持させる場合の上記熱可塑性重合体の好ましい添加量は、熱可塑性重合体の構成や分子量により異なるが、上記不飽和結合を有する単量体100質量部に対して、特には5〜100質量部、さらには6.5〜50質量部である。
【0033】
また、本発明の陽イオン交換膜を構成する重合体の一部は、多孔性基材中に含有されるのが好ましい。特には、多孔性基材中の式1で示される単量体にもとづく重合単位の含有量が、重合体のみからなる樹脂相中の該重合単位の含有量の0.05〜0.7倍であるのが好ましい。0.05倍より小さい場合は膜の電気抵抗が高くなり、長期の耐久性が低くなりやすい。0.7倍より大きい場合は、機械的強度が低くなりやすい。なお、この割合は単量体を重合させるときの反応条件や、多孔性基材に照射する電子線またはγ線のレベルの選定、多孔性基材に行う化学的処理の条件等により制御できる。
【0034】
多孔性基材に含有される重合体の割合は、例えば、陽イオン交換膜の断面の、上記重合体を含有する多孔性基材からなる部分と上記重合体のみからなる部分とについて、走査電子顕微鏡−蛍光X線(SEM−EDAX)分析により、式1のZに含まれる元素の強度を測定し、その強度比から算出できる。
【0035】
一方、膜の使用寸法が小さい場合、機械的強度や寸法安定性を比較的要求されない場合については、多孔性基材等の補強材を含有しない陽イオン交換膜が用いることができる。このとき、上記不飽和結合を有する単量体と上記熱可塑性重合体との混合を、上記熱可塑性重合体の膜状体に上記不飽和結合を有する単量体を含浸させることにより行うのが好ましい。
【0036】
例えば、上記熱可塑性重合体(ポリエチレン、ポリプロピレン等)からなるフィルムに、電子線やγ線を照射したもの、または、上記フィルムを塩素化またはクロロスルホン化したものを、上記不飽和結合を有する単量体からなる溶液に浸漬する。このような方法は量産性の点で特に好ましい。
【0037】
このような陽イオン交換膜中に補強材を含有しない場合の上記熱可塑性重合体の好ましい添加量は、上記不飽和結合を有する単量体の混合物100質量部に対して、特には20〜200質量部、さらには50〜140質量部である。
【0038】
また、本発明における、式1で示される単量体にもとづく重合体と熱可塑性重合体との結合は、スルホン化の前後、またはスルホン化とともに行うことができるが、例えば、加熱処理や、塩化スズ、塩化アルミニウムまたは塩化亜鉛等を触媒としたフリーデルクラフト反応により行うことができる。
【0039】
スルホン化は、前述のようにして得られる重合体に濃硫酸、発煙硫酸、クロロスルホン酸または亜硫酸等を接触させることにより行うことができる。なかでも濃硫酸を用いた場合は、上記結合反応とともにスルホン化を行うことができるので特に好ましい。
【0040】
本発明の製造方法により得られる陽イオン交換膜は、海水濃縮、かん水の脱塩、酸の濃縮または回収、有価金属の回収などを目的とする電気透析、およびアルカリ回収などを目的とする拡散透析に用いられる他、燃料電池や2次電池用の隔膜としても有用である。
【0041】
特に、耐薬品性や耐熱性に優れていることから40℃以上の溶液から電気透析または拡散透析により電解質の濃縮、脱塩、精製を行う溶液処理装置や、60℃以上の高温殺菌が必要な溶液処理装置に用いられる陽イオン交換膜として好ましい。また、陰イオン交換膜との複合膜(いわゆるバイポーラ膜)のベース膜としても好ましい。
【0042】
【実施例】
以下に本発明の実施例(例1、例2、例6、例7)、参考例(例5)および比較例(例3、例4)を説明する。
【0043】
[例1]
式1で表される単量体として、Aがメチレン基であり、Zが塩素であるクロロメチルスチレンを準備した。クロロメチルスチレン20質量%、スチレン40質量%、ジビニルベンゼン(純度57質量%、残部はエチルベンゼン)20質量%、およびアクリロニトリル20質量%を混合した。得られた単量体からなる混合物100質量部と、熱可塑性重合体であるスチレン系エラストマー(シェルジャパン社製品名:クレイトン1730、ハードセグメントとしてポリスチレン23質量%を有しソフトセグメントとしてポリ(エチレン/プロピレン)77質量%を有する)15質量部と、重合開始剤であるベンゾイルパーオキサイド(日本油脂社製、商品名ナイパーBO)4重量部とを混合し、1.5Pa・sの粘稠液を得た(この粘稠液を重合してなる重合体におけるベンゼン環の含有量は6.5mmol/gである。)。
【0044】
次に、多孔性基材であるポリエチレン製のクロス(厚さ240μm、目付量80g/m)に300kGyのγ線を照射し、これに上記粘稠液を含浸させた後、単量体からなる混合物を90℃にて10時間かけて重合させ、厚さ280μmの膜状体を得た。得られた膜状体の樹脂相におけるベンゼン環の含有量は6.5mmol/gである。また、この膜状体の断面について、走査電子顕微鏡−蛍光X線分析により、Cl元素の強度比(クロスの繊維部分のCl元素強度/樹脂相のCl元素強度)を測定したところ、このCl元素の強度比0.2であった。
【0045】
上記膜状体を98質量%の硫酸溶液中に30℃にて16時間浸漬してスルホン化し、次いで、対イオンNa型に交換し、陽イオン交換膜を得た。得られた陽イオン交換膜のイオン交換容量は3.5ミリ当量/g乾燥樹脂であり、0.5mol/L食塩水中、交流1000Hzで測定した比抵抗は400Ω・cmであった。また、この陽イオン交換膜の25℃における静的輸率:(0.5mol/Lの食塩水)/膜/(1.0mol/Lの食塩水)は0.95であり、ミューレン破裂強度試験機により測定した破裂強度は0.8MPaであった。
【0046】
また、陽イオン交換膜を補強クロスの糸に対して折り線が45度の角度になるように折り曲げ、屈曲耐性について調べたところ、折れ曲げ部から樹脂が剥落することはなく、ピンホールの発生もなかった。
【0047】
重合膜のCl元素の強度比、陽イオン交換膜の比抵抗、静的輸率、屈曲耐性試験は、以下の例においても同様に測定した。
【0048】
[例2]
クロロメチルスチレンを10質量%、スチレンを50質量%とした以外は例1と同様にして膜状体を得、陽イオン交換膜を作成した。膜状体の樹脂相におけるベンゼン環の含有量は6.8mmol/gであり、Cl元素の強度比は0.2であった。また、例1と同様にして陽イオン交換膜の各物性を測定したところ、0.5mol/L食塩水中、交流1000Hzでの比抵抗は300Ω・cm、静的輸率は0.94、破裂強度は0.6MPaであり、屈曲耐性試験における樹脂の剥離やピンホールの発生はなかった。
【0049】
[例3(比較例)]
クロロメチルスチレンを0質量%、スチレンを60質量%とした以外は例1と同様にして膜状体を得、陽イオン交換膜を作成した。Cl元素の強度比は0.2であった。また、例1と同様にして陽イオン交換膜の各物性を測定したところ、0.5mol/L食塩水中、交流1000Hzでの比抵抗は200Ω・cm、静的輸率は0.92、破裂強度は0.4MPaであり、屈曲耐性試験においては樹脂が剥離し、ピンホールも発生した。
【0050】
[例4(比較例)]
スチレン系エラストマーのかわりにニトリルゴム(ニトリル含有量36質量%、不飽和結合率15.9%)10質量部を使用した以外は例1と同様にして膜状体を得、陽イオン交換膜を作成した。Cl元素の強度比は0.2であった。また、例1と同様にして陽イオン交換膜の各物性を測定したところ、0.5mol/L食塩水中、交流1000Hzでの比抵抗は150Ω・cm、静的輸率は0.92、破裂強度は0.3MPaであり、屈曲耐性試験においては樹脂が剥離し、ピンホールも発生した。
【0051】
[例5]
スチレン系エラストマーのかわりに水素添加ニトリルゴム(日本ゼオン社製品名:ゼットポール2000、アクリロニトリル含有量36質量%、不飽和結合率0.2%)を10質量部使用した以外は例1と同様にして膜状体を得、陽イオン交換膜を作成した。膜状体の樹脂相におけるベンゼン環の含有量は6.5mmol/gであり、Cl元素の強度比は0.2であった。また、例1と同様にして陽イオン交換膜の各物性を測定したところ、0.5mol/L食塩水中、交流1000Hzでの比抵抗は400Ω・cm、静的輸率は0.94、破裂強度は0.5MPaであり、屈曲耐性試験における樹脂の剥離やピンホールの発生はなかった。
【0052】
[例6]
多孔性基材としてポリエチレン製のクロスのかわりにポリプロピレン製のクロス(厚さ300μm、目付量100g/m)を使用した以外は例1と同様にして膜状体を得、陽イオン交換膜を作成した。膜状体の樹脂相におけるベンゼン環の含有量は6.5mmol/gであり、Cl元素の強度比は0.4であった。また、例1と同様にして陽イオン交換膜の各物性を測定したところ、0.5mol/L食塩水中、交流1000Hzでの比抵抗は350Ω・cm、静的輸率は0.94、破裂強度は0.6MPaであり、屈曲耐性試験における樹脂の剥離やピンホールの発生はなかった。
【0053】
[例7]
単量体としてクロロメチルスチレンが100質量%であるものを使用し、多孔性基材としてポリ塩化ビニル製のクロス(厚さ250μm、目付量210g/m)を使用した以外は例1と同様にして膜状体を得、陽イオン交換膜を作成した。膜状体の樹脂相におけるベンゼン環の含有量は5.7mmol/gであり、SEM−EDAX分析により、S元素の強度比(クロスの繊維部分のS元素強度/樹脂相のS元素強度)を測定したところ、このS元素の強度比は0.5であった。また、例1と同様にして陽イオン交換膜の各物性を測定したところ、0.5mol/L食塩水中、交流1000Hzでの比抵抗は800Ω・cm、静的輸率は0.94、破裂強度は1.6MPaであり、屈曲耐性試験における樹脂の剥離やピンホールの発生はなかった。
【0054】
【発明の効果】
本発明の製造方法による陽イオン交換膜は、式1で示される単量体のAZ基が熱可塑性重合体を構成するベンゼン環等と連結するため、機械的強度およびイオン選択性が高く、耐薬品性及び耐熱性が優れる。したがって、従来の陽イオン交換膜では耐久性が充分ではなかった電気透析装置による60℃以上の高温での水処理に好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a cation exchange membrane.
[0002]
[Prior art]
As a practical and useful cation exchange membrane, a cation exchange membrane in which a cation-exchange group is introduced by sulfonating a membrane polymer composed of a mixture of a styrene-divinylbenzene copolymer and a thermoplastic polymer is known. Yes. In addition to chemical resistance and heat resistance, this membrane can adjust the degree of crosslinking by changing the content of divinylbenzene, and can control ion exchange characteristics and ion selective permeability, so it is used in a wide range of applications. Has developed.
[0003]
A membrane obtained by impregnating a porous membrane support material made of polyvinyl chloride cloth with a viscous liquid obtained by mixing a thermoplastic resin such as polyvinyl chloride or nitrile rubber, a styrene monomer and a divinylbenzene monomer, and polymerizing the membrane. A cation exchange membrane obtained by sulfonating a state with concentrated sulfuric acid or the like is known. This membrane has a high affinity between the phase made of the ion exchange resin and the membrane support material, a low electrical resistance, and an excellent ion selective permeability, but the heat resistance and chemical resistance are not sufficient.
[0004]
On the other hand, when a polyolefin-based cloth such as polyethylene or polypropylene having excellent heat resistance, chemical resistance and mechanical properties is used as a membrane support material, its affinity with the ion exchange resin layer is not sufficient due to its non-polarity. In some cases, the ion selective permeability is lowered and the ion exchange resin phase is peeled off from the membrane support material.
[0005]
As a method for solving this problem, a method of peroxidizing a polyolefin membrane support material (Japanese Patent Publication No. 44-19253) or a method of introducing a halogen group, a halosulfone group, or a nitro group into a polyolefin membrane support material (Japanese Patent Laid-Open No. 50-3088), a method of treating with ionizing radiation (Japanese Patent Laid-Open No. 51-52489), and the like have been proposed, but an attempt is made to increase the affinity between the ion exchange resin phase and the membrane support material. As a result, the mechanical properties and chemical resistance of the membrane support material are reduced.
[0006]
In addition, an anion exchange membrane using a styrene-based elastomer with few unsaturated bonds in the main chain has been proposed for the purpose of improving chemical resistance of a thermoplastic resin forming an ion exchange resin phase (Japanese Patent Laid-Open No. Hei 4). -215856, JP-A-6-329815). However, according to the study by the present inventors, when this thermoplastic resin is used for a cation exchange membrane, the styrene-based elastomer is sulfonated, so that there is a problem that mechanical properties and ion selective permeability are lowered. It was.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a cation exchange membrane excellent in ion selective permeability, mechanical strength, heat resistance and chemical resistance.
[0008]
[Means for Solving the Problems]
The present invention relates to a monomer represented by formula 1 (wherein A represents an alkylene group having 1 to 8 carbon atoms, or an alkyleneoxyalkylene group having 2 to 9 carbon atoms in total, and Z represents chlorine, bromine, iodine or a hydroxyl group) 100 parts by mass of an unsaturated bond-containing monomer containing 6% by mass or more), a site capable of reacting with the AZ group of the monomer represented by the formula 1 to bond, and the main chain After mixing 2.0 to 400 parts by mass of a thermoplastic polymer having an unsaturated bond ratio of 3% or less, the monomer is polymerized, and the polymer based on the monomer represented by Formula 1 above and the above There is provided a method for producing a cation exchange membrane , comprising a step of bonding to a thermoplastic polymer and further sulfonation , wherein the thermoplastic polymer is a styrene-based thermoplastic elastomer .
[0009]
[Chemical formula 2]
Figure 0004862229
[0010]
In the cation exchange membrane obtained by the production method of the present invention, the benzene ring of the polymerized unit based on the monomer represented by the formula 1 and the site capable of reacting and bonding with the AZ group of the thermoplastic resin are bonded to the bonding group A. Because they are bonded, they exhibit excellent mechanical properties. In addition, since sulfonic acid groups are introduced into the polymer having such a bond structure, the amount of swollen water per ion exchange group is reduced and high ion selective permeability is exhibited.
[0011]
In the production method of the present invention, the polymer based on the monomer represented by Formula 1 and the thermoplastic polymer may be bonded before or after sulfonation, but with concentrated sulfuric acid together with sulfonation. It is preferred to do so.
[0012]
Further, since the thermoplastic polymer has a main chain unsaturated bond ratio of 3% or less, it is excellent in heat resistance and chemical resistance when the obtained cation exchange membrane is used for a long period of time. This is presumably because the content of unsaturated bonds contained is small, so that the heat resistance and chemical resistance are hardly lowered due to the cleavage of unsaturated bonds when used for a long period of time.
[0013]
The unsaturated bond ratio of the main chain is the percentage of the number of unsaturated bonds (double bonds and triple bonds) with respect to the total number of bonds between carbons constituting the main chain. For example, the polybutadiene polymer has an unsaturated bond ratio of 25%, and the styrene-butadiene 1: 1 (molar ratio) copolymer has an unsaturated bond ratio of 16.7%.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In this invention, 6 mass% or more of monomers shown by Formula 1 are contained as a monomer which has an unsaturated bond. When the monomer represented by Formula 1 is less than 6% by mass, the bond with the thermoplastic polymer is insufficient, the ion selective permeability is low, and the mechanical strength is not sufficient. The content of the monomer represented by Formula 1 is particularly preferably 10 to 80% by mass.
[0015]
In Formula 1, A represents an alkylene group having 1 to 8 carbon atoms or an alkyleneoxyalkyl group having 2 to 9 carbon atoms in total. Here, the alkylene group may be linear or branched. When A is an alkylene group having more than 8 carbon atoms or an oxyalkylene group having more than 9 carbon atoms, the ion exchange capacity per mass decreases, and the electrical resistance of the film increases. , Ion selective permeability decreases.
[0016]
As A, specifically, — (CH 2 ) n — (n is an integer of 1 to 6), tetramethyleneoxymethyl group (— (CH 2 ) 4 —O—CH 2 —, and the tetramethylene group side is Z And a pentamethyleneoxymethyl group (— (CH 2 ) 5 —O—CH 2 —, a group in which the pentamethylene group side is bonded to Z) are preferable. As the AZ group, a chloromethyl group in which A is a methylene group and Z is chlorine is preferable because it is generally easily available.
[0017]
The hydrogen atom bonded to the benzene ring of the monomer represented by formula 1 may be substituted with an alkyl group or a halogen atom. For example, the alkyl group includes a methyl group or an ethyl group, and the halogen atom includes chlorine, bromine, and fluorine.
[0018]
In this invention, 2-400 mass parts of thermoplastic polymers which have a site | part which can be couple | bonded by reacting with AZ group with respect to 100 mass parts of monomers which have an unsaturated bond are mixed. When the thermoplastic polymer is less than 2 parts by mass, the resulting membrane is brittle and the mechanical strength is insufficient, and when it exceeds 400 parts by mass, the ion selective permeability of the obtained membrane decreases. The thermoplastic polymer is particularly preferably mixed in an amount of 4 to 200 parts by mass.
[0019]
Moreover, as a monomer which has an unsaturated bond, what contains the monomer mentioned below other than the monomer shown by Formula 1 is preferable. Thereby, ion selectivity, mechanical strength, etc. can be controlled to desired values.
(1) A monomer having an aromatic ring into which a sulfonic acid group is easily introduced. Styrene, vinyl toluene, etc.
(2) A monomer having a carboxylic acid group or a nitrile group. Acrylic acid ester, methacrylic acid ester, acrylonitrile and the like. At this time, from the viewpoint of heat resistance and durability, the content ratio of the sulfonic acid group introduced into the aromatic ring in all the ion exchange groups is preferably 50 mol% or more.
(3) A monomer capable of introducing a crosslinked structure. Those with two vinyl groups. For example, divinylbenzene, trivinylbenzene, divinyltoluene, divinylnaphthalene, ethylene glycol dimethacrylate, etc.
(4) A monomer that does not contribute to crosslinking or ion exchange. For example, hydrophilicity can be controlled by adding ethylene, propylene, vinyl acetate, vinylpyrrolidone, or the like.
[0020]
In the present invention, the thermoplastic polymer having a site capable of reacting with the AZ group to be bonded is preferably one that can be uniformly mixed with the monomer represented by the formula 1, particularly a nitrile group, chlorine atom, chloro Those containing 5% by mass or more of at least one atomic group selected from the group consisting of a sulfone group and an aromatic ring (only carbon atoms forming the aromatic ring are shown below) are preferable. The polymer preferably contains 5% by mass or more of an aromatic ring.
[0021]
The thermoplastic polymer containing 5% by mass or more of at least one atomic group selected from the group consisting of a nitrile group, a chlorine atom, a chlorosulfone group and an aromatic ring is a monomer represented by the formula 1 when sulfonated It is considered that the mechanical strength and ion selective permeability of the membrane obtained by forming a cross-linked structure are improved. The content of the atomic group is particularly preferably 10% by mass or more.
[0022]
Specific examples of such thermoplastic polymers include polyvinyl chloride, chlorinated polyvinyl chloride, ethylene-vinyl chloride copolymer, vinyl chloride elastomer, chlorinated polyethylene, chlorosulfonated polyethylene, and styrene. Examples of the thermoplastic elastomer include hydrogenated styrene-butadiene rubber, hydrogenated nitrile rubber, hydrogenated pyridine rubber, and mixtures thereof. In the present invention, a styrenic thermoplastic elastomer is used.
[0023]
Here, the styrene thermoplastic elastomer refers to a copolymer having a hard segment made of polystyrene and a soft segment. The soft segment is preferably made of polybutadiene, polyisoprene, vinyl polyisoprene, an ethylene-butylene alternating copolymer, an ethylene-propylene alternating copolymer, or the like.
[0024]
As the styrene-based thermoplastic elastomer, polystyrene-hydrogenated polybutadiene-polystyrene copolymer is easy to react with the AZ group of the monomer represented by Formula 1 when sulfonated and to easily introduce a sulfonic acid group. Combined (H-SBS), polystyrene- (polyethylene / butylene rubber) -polystyrene copolymer (SEBS), polystyrene-hydrogenated polyisoprene rubber-polystyrene copolymer (H-SIS), polystyrene- (polyethylene / propylene rubber)- Polystyrene copolymer (SEPS), polystyrene-polyethylene- (polyethylene / propylene rubber) -polystyrene copolymer (SEEPS), polystyrene-vinylpolyisoprene-polystyrene copolymer, and the like are preferable.
[0025]
The content of the benzene ring in the mixture of the monomer having an unsaturated bond and the thermoplastic polymer is preferably 2.0 to 9.0 mmol / g. When the content of the benzene ring is within the above range, the electrical resistance of the membrane is low, and the ion selective permeability and mechanical strength are excellent. The content of the benzene ring is particularly preferably 3.0 to 8.0 mmol / g, more preferably 4.0 to 7.0 mmol / g.
[0026]
The preferred ion exchange capacity of the cation exchange membrane obtained by the production method of the present invention varies depending on the purpose of use, but when the counter ion is Na +, it is preferably 0.5 to 4 meq / g dry resin. . Hereinafter, in this specification, the ion exchange capacity indicates a value when the counter ion is Na + . When the ion exchange capacity is less than 0.5 meq / g dry resin, the electrical resistance of the membrane is high, and when it is greater than 4 meq / g dry resin, the mechanical strength and long-term durability of the membrane are reduced.
[0027]
When the use size of the membrane is large, or when mechanical strength or dimensional stability is more required, it is preferable to support the obtained polymer on a porous substrate. For example, a method of polymerizing the monomer after impregnating a porous substrate with a mixture of the monomer having an unsaturated bond and the thermoplastic polymer is mentioned.
[0028]
In addition, by embedding a porous substrate in advance in a film-like body made of the thermoplastic polymer by hot pressing or the like, impregnating it with a solution made of a monomer having the unsaturated bond, and then polymerizing, The polymer may be supported on a porous substrate.
[0029]
As the porous substrate, a porous substrate made of a material having a smaller solubility with the monomer than the thermoplastic polymer is preferable. Specifically, woven fabrics, nonwoven fabrics or microporous membranes made of polyvinyl chloride or polyvinylidene chloride can be used. From the viewpoint of long-term durability at high pH solutions and high temperatures, polyethylene, polypropylene or fluorine-containing olefins are used. A woven or microporous membrane is preferred.
[0030]
When using a porous substrate made of polyethylene, polypropylene, or fluorine-containing olefin, for the purpose of improving the adhesion between the porous substrate and the membrane, the monomer having the unsaturated bond and the thermoplastic are used. It is preferable to irradiate the porous substrate with an electron beam or γ-ray before or when the porous substrate is impregnated with the mixture of the polymer. Thereby, the electrical resistance, mechanical strength and long-term durability of the cation exchange membrane obtained can be improved.
[0031]
Another preferred method for improving the adhesion between the porous substrate and the membrane includes a method of subjecting the porous substrate to chemical treatment such as sulfonation or halogenation in advance.
[0032]
The preferred addition amount of the thermoplastic polymer in the case of supporting a porous substrate varies depending on the structure and molecular weight of the thermoplastic polymer, but is particularly based on 100 parts by mass of the monomer having an unsaturated bond. It is 5-100 mass parts, Furthermore, it is 6.5-50 mass parts.
[0033]
Moreover, it is preferable that a part of polymer which comprises the cation exchange membrane of this invention contains in a porous base material. In particular, the content of the polymerized units based on the monomer represented by Formula 1 in the porous substrate is 0.05 to 0.7 times the content of the polymerized units in the resin phase consisting only of the polymer. Is preferred. When it is less than 0.05 times, the electrical resistance of the film increases, and the long-term durability tends to decrease. If it is larger than 0.7 times, the mechanical strength tends to be low. This ratio can be controlled by the reaction conditions for polymerizing the monomer, the selection of the electron beam or γ-ray level irradiated to the porous substrate, the conditions for chemical treatment performed on the porous substrate, and the like.
[0034]
The ratio of the polymer contained in the porous substrate is, for example, the scanning electron for the portion made of the porous substrate containing the polymer and the portion made only of the polymer in the cross section of the cation exchange membrane. The intensity of the element contained in Z in Formula 1 can be measured by microscope-fluorescence X-ray (SEM-EDAX) analysis, and the intensity ratio can be calculated.
[0035]
On the other hand, when the size of the membrane used is small, a cation exchange membrane that does not contain a reinforcing material such as a porous substrate can be used when mechanical strength and dimensional stability are relatively not required. At this time, the monomer having the unsaturated bond and the thermoplastic polymer are mixed by impregnating the monomer having the unsaturated bond into the film-like body of the thermoplastic polymer. preferable.
[0036]
For example, a film made of the above-mentioned thermoplastic polymer (polyethylene, polypropylene, etc.) is irradiated with an electron beam or γ-ray, or a film obtained by chlorinating or chlorosulfonating the above-mentioned film is a single unit having the above unsaturated bond. Immerse in a solution consisting of a polymer. Such a method is particularly preferable in terms of mass productivity.
[0037]
A preferable addition amount of the thermoplastic polymer when no reinforcing material is contained in such a cation exchange membrane is particularly 20 to 200 with respect to 100 parts by mass of the monomer mixture having an unsaturated bond. It is a mass part, Furthermore, it is 50-140 mass parts.
[0038]
Further, in the present invention, the polymer based on the monomer represented by Formula 1 and the thermoplastic polymer can be bonded before or after sulfonation or with sulfonation. It can be carried out by Friedel-Craft reaction using tin, aluminum chloride or zinc chloride as a catalyst.
[0039]
Sulfonation can be carried out by bringing the polymer obtained as described above into contact with concentrated sulfuric acid, fuming sulfuric acid, chlorosulfonic acid, sulfurous acid or the like. In particular, the use of concentrated sulfuric acid is particularly preferable because sulfonation can be performed together with the above binding reaction.
[0040]
The cation exchange membrane obtained by the production method of the present invention includes seawater concentration, brine desalting, acid concentration or recovery, electrodialysis for recovering valuable metals, and diffusion dialysis for alkali recovery. It is also useful as a diaphragm for fuel cells and secondary batteries.
[0041]
In particular, since it is excellent in chemical resistance and heat resistance, a solution processing apparatus for concentrating, desalting and purifying an electrolyte from a solution at 40 ° C. or higher by electrodialysis or diffusion dialysis, or high temperature sterilization at 60 ° C. or higher is required It is preferable as a cation exchange membrane used in a solution processing apparatus. Moreover, it is also preferable as a base film of a composite film (so-called bipolar film) with an anion exchange membrane.
[0042]
【Example】
Examples of the present invention (Example 1, Example 2, Example 6, Example 7) , Reference Example (Example 5) and Comparative Examples (Example 3, Example 4) will be described below.
[0043]
[Example 1]
As a monomer represented by Formula 1, chloromethylstyrene in which A is a methylene group and Z is chlorine was prepared. 20% by mass of chloromethylstyrene, 40% by mass of styrene, 20% by mass of divinylbenzene (purity 57% by mass, the remainder being ethylbenzene), and 20% by mass of acrylonitrile were mixed. 100 parts by mass of a mixture composed of the obtained monomers and a styrene-based elastomer which is a thermoplastic polymer (product name of Shell Japan Co., Ltd .: Kraton 1730, having 23% by mass of polystyrene as a hard segment, and poly (ethylene / 15 parts by mass of propylene (with 77% by mass) and 4 parts by weight of benzoyl peroxide (made by Nippon Oil & Fats Co., Ltd., trade name Nypar BO) as a polymerization initiator are mixed, and a viscous liquid of 1.5 Pa · s is mixed. (The benzene ring content in the polymer obtained by polymerizing this viscous liquid is 6.5 mmol / g).
[0044]
Next, a polyethylene cloth (thickness 240 μm, basis weight 80 g / m 2 ), which is a porous substrate, is irradiated with 300 kGy of γ-rays and impregnated with the viscous liquid, and then from the monomer. The resulting mixture was polymerized at 90 ° C. for 10 hours to obtain a film having a thickness of 280 μm. The content of the benzene ring in the resin phase of the obtained film-like body is 6.5 mmol / g. Further, when the strength ratio of Cl element (Cl element strength of the fiber part of the cloth / Cl element strength of the resin phase) was measured by a scanning electron microscope-fluorescence X-ray analysis on the cross section of this film-like body, The intensity ratio was 0.2.
[0045]
The membrane was sulfonated by immersing it in a 98% by mass sulfuric acid solution at 30 ° C. for 16 hours, and then replaced with a counter ion Na type to obtain a cation exchange membrane. The ion exchange capacity of the obtained cation exchange membrane was 3.5 meq / g dry resin, and the specific resistance measured at an alternating current of 1000 Hz in 0.5 mol / L saline was 400 Ω · cm. Further, the static transport number of this cation exchange membrane at 25 ° C .: (0.5 mol / L saline solution) / membrane / (1.0 mol / L saline solution) is 0.95, and the Mulen burst strength test The burst strength measured by a machine was 0.8 MPa.
[0046]
In addition, when the cation exchange membrane was bent with respect to the yarn of the reinforcing cloth so that the fold line was at an angle of 45 degrees and the bending resistance was examined, the resin did not peel off from the bent portion, and pinholes were generated. There was not.
[0047]
The strength ratio of the Cl element in the polymerized film, the specific resistance of the cation exchange membrane, the static transport number, and the bending resistance test were also measured in the following examples.
[0048]
[Example 2]
A membrane was obtained in the same manner as in Example 1 except that 10% by mass of chloromethylstyrene and 50% by mass of styrene were used to prepare a cation exchange membrane. The content of the benzene ring in the resin phase of the film-like body was 6.8 mmol / g, and the strength ratio of Cl element was 0.2. Further, when the physical properties of the cation exchange membrane were measured in the same manner as in Example 1, the specific resistance at an alternating current of 1000 Hz was 300 Ω · cm, the static transport number was 0.94, and the bursting strength in 0.5 mol / L saline. Was 0.6 MPa, and there was no occurrence of resin peeling or pinholes in the bending resistance test.
[0049]
[Example 3 (comparative example)]
A membrane was obtained in the same manner as in Example 1 except that chloromethylstyrene was changed to 0% by mass and styrene was changed to 60% by mass to prepare a cation exchange membrane. The strength ratio of Cl element was 0.2. The physical properties of the cation exchange membrane were measured in the same manner as in Example 1. As a result, the specific resistance at an alternating current of 1000 Hz was 200 Ω · cm, the static transport number was 0.92, and the burst strength in 0.5 mol / L saline. Was 0.4 MPa, and in the bending resistance test, the resin was peeled off and pinholes were also generated.
[0050]
[Example 4 (comparative example)]
A membrane was obtained in the same manner as in Example 1 except that 10 parts by mass of nitrile rubber (nitrile content: 36% by mass, unsaturated bond ratio: 15.9%) was used instead of the styrene-based elastomer, and a cation exchange membrane was obtained. Created. The strength ratio of Cl element was 0.2. In addition, when the physical properties of the cation exchange membrane were measured in the same manner as in Example 1, the specific resistance at an alternating current of 1000 Hz was 150 Ω · cm, the static transport number was 0.92, and the burst strength in 0.5 mol / L saline. Was 0.3 MPa, and in the bending resistance test, the resin was peeled off and pinholes were also generated.
[0051]
[Example 5]
Example 1 was used except that 10 parts by mass of hydrogenated nitrile rubber (Nippon Zeon product name: Zetpol 2000, acrylonitrile content 36% by mass, unsaturated bond rate 0.2%) was used instead of the styrene elastomer. Thus, a membrane was obtained, and a cation exchange membrane was prepared. The content of the benzene ring in the resin phase of the film-like body was 6.5 mmol / g, and the strength ratio of Cl element was 0.2. Further, when the physical properties of the cation exchange membrane were measured in the same manner as in Example 1, the specific resistance at an alternating current of 1000 Hz was 400 Ω · cm, the static transport number was 0.94, and the bursting strength in 0.5 mol / L saline. Was 0.5 MPa, and no resin peeling or pinhole was observed in the bending resistance test.
[0052]
[Example 6]
A membrane-like body was obtained in the same manner as in Example 1 except that a polypropylene cloth (thickness 300 μm, basis weight 100 g / m 2 ) was used in place of polyethylene cloth as the porous substrate, and a cation exchange membrane was obtained. Created. The content of the benzene ring in the resin phase of the film-like body was 6.5 mmol / g, and the strength ratio of Cl element was 0.4. Further, when the physical properties of the cation exchange membrane were measured in the same manner as in Example 1, the specific resistance at an alternating current of 1000 Hz was 350 Ω · cm, the static transport number was 0.94, and the bursting strength in 0.5 mol / L saline. Was 0.6 MPa, and there was no occurrence of resin peeling or pinholes in the bending resistance test.
[0053]
[Example 7]
The same as in Example 1 except that 100% by mass of chloromethylstyrene was used as the monomer, and a polyvinyl chloride cloth (thickness 250 μm, basis weight 210 g / m 2 ) was used as the porous substrate. Thus, a membrane was obtained, and a cation exchange membrane was prepared. The content of the benzene ring in the resin phase of the film-like body is 5.7 mmol / g, and the S element strength ratio (the strength of the S element in the fiber portion of the cloth / the strength of the S element in the resin phase) is determined by SEM-EDAX analysis. When measured, the intensity ratio of this S element was 0.5. Further, when the physical properties of the cation exchange membrane were measured in the same manner as in Example 1, the specific resistance at AC 1000 Hz in 0.5 mol / L saline was 800 Ω · cm, the static transport number was 0.94, and the burst strength. Was 1.6 MPa, and there was no occurrence of resin peeling or pinholes in the bending resistance test.
[0054]
【Effect of the invention】
The cation exchange membrane according to the production method of the present invention has high mechanical strength and ion selectivity because the AZ group of the monomer represented by Formula 1 is linked to the benzene ring or the like constituting the thermoplastic polymer. Excellent chemical and heat resistance. Therefore, the conventional cation exchange membrane is suitable for water treatment at a high temperature of 60 ° C. or more by an electrodialysis apparatus, which is not sufficiently durable.

Claims (7)

式1で示される単量体(ただし、Aは炭素数1〜8のアルキレン基、または総炭素数2〜9のアルキレンオキシアルキレン基を示し、Zは塩素、臭素、ヨウ素または水酸基を示す。)を6質量%以上含有する、不飽和結合を有する単量体100質量部と、前記式1で示される単量体のAZ基と反応して結合できる部位を有し、主鎖の不飽和結合率が3%以下である熱可塑性重合体2〜400質量部とを混合した後、単量体を重合し、前式1で示される単量体にもとづく重合体と上記熱可塑性重合体とを結合し、さらにスルホン化する工程を備え、前記熱可塑性重合体がスチレン系熱可塑性エラストマーであることを特徴とする陽イオン交換膜の製造方法。
Figure 0004862229
Monomer represented by Formula 1 (wherein A represents an alkylene group having 1 to 8 carbon atoms or an alkyleneoxyalkylene group having 2 to 9 carbon atoms in total, and Z represents chlorine, bromine, iodine or a hydroxyl group). 100 parts by mass of a monomer having an unsaturated bond containing 6% by mass or more, and a site capable of reacting with the AZ group of the monomer represented by the formula 1 to bond, and unsaturated bond of the main chain After mixing 2 to 400 parts by mass of a thermoplastic polymer having a rate of 3% or less, the monomer is polymerized, and the polymer based on the monomer represented by the above formula 1 and the above thermoplastic polymer are obtained. A method for producing a cation exchange membrane , comprising a step of bonding and further sulfonation , wherein the thermoplastic polymer is a styrene-based thermoplastic elastomer .
Figure 0004862229
上記不飽和結合を有する単量体と上記熱可塑性重合体との混合物におけるベンゼン環の含有量が2.0〜9.0mmol/gである請求項1記載の陽イオン交換膜の製造方法。The method for producing a cation exchange membrane according to claim 1 , wherein the content of the benzene ring in the mixture of the monomer having an unsaturated bond and the thermoplastic polymer is 2.0 to 9.0 mmol / g. 上記熱可塑性重合体が、芳香族環を芳香族環に含まれる炭素原子に換算して5質量%以上含有してなる請求項1または2記載の陽イオン交換膜の製造方法。The method for producing a cation exchange membrane according to claim 1 or 2 , wherein the thermoplastic polymer contains an aromatic ring in an amount of 5 mass% or more in terms of carbon atoms contained in the aromatic ring. 上記不飽和結合を有する単量体と上記熱可塑性重合体とを混合したものを、多孔性基材に含浸させた後、単量体を重合させてなる重合体を濃硫酸でスルホン化する請求項1〜3のいずれか一項に記載の陽イオン交換膜の製造方法。Claim that a porous base material is impregnated with a mixture of the monomer having an unsaturated bond and the thermoplastic polymer, and then the polymer obtained by polymerizing the monomer is sulfonated with concentrated sulfuric acid. Item 4. The method for producing a cation exchange membrane according to any one of Items 1 to 3 . 上記不飽和結合を有する単量体からなる重合体の一部が多孔性基材中に含有されてなり、多孔性基材中の式1で示される単量体にもとづく重合単位の含有量が、上記重合体のみからなる樹脂相中の該重合単位の含有量の0.05〜0.7倍である請求項4記載の陽イオン交換膜の製造方法。A part of the polymer composed of the monomer having an unsaturated bond is contained in the porous substrate, and the content of the polymer unit based on the monomer represented by Formula 1 in the porous substrate is The method for producing a cation exchange membrane according to claim 4 , which is 0.05 to 0.7 times the content of the polymerized unit in the resin phase comprising only the polymer. 上記不飽和結合を有する単量体と上記熱可塑性重合体とを混合したものを多孔性基材に含浸させる前、または含浸させるときに、多孔性基材に電子線またはγ線を照射する請求項4または5記載の陽イオン交換膜の製造方法。Claims to irradiate the porous substrate with an electron beam or γ-ray before or when the porous substrate is impregnated with the mixture of the unsaturated bond monomer and the thermoplastic polymer. Item 6. The method for producing a cation exchange membrane according to Item 4 or 5. 上記不飽和結合を有する単量体と上記熱可塑性重合体との混合を、上記熱可塑性重合体の膜状体に上記不飽和結合を有する単量体を含浸させることにより行う、請求項1〜4のいずれか一項に記載の陽イオン交換膜の製造方法。Mixing the monomer having an unsaturated bond and the thermoplastic polymer is performed by impregnating the monomer having an unsaturated bond into a film-like body of the thermoplastic polymer. 5. The method for producing a cation exchange membrane according to any one of 4 above.
JP2001201021A 2001-07-02 2001-07-02 Method for producing cation exchange membrane Expired - Lifetime JP4862229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201021A JP4862229B2 (en) 2001-07-02 2001-07-02 Method for producing cation exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201021A JP4862229B2 (en) 2001-07-02 2001-07-02 Method for producing cation exchange membrane

Publications (2)

Publication Number Publication Date
JP2003012835A JP2003012835A (en) 2003-01-15
JP4862229B2 true JP4862229B2 (en) 2012-01-25

Family

ID=19038051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201021A Expired - Lifetime JP4862229B2 (en) 2001-07-02 2001-07-02 Method for producing cation exchange membrane

Country Status (1)

Country Link
JP (1) JP4862229B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713449B2 (en) 2003-03-06 2010-05-11 Toray Industries, Inc. Polymer electrolytic material, polymer electrolytic part, membrane electrode assembly, and polymer electrolyte fuel cell
JP4883880B2 (en) * 2003-06-13 2012-02-22 株式会社トクヤマ Method for producing diaphragm for direct methanol fuel cell
CN100446312C (en) 2003-06-25 2008-12-24 东丽株式会社 Polymer electrolyte, polymer electrolyte membrane therefrom, membrane electrode assembly and polymer electrolyte fuel cell
JP2006008993A (en) * 2004-05-21 2006-01-12 Asahi Glass Engineering Co Ltd Monovalent cation selectively permeable cation exchange membrane and method for producing the same
CN100487003C (en) * 2004-12-21 2009-05-13 比亚迪股份有限公司 A kind of polymer and proton exchange membrane of containing polymer
JP5120541B2 (en) * 2007-10-12 2013-01-16 財団法人塩事業センター Cation exchange membrane for salt production and method for producing the same
JP5120543B2 (en) * 2007-10-18 2013-01-16 財団法人塩事業センター Cation exchange membrane and method for producing the same
JP5717234B2 (en) * 2010-03-11 2015-05-13 Agcエンジニアリング株式会社 Hydrogen ion selective permeable membrane and acid recovery method
JP6166814B1 (en) * 2016-04-14 2017-07-19 株式会社アストム Bipolar membrane
JP6302151B1 (en) * 2016-09-06 2018-03-28 株式会社アストム Ion exchange membrane
WO2023038133A1 (en) * 2021-09-13 2023-03-16 Agcエンジニアリング株式会社 Ion exchange membrane and method for producing ion exchange membrane with catalyst layer
JP7448716B1 (en) 2023-07-12 2024-03-12 株式会社合同資源 Electrodialysis membrane for producing hydroiodic acid, bipolar membrane electrodialysis device, and method for producing hydroiodic acid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151944A (en) * 1987-12-07 1989-06-14 Tokuyama Soda Co Ltd Ion exchanger
JP3238238B2 (en) * 1993-05-12 2001-12-10 株式会社トクヤマ Ion exchange membrane
JP3193522B2 (en) * 1993-05-17 2001-07-30 株式会社トクヤマ Method for producing ion exchange membrane
JP3432337B2 (en) * 1995-08-09 2003-08-04 株式会社トクヤマ Method for producing ion exchange membrane
JP3461991B2 (en) * 1995-12-11 2003-10-27 株式会社トクヤマ Method for producing ion exchange membrane

Also Published As

Publication number Publication date
JP2003012835A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
JP4862229B2 (en) Method for producing cation exchange membrane
JP4724971B2 (en) Anion exchange membrane, method for producing the same, and solution processing apparatus
CA1094982A (en) Single film, high performance bipolar membrane
JP4297516B2 (en) Microporous membrane and use thereof
US7081484B2 (en) Anion exchange membrane, process for its production and solution treating apparatus
JP5579365B2 (en) Anion exchange membrane and method for producing the same
JP6302151B1 (en) Ion exchange membrane
JP5120543B2 (en) Cation exchange membrane and method for producing the same
JPH11335473A (en) Ion exchange film and its use
JP3193522B2 (en) Method for producing ion exchange membrane
JP4035106B2 (en) Method for preparing a graft copolymer membrane
EP0222926B1 (en) Process for producing an ion exchange membrane
US4154909A (en) Process for producing cation exchange membrane by treatment of fluorinated polymer containing sulfonyl halide groups with amine and vinyl monomer
JP4675516B2 (en) Method for producing anion exchange membrane
KR20160060890A (en) Vinylbenzene-styrene based anion exchange composite membranes with nitrile rubber and method for preparing the same
KR101799996B1 (en) Styrene-based and tert-butylstyrene-based cation exchange composite membrane having polyvinylidene fluoride and method of preparing thereof
JP2006008993A (en) Monovalent cation selectively permeable cation exchange membrane and method for producing the same
JPH0352777B2 (en)
KR101190732B1 (en) Cation exchange composite membranes with olefin-based additives and method for preparing the same
JPH07268114A (en) Method for laminating ion exchange membrane
KR100473351B1 (en) Preparation method of Polyethylene/Polystyrene cation-exchange membrane
JPH08302037A (en) Production of ion exchange membrane
JP7448716B1 (en) Electrodialysis membrane for producing hydroiodic acid, bipolar membrane electrodialysis device, and method for producing hydroiodic acid
JPH0644977B2 (en) Desalination method for organic compounds using amphoteric ion exchange membrane
JP3173099B2 (en) Method for producing cation exchange membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4862229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term