JPH05213920A - Purification of glycidyl compound - Google Patents

Purification of glycidyl compound

Info

Publication number
JPH05213920A
JPH05213920A JP5688792A JP5688792A JPH05213920A JP H05213920 A JPH05213920 A JP H05213920A JP 5688792 A JP5688792 A JP 5688792A JP 5688792 A JP5688792 A JP 5688792A JP H05213920 A JPH05213920 A JP H05213920A
Authority
JP
Japan
Prior art keywords
hydrotalcite
compound
glycidyl compound
yield
hydrolyzable halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5688792A
Other languages
Japanese (ja)
Other versions
JP3060703B2 (en
Inventor
Masahiko Yamanaka
正彦 山中
Shoji Tani
昭二 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP4056887A priority Critical patent/JP3060703B2/en
Publication of JPH05213920A publication Critical patent/JPH05213920A/en
Application granted granted Critical
Publication of JP3060703B2 publication Critical patent/JP3060703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)

Abstract

PURPOSE:To relatively easily decrease the content of hydrolyzable halogen atom in a glycidyl compound under industrially advantageous condition without causing the lowering of yield and the degradation of the final product such as an increase in epoxy equivalent and an increase in viscosity. CONSTITUTION:Hydrolyzable halogen atoms existing in a glycidyl compound are removed to a hydrolyzable halogen atom content of <=100ppm with a hydrotalcite without causing the degradation and the lowering of yield of the final product. The hydrotalcite is e.g. natural hydrotalcite, synthetic hydrotalcite, their calcined product, etc., e.g. the compound expressed by formula ((a) to (e) are integers of >=0 satisfying the formulas 1<a<5, d<=b, d<=c, b+2c=2a+3 and e<10). The amount of the hydrotalcite is preferably about 0.05-3wt.% based on the glycidyl compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、グリシジル化合物の工
業的な精製方法に関する。
TECHNICAL FIELD The present invention relates to an industrial purification method for glycidyl compounds.

【0002】[0002]

【従来の技術】従来、グリシジル化合物の製造方法とし
て、例えば、次の2つの方法が知られている。 (1)二段階合成法 活性水素含有化合物(例えば、アルコール類、フェノー
ル類、カルボン酸類、アミン類等)とエピハロヒドリン
類とを溶媒の存在下又は無溶媒下、所望により触媒とし
て酸性化合物或いは塩基性化合物の存在下に加熱して付
加反応せしめてハロヒドリン体を得、次いで水酸化ナト
リウム等の塩基性化合物を用いて脱ハロゲン化水素する
ことによりこれを閉環してグリシジル化合物の粗物を得
る。しかる後に、上記反応時に副生する塩類、脱ハロゲ
ン化水素剤として使用した塩基性化合物の残留物を水洗
又は濾別し、次いで加熱、減圧下に揮発性物質を留去
し、その後濾過して目的物を得る。
2. Description of the Related Art Conventionally, for example, the following two methods are known as methods for producing glycidyl compounds. (1) Two-step synthesis method Active hydrogen-containing compounds (for example, alcohols, phenols, carboxylic acids, amines, etc.) and epihalohydrins are present in the presence or absence of a solvent, if desired as an acidic compound or basic as a catalyst. A halohydrin compound is obtained by heating in the presence of a compound to carry out an addition reaction, and then dehydrohalogenation is performed using a basic compound such as sodium hydroxide to ring-close this to obtain a crude product of a glycidyl compound. After that, the salts by-produced in the above reaction and the residue of the basic compound used as the dehydrohalogenating agent are washed with water or separated by filtration, and then the volatile substances are distilled off under heating and reduced pressure, followed by filtration. Get the object.

【0003】(2)一段階合成法 上記と同様の活性水素含有化合物とエピハロヒドリン類
及び/又はハロヒドリン類とを溶媒の存在下又は無溶媒
下、水酸化ナトリウム等の塩基性化合物を用いて縮合し
てグリシジル化合物の粗物を得、以下、二段階合成法に
おけると同様の後処理方法により目的物を得る。
(2) One-step synthetic method The same active hydrogen-containing compound as described above and epihalohydrins and / or halohydrins are condensed with a basic compound such as sodium hydroxide in the presence or absence of a solvent. To obtain a crude product of the glycidyl compound, and then to obtain the desired product by the same post-treatment method as in the two-step synthesis method.

【0004】しかしながら、上述の一段階合成法又は二
段階合成法のいずれの方法によっても、最終製品中に加
水分解性ハロゲン原子が、通常、500〜1000ppm
程度の濃度で残留する。
However, the hydrolyzable halogen atom in the final product is usually 500 to 1000 ppm by either of the above-mentioned one-step synthesis method or two-step synthesis method.
It remains at a moderate concentration.

【0005】このようなグリシジル化合物を原料として
得られるエポキシ樹脂をエレクトロニクスの分野(例え
ば、トランジスタ、IC、LSI、超LSI)にそのま
ま使用した場合、混在している加水分解性ハロゲン原子
が、長期間の通電使用中に環境大気中から吸収した水分
や熱の作用等によりハロゲンイオンを遊離し、アルミニ
ウム等の配線部材や基体を腐食させ、或いは絶縁不良の
原因ともなってエレクトロニクス部品の信頼性を低下さ
せる。そのため、グリシジル化合物中の加水分解性ハロ
ゲン原子は、極力除去されている必要がある。
When the epoxy resin obtained by using such a glycidyl compound as a raw material is used as it is in the field of electronics (eg, transistor, IC, LSI, VLSI), mixed hydrolyzable halogen atoms remain for a long time. Halogen ions are released by the action of moisture or heat absorbed from the ambient air during use of electricity, which corrodes wiring members and substrates such as aluminum, or causes insulation failure, and reduces the reliability of electronic parts. .. Therefore, the hydrolyzable halogen atom in the glycidyl compound needs to be removed as much as possible.

【0006】グリシジル化合物中の加水分解性ハロゲン
原子の残存量を低減する方法としては、これまで種々の
方法が提案されている。
Various methods have been proposed so far for reducing the residual amount of hydrolyzable halogen atoms in a glycidyl compound.

【0007】例えば、特開昭60−112812号公報
では、アルカリ金属アルコキシドによる後処理方法が開
示されている。当該処理により、ある程度の加水分解性
ハロゲン原子の除去効果は認められるものの、同時にエ
ポキシ基の開裂や重合を起こし最終製品中のエポキシ当
量や粘度の上昇を引き起こすという欠点を有する。
For example, JP-A-60-112812 discloses a post-treatment method with an alkali metal alkoxide. Although the treatment has some effect of removing the hydrolyzable halogen atom, it has a drawback that the epoxy group is cleaved or polymerized at the same time to increase the epoxy equivalent and viscosity of the final product.

【0008】又、特開昭60−186522号公報で
は、遊離アミン型弱塩基性陰イオン交換樹脂を使用した
後処理方法が開示されているが、当該イオン交換樹脂の
耐熱性に限界があるため、比較的低温での後処理を余儀
なくされ、所期の加水分解性ハロゲン原子の除去効果を
得るためには長時間の後処理が必要となるという欠点を
有している。
Further, JP-A-60-186522 discloses a post-treatment method using a free amine type weakly basic anion exchange resin, but the heat resistance of the ion exchange resin is limited. However, it has a drawback that it requires a post-treatment at a relatively low temperature and requires a long-time post-treatment to obtain the desired effect of removing the hydrolyzable halogen atom.

【0009】一方、本発明者らの検討によれば、閉環反
応時に脱ハロゲン化水素剤として使用する塩基性化合物
の過剰量を増やしたり、閉環反応温度を高く設定したり
反応時間を延長する等、脱ハロゲン化水素の反応条件を
より厳しくしたとしても加水分解性ハロゲン原子の混在
量を150ppm程度にしか低減することができず、しか
もかかる条件下では上記と同様の品質劣化及び収率の低
下が起こり、充分満足し得る結果が得られなかった(本
願比較例4)。
On the other hand, according to the studies by the present inventors, the excess amount of the basic compound used as the dehydrohalogenating agent in the ring-closing reaction is increased, the ring-closing reaction temperature is set high, and the reaction time is extended. Even if the reaction conditions for dehydrohalogenation are made more severe, the content of hydrolyzable halogen atoms can be reduced to only about 150 ppm, and under such conditions, the deterioration of quality and the decrease in yield similar to those described above are possible. Occurred, and a sufficiently satisfactory result was not obtained (Comparative Example 4 of the present application).

【0010】以上の如く、グリシジル化合物中の加水分
解性ハロゲン原子をより効率的に除去し、かつ最終製品
の品質劣化や収率低下を起こさない精製方法はまだ確立
されておらず、かかる技術の開発が強く望まれていた。
As described above, the purification method for more efficiently removing the hydrolyzable halogen atom in the glycidyl compound and preventing the deterioration of the quality and the yield of the final product has not been established yet. Development was strongly desired.

【0011】[0011]

【発明が解決しようとする課題】本発明は、比較的簡便
に、かつ工業的に有利な条件下で、グリシジリ化合物中
の加水分解性ハロゲン原子の混在量を可及的に低減せし
め得る新規な精製方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is a novel method capable of reducing the amount of a hydrolyzable halogen atom mixed in a glycidyl compound as relatively easily as possible under industrially advantageous conditions. It is intended to provide a purification method.

【0012】[0012]

【課題を解決するための手段】本発明者らは、かかる目
的を達成すべく鋭意検討の結果、一段階合成法、二段階
合成法を問わず、従来公知の方法で調製されたグリシジ
ル化合物の反応粗物をハイドロタルサイト類化合物で後
処理することにより、最終製品のエポキシ当量や粘度等
の品質劣化及び収率低下を起こすことなく、加水分解性
ハロゲン原子の含有量を100ppm以下に低減し得るこ
とを見いだした。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that the glycidyl compound prepared by a conventionally known method, regardless of whether it is a one-step synthetic method or a two-step synthetic method. By post-treating the reaction crude with a hydrotalcite compound, the content of hydrolyzable halogen atoms can be reduced to 100 ppm or less without causing quality deterioration such as epoxy equivalent and viscosity of the final product and yield reduction. I found what I got.

【0013】本発明に係るグリシジル化合物の精製方法
は、上記の知見に基づいてなされたものであって、グリ
シジル化合物中に混在する加水分解性ハロゲン原子をハ
イドロタルサイト類を用いて除去することを特徴とす
る。
The method for purifying a glycidyl compound according to the present invention is based on the above findings, and it is possible to remove hydrolyzable halogen atoms mixed in the glycidyl compound by using hydrotalcites. Characterize.

【0014】本発明において使用されるハイドロタルサ
イト類化合物とは、天然ハイドロタルサイト、合成ハイ
ドロタルサイト或いはそれらの焼成物であり、例えば、
一般式(1)に示される組成比を有する化合物である。
The hydrotalcite compound used in the present invention is a natural hydrotalcite, a synthetic hydrotalcite or a calcined product thereof.
It is a compound having a composition ratio represented by the general formula (1).

【化1】 [式中、a、b、c、d及びeは、1<a<5、d≦
b、d≦c、b+2c=2a+3及びe<10の条件を
満たす、0及び正の整数である。]
[Chemical 1] [Where a, b, c, d and e are 1 <a <5, d ≦
b and d ≦ c, b + 2c = 2a + 3 and e <10 are 0 and a positive integer. ]

【0015】当該化合物の好ましい添加量は、目的とす
るグリシジル化合物に対して0.05〜3重量%程度で
ある。0.05重量%未満では加水分解性ハロゲン原子
を充分に除去することができず、3重量%を越えて添加
しても効果上の有意差は認められず、経済的に不利であ
る。
The preferred amount of the compound added is about 0.05 to 3% by weight based on the desired glycidyl compound. If it is less than 0.05% by weight, the hydrolyzable halogen atom cannot be sufficiently removed, and if it is added in an amount of more than 3% by weight, no significant difference in effect is observed, which is economically disadvantageous.

【0016】以下に処理方法の具体例を掲げる。尚、所
定の効果が得られる限り、当該処理条件に限定されるも
のではない。活性水素含有化合物とエピハロヒドリン類
及び/又はハロヒドリン類を原料として得られる反応粗
物に対し、必要に応じて、系内の粘度を低下せしめる目
的で不活性な溶媒(例えば、ベンゼン、トルエン、キシ
レン、ヘキサン、ヘプタン、オクタン、メチルエチルケ
トン、メチルイソブチルケトン等)を添加し、次いで、
副生塩や未反応の塩基性化合物を、濾過、水洗、遠心分
離等の工程を適宜組み合わせることにより除去する。
Specific examples of the processing method will be given below. The processing conditions are not limited as long as a predetermined effect can be obtained. For a reaction crude obtained from active hydrogen-containing compounds and epihalohydrins and / or halohydrins as raw materials, if necessary, an inert solvent for the purpose of lowering the viscosity of the system (for example, benzene, toluene, xylene, Hexane, heptane, octane, methyl ethyl ketone, methyl isobutyl ketone, etc.), and then
By-produced salts and unreacted basic compounds are removed by appropriately combining steps such as filtration, washing with water and centrifugation.

【0017】しかる後に、所定量のハイドロタルサイト
類化合物を添加し、通常、80〜130℃程度の温度条
件下で、好ましくは3〜20mmHg程度の減圧下、0.5
〜3時間程度攪拌する。この過程において、水及び溶媒
等の反応粗物中に混在する揮発性物質を同時に留去して
もよいし、予め加熱、減圧下に当該揮発性物質を留去し
た後、ハイドロタルサイト類化合物による精製を行って
もよい。温度条件が80℃以下の場合には加水分解性ハ
ロゲン原子の除去効率が低下する傾向が認められ、多量
のハイドロタルサイト類化合物の使用が必要となり工業
的に不利である。
Thereafter, a predetermined amount of the hydrotalcite compound is added, and usually under a temperature condition of about 80 to 130 ° C., preferably under a reduced pressure of about 3 to 20 mmHg, 0.5.
Stir for about 3 hours. In this process, the volatile substances mixed in the reaction crude such as water and solvent may be distilled off at the same time, or the volatile substances may be distilled off in advance under heating and reduced pressure, and then the hydrotalcite compound. May be used for purification. When the temperature condition is 80 ° C. or lower, the removal efficiency of the hydrolyzable halogen atom tends to decrease, and it is industrially disadvantageous because a large amount of the hydrotalcite compound needs to be used.

【0018】その後、系を濾過又は遠心分離して固形物
を回収、除去することにより、エポキシ基の重合や開裂
等によるエポキシ当量の増加や粘度の増大を起こさず
に、加水分解性のハロゲン原子の含有量が著しく低減さ
れたグリシジル化合物が得られる。
Thereafter, the system is filtered or centrifuged to collect and remove the solid matter, so that the hydrolyzable halogen atom can be obtained without increasing the epoxy equivalent or viscosity due to polymerization or cleavage of the epoxy group. A glycidyl compound having a significantly reduced content of is obtained.

【0019】[0019]

【実施例】以下に実施例を掲げ、本発明を詳しく説明す
る。尚、各例における評価方法は以下のとおりである。 エポキシ当量…過塩素酸により滴定する方法による。 加水分解性塩素含量…ナトリウムメチラートを60〜7
0℃、5分間作用させて加水分解性塩素をイオン化させ
た後、硝酸銀により滴定する方法による。 粘度(25℃)…B型回転粘度計による。
EXAMPLES The present invention will be described in detail below with reference to examples. The evaluation method in each example is as follows. Epoxy equivalent: According to the method of titration with perchloric acid. Hydrolyzable chlorine content: sodium methylate 60 to 7
After hydrolyzable chlorine is ionized by acting at 0 ° C. for 5 minutes, it is titrated with silver nitrate. Viscosity (25 ° C) -By B type rotational viscometer.

【0020】又、ハイドロタルサイト類化合物として
は、以下の協和化学工業(株)製合成ハイドロタルサイ
トを適用した。 キョーワード2000(Mg0.7Al0.31.15) キョーワード1000(Mg4.5Al2(OH)13CO3
・mH2O,m=3〜3.5) キョーワード500SN(Mg6Al2(OH)16CO3
・4H2O) キョーワード500SH(Mg6Al2(OH)16CO3
・4H2O)
As the hydrotalcite compound, the following synthetic hydrotalcite manufactured by Kyowa Chemical Industry Co., Ltd. was applied. Kyoward 2000 (Mg 0.7 Al 0.3 O 1.15 ) Kyoward 1000 (Mg 4.5 Al 2 (OH) 13 CO 3
・ MH 2 O, m = 3 to 3.5) Kyoward 500SN (Mg 6 Al 2 (OH) 16 CO 3
・ 4H 2 O) Kyoward 500 SH (Mg 6 Al 2 (OH) 16 CO 3
・ 4H 2 O)

【0021】実施例1 回転式攪拌装置、デカンタ、温度計及びガス導入管を備
えた反応器に、水素化ビスフェノールA243g(1.
0モル)、キシレン116g及び塩化第二錫五水和物
(付加反応触媒)3.1gを仕込み、100℃でエピク
ロルヒドリン222g(2.4モル)を滴下した後、更
に攪拌を続けて付加反応を終了した。次いで、塩化ベン
ジルトリメチルアンモニウム(相間移動触媒)6.9
g、50%水酸化ナトリウム水溶液223gを添加後、
80℃、5時間攪拌を続けて閉環反応を終了した。副生
した塩化ナトリウム及び未反応の水酸化ナトリウムを水
洗により除去し、更に、キョーワード2000を2g添
加して、130℃、3mmHgで3時間、脱水・脱溶媒しつ
つ攪拌した後、固形物を濾別した。その結果、エポキシ
当量215、加水分解性塩素含量30ppm、粘度250
0cPの水素化ビスフェノールAのジグリシジルエーテ
ル372g(収率98.6%)を得た。
Example 1 A reactor equipped with a rotary stirrer, a decanter, a thermometer and a gas inlet tube was used to prepare 243 g of hydrogenated bisphenol A (1.
0 mol), 116 g of xylene and 3.1 g of stannic chloride pentahydrate (addition reaction catalyst) were added, and after adding 222 g (2.4 mol) of epichlorohydrin at 100 ° C., stirring was continued to carry out the addition reaction. finished. Then benzyltrimethylammonium chloride (phase transfer catalyst) 6.9
g, after adding 223 g of 50% sodium hydroxide aqueous solution,
The ring-closing reaction was completed by continuing stirring at 80 ° C. for 5 hours. By-produced sodium chloride and unreacted sodium hydroxide were removed by washing with water, 2 g of KYOWARD 2000 was further added, and the mixture was stirred at 130 ° C. and 3 mmHg for 3 hours while dehydration / desolvation was performed. It was filtered off. As a result, epoxy equivalent 215, hydrolyzable chlorine content 30 ppm, viscosity 250
372 g (yield 98.6%) of 0 gP of hydrogenated bisphenol A diglycidyl ether was obtained.

【0022】実施例2 実施例1と同様の反応器に、ビスフェノールA・エチレ
ンオキサイド6モル付加体246g(0.5モル)、エ
ピクロルヒドリン463g(5.0モル)、塩化ベンジ
ルトリメチルアンモニウム5.5g、50%水酸化ナト
リウム水溶液100gを仕込み、50℃でエピクロルヒ
ドリン還流下に共沸脱水しつつ4時間攪拌して縮合反応
を終了した。副生した塩化ナトリウム及び未反応の水酸
化ナトリウムを水洗により除去し、更に、加熱、減圧下
に過剰のエピクロルヒドリンを回収した後、キョーワー
ド1000を2g添加し、120℃、5mmHgで1時間攪
拌した。その後、濾過してエポキシ当量315、加水分
解性塩素含量50ppm、粘度950cPのビスフェノー
ルA・エチレンオキサイド6モル付加体のジグリシジル
エーテル287g(収率95.0%)を得た。
Example 2 In the same reactor as in Example 1, 246 g (0.5 mol) of 6 mol adduct of bisphenol A.ethylene oxide, 463 g (5.0 mol) of epichlorohydrin, 5.5 g of benzyltrimethylammonium chloride, 100 g of 50% aqueous sodium hydroxide solution was charged, and the condensation reaction was completed by stirring for 4 hours while azeotropically dehydrating under reflux of epichlorohydrin at 50 ° C. By-produced sodium chloride and unreacted sodium hydroxide were removed by washing with water, and excess epichlorohydrin was recovered under heating and reduced pressure, 2 g of Kyoward 1000 was added, and the mixture was stirred at 120 ° C. and 5 mmHg for 1 hour. .. Then, the mixture was filtered to obtain 287 g (yield 95.0%) of diglycidyl ether of a 6 mol adduct of bisphenol A / ethylene oxide having an epoxy equivalent of 315, a hydrolyzable chlorine content of 50 ppm and a viscosity of 950 cP.

【0023】実施例3 実施例1と同様の反応器に、トリメチロールプロパン1
34g(1.0モル)、キシレン41g及び三フッ化ホ
ウ素エーテル錯塩4.3gを仕込み、60℃でエピクロ
ルヒドリン277g(3.0モル)を滴下し、更に攪拌
を続けて付加反応を終了した。次いで、固体の水酸化ナ
トリウム120gを添加し、40℃で1時間攪拌を続け
て閉環反応を終了した。副生した塩化ナトリウム及び未
反応の水酸化ナトリウムを濾別し、80℃、3mmHgで2
時間脱水・脱溶媒した後、キョーワード500SNを8
g添加し、80℃、常圧下で2時間攪拌した。その後、
濾過して、エポキシ当量122、加水分解性塩素含量9
0ppm、粘度110cPのトリメチロールプロパントリ
グリシジルエーテル298g(収率98.8%)を得
た。
Example 3 A reactor similar to that used in Example 1 was charged with trimethylolpropane 1
34 g (1.0 mol), xylene 41 g and boron trifluoride ether complex salt 4.3 g were charged, epichlorohydrin 277 g (3.0 mol) was added dropwise at 60 ° C., and stirring was continued to complete the addition reaction. Then, 120 g of solid sodium hydroxide was added, and stirring was continued at 40 ° C. for 1 hour to complete the ring closure reaction. By-produced sodium chloride and unreacted sodium hydroxide were separated by filtration and 2 at 80 ° C and 3 mmHg.
After dehydration and solvent removal for 8 hours, Kyoward 500SN is turned on 8
g, and the mixture was stirred at 80 ° C. under normal pressure for 2 hours. afterwards,
Filtered to have an epoxy equivalent of 122 and a hydrolyzable chlorine content of 9
298 g (yield 98.8%) of trimethylolpropane triglycidyl ether having 0 ppm and a viscosity of 110 cP was obtained.

【0024】実施例4 実施例1と同様の反応器に、4−メチルヘキサヒドロ無
水フタル酸168g(1.0モル)、エピクロルヒドリ
ン250g(2.7モル)、塩化テトラメチルアンモニ
ウム3.3g及び蒸留水30gを仕込み、80℃で攪拌
して付加反応を終了した後、トルエン149gを添加し
た。次いで、45%水酸化ナトリウム水溶液213gを
滴下しつつ80℃で共沸脱水を行い、閉環反応を終了し
た。副生した塩化ナトリウム及び未反応の水酸化ナトリ
ウムを濾別し、120℃、5mmHgで2時間脱水・脱溶媒
した後、キョーワード500SHを3g添加して、更に
30分間攪拌した。その後、濾過してエポキシ当量17
1、加水分解性塩素含量60ppm、粘度520cPの4
−メチルヘキサヒドロ無水フタル酸ジグリシジルエステ
ル295g(収率92.4%)を得た。
Example 4 In a reactor similar to that of Example 1, 168 g (1.0 mol) of 4-methylhexahydrophthalic anhydride, 250 g (2.7 mol) of epichlorohydrin, 3.3 g of tetramethylammonium chloride and distillation. After adding 30 g of water and stirring at 80 ° C. to complete the addition reaction, 149 g of toluene was added. Then, azeotropic dehydration was carried out at 80 ° C. while dropping 213 g of a 45% aqueous sodium hydroxide solution to complete the ring closure reaction. By-produced sodium chloride and unreacted sodium hydroxide were separated by filtration, dehydrated and desolvated at 120 ° C. and 5 mmHg for 2 hours, 3 g of Kyoward 500SH was added, and the mixture was further stirred for 30 minutes. Then, filter to obtain an epoxy equivalent of 17
1. Hydrolyzable chlorine content 60ppm, viscosity 4 520cP
295 g (yield 92.4%) of methyl hexahydrophthalic anhydride diglycidyl ester were obtained.

【0025】比較例1 キョーワード2000を添加しない他は実施例1に準じ
て処理したところ、目的とする水素化ビスフェノールA
のジグリシジルエーテルが375g(収率99.4%)
得られた。ちなみに、このもののエポキシ当量は21
3、加水分解性塩素含量は260ppm、粘度は2500
cPであった。
Comparative Example 1 The hydrogenated bisphenol A of interest was obtained by treating in the same manner as in Example 1 except that Kyoward 2000 was not added.
Diglycidyl ether of 375 g (yield 99.4%)
Was obtained. By the way, the epoxy equivalent of this product is 21
3. Hydrolyzable chlorine content is 260ppm, viscosity is 2500
It was cP.

【0026】比較例2 キョーワード1000を添加しない他は実施例2に準じ
て処理したところ、目的とするビスフェノールA・エチ
レンオキサイド6モル付加体のジグリシジルエーテルが
290g(収率96.0%)得られた。ちなみに、この
もののエポキシ当量は315、加水分解性塩素含量は2
40ppm、粘度は950cPであった。
Comparative Example 2 The treatment was carried out in the same manner as in Example 2 except that Kyoward 1000 was not added, and the target diglycidyl ether of bisphenol A / ethylene oxide 6 mol adduct was 290 g (yield 96.0%). Was obtained. By the way, this product has an epoxy equivalent of 315 and a hydrolyzable chlorine content of 2
It was 40 ppm and the viscosity was 950 cP.

【0027】比較例3 キョーワード500SNを添加しない他は実施例3に準
じて処理したところ、目的とするトリメチロールプロパ
ントリグリシジルエーテルが299g(収率99.1
%)得られた。ちなみに、このもののエポキシ当量は1
20、加水分解性塩素含量は690ppm、粘度は110
cPであった。
Comparative Example 3 The treatment was carried out in the same manner as in Example 3 except that Kyoward 500 SN was not added, and as a result, the target trimethylolpropane triglycidyl ether was 299 g (yield 99.1).
%) Obtained. By the way, the epoxy equivalent of this product is 1
20, hydrolyzable chlorine content 690ppm, viscosity 110
It was cP.

【0028】比較例4 閉環反応を60℃で3時間攪拌下に行い、かつキョーワ
ード500SNを添加しない他は実施例3に準じて処理
したところ、目的とするトリメチロールプロパントリグ
リシジルエーテルが271g(収率89.8%)得られ
た。ちなみに、このもののエポキシ当量は190、加水
分解性塩素含量は150ppm、粘度は220cPであっ
た。
Comparative Example 4 The ring-closing reaction was carried out at 60 ° C. for 3 hours with stirring, and the treatment was carried out in the same manner as in Example 3 except that Kyoward 500 SN was not added. As a result, 271 g of the desired trimethylolpropane triglycidyl ether Yield 89.8%) was obtained. Incidentally, this product had an epoxy equivalent of 190, a hydrolyzable chlorine content of 150 ppm, and a viscosity of 220 cP.

【0029】比較例5 キョーワード500SHを添加しない他は実施例4に準
じて処理したところ、目的とする4−メチルヘキサヒド
ロ無水フタル酸ジグリシジルエステルが297g(収率
93.0%)得られた。ちなみに、このもののエポキシ
当量は173、加水分解性塩素含量は310ppm、粘度
は520cPであった。
Comparative Example 5 The same treatment as in Example 4 was carried out except that Kyoward 500SH was not added, and 297 g (yield 93.0%) of the target 4-methylhexahydrophthalic anhydride diglycidyl ester was obtained. It was Incidentally, this product had an epoxy equivalent of 173, a hydrolyzable chlorine content of 310 ppm, and a viscosity of 520 cP.

【0030】[0030]

【発明の効果】本発明に係るグリシジル化合物の精製方
法により、最終製品のエポキシ当量の増加、粘度の増大
等の品質劣化や収率低下を起こすことなく、より簡便
に、加水分解性ハロゲン原子の残存量を著しく低下させ
ることが可能になる。
EFFECTS OF THE INVENTION The method for purifying a glycidyl compound according to the present invention makes it easier and easier to produce a hydrolyzable halogen atom without causing quality deterioration such as increase in epoxy equivalent of the final product, increase in viscosity and decrease in yield. It is possible to significantly reduce the residual amount.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 グリシジル化合物中に混在する加水分解
性ハロゲン原子をハイドロタルサイト類を用いて除去す
ることを特徴とするグリシジル化合物の精製方法。
1. A method for purifying a glycidyl compound, which comprises removing hydrolyzable halogen atoms mixed in the glycidyl compound using hydrotalcites.
JP4056887A 1992-02-06 1992-02-06 Purification method of glycidyl compound Expired - Fee Related JP3060703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4056887A JP3060703B2 (en) 1992-02-06 1992-02-06 Purification method of glycidyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4056887A JP3060703B2 (en) 1992-02-06 1992-02-06 Purification method of glycidyl compound

Publications (2)

Publication Number Publication Date
JPH05213920A true JPH05213920A (en) 1993-08-24
JP3060703B2 JP3060703B2 (en) 2000-07-10

Family

ID=13039942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4056887A Expired - Fee Related JP3060703B2 (en) 1992-02-06 1992-02-06 Purification method of glycidyl compound

Country Status (1)

Country Link
JP (1) JP3060703B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128771A (en) * 2000-10-26 2002-05-09 Sakamoto Yakuhin Kogyo Co Ltd New method for producing epoxy compound, and epoxy resin composition containing the epoxy compound produced by the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128771A (en) * 2000-10-26 2002-05-09 Sakamoto Yakuhin Kogyo Co Ltd New method for producing epoxy compound, and epoxy resin composition containing the epoxy compound produced by the method

Also Published As

Publication number Publication date
JP3060703B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
JP2656952B2 (en) Method for producing epoxy resin with low undesirable halogen content
JP2003516399A (en) Method for removing materials containing hydrolyzable halides and other high molecular weight materials from epihalohydrin derived epoxy resins
JP5130728B2 (en) Epoxy resin purification method
US4885354A (en) Epoxy resin compositions
JP3060703B2 (en) Purification method of glycidyl compound
JP3044412B2 (en) Manufacturing method of high purity epoxy resin
JP3644761B2 (en) Process for producing aliphatic polyglycidyl ether
US4831101A (en) Polyglycidyl ethers from purified epihalohydrin
JPS61168617A (en) Production of high-purity brominated epoxy resin
JP3028385B2 (en) Method for producing phenolic resin
CA1085990A (en) Method for the preparation of novolak epoxy resins
JP2897850B2 (en) Method for producing high-purity tetrakisphenolethane
JP3837667B2 (en) Epoxy resin purification method and epoxy resin composition for semiconductor encapsulation
JP2857236B2 (en) Method for producing glycidyl compound
JP3114304B2 (en) Process for producing glycidyl ethers
JPS59152367A (en) Purification of mercaptocarboxylic acid polyhydric alcohol ester
JP2731005B2 (en) Manufacturing method of high purity epoxy resin
JPH066616B2 (en) Method for producing dicyclopentadiene-modified epoxy resin
JPS58134112A (en) Reducing method for saponifiable chlorine content in polyglycidyl ether
JP2543937B2 (en) Epoxy resin purification method
JPS629128B2 (en)
JPS5842867B2 (en) Method for producing glycidyl ethers
JPH1025286A (en) New polyepoxy compound and its production
JPS62187718A (en) Method for removal of chlorine from epoxy resin
JPH0662596B2 (en) Method for purifying epoxy compound

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees