JPH05212294A - Catalytic body and its production - Google Patents

Catalytic body and its production

Info

Publication number
JPH05212294A
JPH05212294A JP4047558A JP4755892A JPH05212294A JP H05212294 A JPH05212294 A JP H05212294A JP 4047558 A JP4047558 A JP 4047558A JP 4755892 A JP4755892 A JP 4755892A JP H05212294 A JPH05212294 A JP H05212294A
Authority
JP
Japan
Prior art keywords
carrier
volume resistivity
dispersed
catalytic body
catalyst body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4047558A
Other languages
Japanese (ja)
Inventor
Noriyuki Yasuda
徳行 安田
Susumu Takada
進 高田
Shigeru Ishii
茂 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP4047558A priority Critical patent/JPH05212294A/en
Publication of JPH05212294A publication Critical patent/JPH05212294A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To increase volume resistivity, to reduce variance and to appropriately use the catalytic body for sterilization and deodorization by forming the catalytic body with a carrier and a metallic component having catalytic activity and dispersed in the carrier and specifying the volume resistivity. CONSTITUTION:The catalytic body is formed with a carrier and a metallic component having catalytic activity and dispersed in the carrier, and the volume resistivity is controlled to >=1X10<6>OMEGAcm. Iron, manganese, nickel, cobalt, chromium and copper are exemplified as the metallic component. Silica, alumina, titania and zirconia are exemplified as the component of the carrier. Although the catalytic body is obtained by highly and uniformly dispersing the metallic component in the carrier, high-degree uniform dispersion is attained by coprecipitation or coprecipitation and kneading. Since the metallic component is uniformly dispersed in the entire catalytic body, the variance of volume resistivity is reduced, and a high voltage can be impressed on the catalytic body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、体積抵抗率が1×106
Ωcm以上であり、殺菌、脱臭用として好適である触媒体
に関する。
The present invention has a volume resistivity of 1 × 10 6
The present invention relates to a catalyst body having an Ωcm or more and suitable for sterilization and deodorization.

【0002】[0002]

【従来の技術】従来、担体に触媒活性を有する金属成分
を担持させた触媒体としては、担体を原料粉末から成
形、焼結して製造後、これに触媒活性を有する金属塩水
溶液を含浸し、再度焼成又は乾燥して製造されたものが
知られている。
2. Description of the Related Art Conventionally, as a catalyst body in which a metal component having a catalytic activity is carried on a carrier, the carrier is molded and sintered from a raw material powder, and then impregnated with an aqueous metal salt solution having a catalytic activity. , Which are manufactured by firing or drying again are known.

【0003】[0003]

【発明が解決しようとする課題】このような触媒体の利
用方法として、複数の触媒体対向させて配設しておいて
高電圧を印加することにより殺菌及び脱臭を行うことが
知られている。しかし、上記の含浸法により得られる触
媒体は、担体表面の触媒活性金属の分布が不均一である
ため、同様の条件で製造しても体積抵抗率が3桁以上ば
らつく上、空気中の水分を吸着すると抵抗値がかなり変
動し絶縁安定性に欠ける。そのため、高電圧を印加する
ことができず、所要の殺菌、脱臭能が得られない。そこ
で、本発明の課題は、体積抵抗率が充分に高くかつバラ
ツキが小さいため殺菌、脱臭用に好適である触媒体及び
その製造方法を提供することである。
As a method of utilizing such a catalyst body, it is known to dispose a plurality of catalyst bodies facing each other and apply a high voltage to sterilize and deodorize them. .. However, since the catalyst body obtained by the above-mentioned impregnation method has a non-uniform distribution of catalytically active metal on the surface of the carrier, even if it is produced under the same conditions, the volume resistivity varies by three digits or more, and the moisture content in the air When adsorbed, the resistance value fluctuates considerably and the insulation stability is lacking. Therefore, high voltage cannot be applied, and required sterilization and deodorizing ability cannot be obtained. Therefore, an object of the present invention is to provide a catalyst body which is suitable for sterilization and deodorization because it has a sufficiently high volume resistivity and a small variation, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明によると、担体
と、該担体中に分散された触媒活性を有する成分とから
なり、体積抵抗率が1×106 Ωcm以上である触媒体が提
供される。触媒活性金属成分としては、例えば、鉄、マ
ンガン、ニッケル、コバルト、クロム及び銅が挙げられ
る。担体を構成する成分としては、例えば、シリカ、ア
ルミナ、チタニア、ジルコニア等が挙げられる。この触
媒体は、触媒活性金属成分が担体中に極めて高度に均一
に分散した結果得られるものであるが、そのような高度
の均一分散は、共沈法あるいはこれに混練法を併用する
ことにより達成される。
According to the present invention, there is provided a catalyst body comprising a carrier and a component having a catalytic activity dispersed in the carrier and having a volume resistivity of 1 × 10 6 Ωcm or more. It Examples of the catalytically active metal component include iron, manganese, nickel, cobalt, chromium and copper. Examples of the component constituting the carrier include silica, alumina, titania, zirconia and the like. This catalyst body is obtained as a result of extremely highly uniformly dispersing the catalytically active metal component in the carrier. Such a highly uniform dispersion can be obtained by coprecipitation method or by using a kneading method in combination therewith. To be achieved.

【0005】すなわち、本発明は、第一に、上記の触媒
体の製造方法として、(A)触媒活性を有する金属の化合
物及び (B)担体を構成する金属の化合物を水性媒体中に
溶解又は分散してなる水溶液又は分散液に沈澱剤を添加
して前記 (A)及び (B)の金属成分を共沈させる工程と、
得られた共沈物を焼成して複合酸化物を生成する工程
と、該複合酸化物を成型後焼成する工程と、を有する製
造方法を提供する。
That is, the present invention is, firstly, as a method for producing the above-mentioned catalyst body, (A) a metal compound having catalytic activity and (B) a metal compound constituting a carrier are dissolved in an aqueous medium or A step of adding a precipitating agent to the dispersed aqueous solution or dispersion to coprecipitate the metal components of (A) and (B);
There is provided a production method including a step of firing the obtained coprecipitate to form a composite oxide, and a step of firing the composite oxide after molding.

【0006】原料として用いる (A)の金属の化合物とし
ては、水溶性の硝酸塩、硫酸塩、塩化物、シュウ酸塩等
が挙げられる。また (B)の金属としては、ケイ素、アル
ミニウム、ジルコニウム、チタン等が挙げられ、これら
金属の化合物としては酸化物、水酸化物、塩化物、硫酸
塩等から適宜選択して用いるのがよく、具体的にはコロ
イダルシリカ、コロイダルアルミニウム、コロイダルジ
ルコニウム、水酸化アルミニウム、水酸化ジルコニウム
等のコロイド水溶液、四塩化チタン、硫酸チタン、硫酸
チタニルの水溶液等の状態で使用することができる。
Examples of the metal compound (A) used as a raw material include water-soluble nitrates, sulfates, chlorides and oxalates. Examples of the metal (B) include silicon, aluminum, zirconium, titanium, and the like, and compounds of these metals are preferably selected from oxides, hydroxides, chlorides, sulfates, and the like. Specifically, it can be used in the state of colloidal silica, colloidal aluminum, colloidal zirconium, aluminum hydroxide, colloidal aqueous solution of zirconium hydroxide, titanium tetrachloride, titanium sulfate or titanyl sulfate.

【0007】沈澱剤としては、アンモニア、水酸化ナト
リウム、炭酸アンモニウム等が挙げられ、好ましくはア
ンモニア水である。沈澱剤は、使用金属化合物が共沈を
起こす所要pHを達成することができるように、適宜の濃
度で適量使用すればよい。共沈物の焼成は、一般に、酸
素、空気等の酸化性雰囲気中において 200〜800℃程度
の温度で行えばよい。焼成時間は、通常、 0.5〜2時間
程度でよい。上記の製造方法は、共沈操作でほとんどの
成分が共沈物を形成する場合に適する。
Examples of the precipitant include ammonia, sodium hydroxide, ammonium carbonate and the like, and ammonia water is preferable. The precipitating agent may be used in an appropriate amount and in an appropriate amount so that the required pH at which the metal compound used causes coprecipitation can be achieved. The coprecipitate may be generally calcined at a temperature of about 200 to 800 ° C. in an oxidizing atmosphere such as oxygen or air. The firing time is usually about 0.5 to 2 hours. The above production method is suitable when most components form a coprecipitate in the coprecipitation operation.

【0008】また、本発明は、上記の触媒体の別の製造
方法として、(A)触媒活性を有する金属の化合物及び
(B)担体を構成する金属成分の化合物の一部(但し、少
なくとも二種の化合物)を水性媒体中に溶解又は分散し
てなる水溶液又は分散液に沈澱剤を添加して溶解又は分
散させた金属成分を共沈させる工程と、得られた共沈物
を焼成して複合酸化物を生成する工程と、該複合酸化物
を、前記 (A)及び (B)の化合物のうち前記の水溶液又は
分散液に使用されなかった残りの金属の化合物と混練
し、得られた混練物を成型後焼成する工程と、を有する
方法をも提供する。
Further, the present invention provides (A) a metal compound having catalytic activity and
(B) A precipitant was added to an aqueous solution or dispersion prepared by dissolving or dispersing a part of the metal component compound (however, at least two compounds) constituting the carrier in an aqueous medium, and then dissolved or dispersed. A step of coprecipitating a metal component, a step of firing the resulting coprecipitate to form a composite oxide, the composite oxide, the aqueous solution of the compound of (A) and (B) or And a step of kneading with the remaining metal compound that has not been used in the dispersion and baking the obtained kneaded product after molding.

【0009】この製造方法は、共沈法で沈澱を形成する
pH値が大きく異なるか、pHの変化で共沈物が溶解してし
まう等、全成分の共沈体を得るのが困難である場合に適
する。したがって、共沈工程に供する金属化合物は、例
えばTiCl4 ,SiO2 ,ZrO2 , Al2 O 3 が適し、次の混練工
程で供する金属化合物は、例えば Mn(NO3 ) 2 , NiNO3
が適する。
In this manufacturing method, a precipitate is formed by a coprecipitation method.
It is suitable for cases where it is difficult to obtain a coprecipitate of all components, such as when the pH value varies greatly or the coprecipitate dissolves due to a change in pH. Therefore, the metal compound used in the coprecipitation step is, for example, TiCl 4 , SiO 2 , ZrO 2 , Al 2 O 3 , and the metal compound used in the next kneading step is, for example, Mn (NO 3 ) 2 , NiNO 3
Is suitable.

【0010】上記の混練工程は、高い剪断応力(好まし
くは連続式ニーダを使用)を被混練物に与えうる混練機
を使用して行うことが好ましい。その他の条件は、前述
した第一の製造方法について説明したと同様である。こ
れらの製造法によると、共沈法では担体成分と触媒活性
金属成分が予め水溶液状態で混合されてから共沈物とな
るため各成分は偏ることなく均一な分布を示すことにな
る。
The above kneading step is preferably carried out by using a kneading machine capable of giving a high shear stress (preferably using a continuous kneader) to the material to be kneaded. Other conditions are the same as those described in the first manufacturing method described above. According to these production methods, in the coprecipitation method, the carrier component and the catalytically active metal component are mixed in advance in an aqueous solution state to form a coprecipitate, so that the respective components show a uniform distribution without bias.

【0011】また上記の混練を用いる方法では、触媒活
性金属成分を後から担体成分に加えるが、連続式ニーダ
等の高い剪断力を与えうる混練機を使用するため、触媒
活性金属成分は共沈法と同様に比較的均一な分布を示
す。触媒体の体積抵抗率は主として触媒活性金属成分が
導電性を示すため、この成分の分布状態により大きく影
響を受けるものと考えられる。
In the method using the above-mentioned kneading, the catalytically active metal component is added to the carrier component afterwards, but since a kneader capable of giving a high shearing force such as a continuous kneader is used, the catalytically active metal component is coprecipitated. Similar to the method, it shows a relatively uniform distribution. Since the catalytically active metal component mainly exhibits conductivity, the volume resistivity of the catalyst is considered to be greatly influenced by the distribution state of this component.

【0012】本発明による製造法では、触媒活性金属成
分が触媒体全体に均一に分布しているため、複数個のサ
ンプルについて体積抵抗率を測定してもその値のバラツ
キは極めて小さくなり、その結果触媒体に高電圧を印加
することができ、高い脱臭能及び殺菌能が達成されるよ
うになる。本発明の触媒体の構造、形状は特に制限され
ず、例えばハニカム状、コルゲート状、三次元編み目
状、粒状等の種々の構造に成形することができる。触媒
体を脱臭及び/又は殺菌のために使用するには、その一
部に電極が付与される。
In the production method of the present invention, since the catalytically active metal component is uniformly distributed over the entire catalyst body, even if the volume resistivity is measured for a plurality of samples, the variation in the value becomes extremely small. As a result, a high voltage can be applied to the catalyst body, and high deodorizing ability and sterilizing ability can be achieved. The structure and shape of the catalyst body of the present invention are not particularly limited, and can be formed into various structures such as a honeycomb shape, a corrugated shape, a three-dimensional knitted shape, and a granular shape. In order to use the catalyst body for deodorization and / or sterilization, an electrode is attached to a part thereof.

【0013】[0013]

【実施例】【Example】

実施例1 硝酸第二鉄、コロイダルシリカ及び塩化コバルトを、 F
e(NO3 ) ・9H2 O 0.431 モル( 174.1g)、 SiO2 0.43
1 モル( 123.8g)及びCoCl2 ・6H2 O 0.431モル( 10
2.5g)含む水溶液1kgを調製した。これと、濃度約10
%のアンモニア水とを、溶液のpHが7〜9に保たれてる
ように制御しながら混合し、前記の金属成分を共沈させ
た。得られた懸濁液を1時間攪拌したのち、高速遠心分
離機で固液分離を行った。得られた固形物を再度水に分
散して可溶性成分を溶解させたのち遠心分離にに供する
操作を数回繰り返して共沈物を洗浄した。こうして得ら
れた共沈物を次に 500℃で1時間焼成し、Fe2 O 3 -SiO
2 -CoOからなる複合酸化物粉末が得られた。この粉末
は、比表面積230m2 /gであり、電子線回折像から非常に
微細な結晶構造であることがわかった。
Example 1 Ferric nitrate, colloidal silica and cobalt chloride were added to F
e (NO 3 ) ・ 9H 2 O 0.431 mol (174.1 g), SiO 2 0.43
1 mol (123.8 g) and CoCl 2 · 6H 2 O 0.431 mol (10
1 kg of an aqueous solution containing 2.5 g) was prepared. With this, the concentration is about 10
% Ammonia water was mixed while controlling the pH of the solution to be maintained at 7 to 9 to coprecipitate the metal component. After stirring the obtained suspension for 1 hour, solid-liquid separation was performed with a high-speed centrifuge. The solid obtained was again dispersed in water to dissolve the soluble component and then subjected to centrifugation to repeat the operation several times to wash the coprecipitate. The coprecipitate thus obtained was then calcined at 500 ° C. for 1 hour to produce Fe 2 O 3 --SiO 2.
A composite oxide powder consisting of 2- CoO was obtained. This powder had a specific surface area of 230 m 2 / g, and it was found from an electron diffraction image that it had a very fine crystal structure.

【0014】得られた複合粉末の特性を測定したとこ
ろ、下記の結果が得られた。ただし、体積抵抗率のみ直
径20mm、長さ14mmの円柱状にプレス成形し、 500℃で焼
成後両端面にドータイトを塗布、乾燥後に測定した。 1)体積抵抗率( 500ボルト、60秒印加時): 3.5×106
Ωcm 2)トリエチルアミン飽和吸着量: 32.9 mg/g 3)オゾン分解能:3mg/hr のオゾンが発生中に複合体粉
末1gがオゾンを 100%分解できる時間を測定した。5
時間と測定された。原料を変えた以外は上記と同様にし
てモル比が1:1:1である三元複合酸化物からなる粉
末を製造し、同様に特性を測定したところ、表1に示す
結果が得られた。
When the characteristics of the obtained composite powder were measured, the following results were obtained. However, only the volume resistivity was press-molded into a cylindrical shape having a diameter of 20 mm and a length of 14 mm, baked at 500 ° C., coated with dotite on both end faces, dried, and measured. 1) Volume resistivity (500 V, 60 seconds applied): 3.5 × 10 6
Ωcm 2) Saturated adsorption amount of triethylamine: 32.9 mg / g 3) Ozone decomposing ability: The time during which 1 g of the composite powder can decompose 100% of ozone while ozone of 3 mg / hr was generated was measured. 5
Time was measured. A powder of a ternary composite oxide having a molar ratio of 1: 1: 1 was produced in the same manner as above except that the raw materials were changed, and the characteristics were measured in the same manner. The results shown in Table 1 were obtained. ..

【0015】[0015]

【表1】 [Table 1]

【0016】実施例2 (1) 65.5重量%TiCl4 の水溶液 (Ti分として4モル)(11
58g) と20重量%コロダルシリカ水溶液 (Si分として1
モル)( 300g) を水に溶かし、水溶液1458gを調製し
た。この水溶液に、濃度約10%のアンモニア水を添加後
のpHが7〜9になるように添加し、チタン−シリカ共沈
物を得た。共沈物を遠心分離により固液分離し、得られ
た固形物を 600℃で1時間焼成し、チタニア−シリカ複
合酸化物 380gを得た。
Example 2 (1) An aqueous solution of 65.5 wt% TiCl 4 (4 mol as Ti content) (11
58g) and 20% by weight aqueous collodal silica solution (Si content is 1
Mol) (300 g) was dissolved in water to prepare 1458 g of an aqueous solution. Ammonia water having a concentration of about 10% was added to this aqueous solution so that the pH after the addition was 7 to 9 to obtain a titanium-silica coprecipitate. The coprecipitate was subjected to solid-liquid separation by centrifugation, and the obtained solid was calcined at 600 ° C for 1 hour to obtain 380 g of a titania-silica composite oxide.

【0017】(2) 次に、このチタニア−シリカ複合酸化
物 380gと、硝酸マンガン Mn(NO3 )2 1 モル ( 287g)
とを予備混練したのち、連続式ニーダーで十分に混練
を行った。得られた混練物を乾燥後粉砕し、造粒し、さ
らに外径20mm、長さ14mmの円筒状にプレス成形後、 500
℃で焼結させた。こうして、焼結後の寸法が外径17mm、
長さ12mmである焼結体からなる触媒体が得られた。こう
して得られた触媒体の上下の両端面に銀系導電性塗料
(商品名:ドーダイト;藤倉化成 (株) 製)塗布、乾燥
して電極を形成した。これに、 500ボルトの直流電圧を
印加し、1分後の抵抗値を測定したところ13MΩと測定
され、これは体積抵抗率に換算して24.5×106 Ωcmであ
った。
(2) Next, 380 g of this titania-silica composite oxide and manganese nitrate Mn (NO 3 ) 2 1 mol (287 g)
After kneading and were preliminarily kneaded, they were sufficiently kneaded with a continuous kneader. The resulting kneaded product is dried, pulverized, granulated, and further press-molded into a cylindrical shape having an outer diameter of 20 mm and a length of 14 mm, and
Sintered at ° C. In this way, the dimension after sintering is 17 mm outer diameter,
A catalyst body consisting of a sintered body having a length of 12 mm was obtained. Silver-based conductive paint (trade name: Doudite; manufactured by Fujikura Kasei Co., Ltd.) was applied to both upper and lower end surfaces of the catalyst body thus obtained, and dried to form electrodes. A direct current voltage of 500 V was applied thereto, and the resistance value after 1 minute was measured to be 13 MΩ, which was 24.5 × 10 6 Ωcm in terms of volume resistivity.

【0018】実施例3 出発材料として、TiCl4 、コロイダルシリカ及びMnCl2
を、Ti:Si:Mnのモル比が4:1:1になるように使用
した以外は、実施例1と同様にして共沈法のみで三元複
合酸化物を製造した。実施例2と同様にして電極付触媒
体を五個作製し、それぞれについて体積抵抗率を求め、
バラツキを調べた。得られた結果を図1に示す。
Example 3 As starting materials, TiCl 4 , colloidal silica and MnCl 2
Was used in the same manner as in Example 1 except that Ti: Si: Mn was used in a molar ratio of 4: 1: 1 to produce a ternary composite oxide by the coprecipitation method only. Five catalyst bodies with electrodes were prepared in the same manner as in Example 2, and the volume resistivity was determined for each.
I checked the variations. The obtained results are shown in FIG.

【0019】実施例4 Ti:Si:Mnのモル比が4:1:1になるように使用した
以外は、実施例2と同様にして、共沈法と混練法を組み
合わせて複合酸化物を得た。この複合酸化物から実施例
2と同様にして電極付触媒体を五個作製し、それぞれに
ついて体積抵抗率を求め、バラツキを調べた。得られた
結果を図1に示す。
Example 4 A complex oxide was prepared by combining the coprecipitation method and the kneading method in the same manner as in Example 2 except that Ti: Si: Mn was used in a molar ratio of 4: 1: 1. Obtained. Five catalyst bodies with electrodes were produced from this composite oxide in the same manner as in Example 2, and the volume resistivity was determined for each, and the variation was examined. The obtained results are shown in FIG.

【0020】比較例 実施例2の(1) と同様にしてチタニア−シリカ複合酸化
物を製造した。これを実施例2と同様に成形、焼成した
後、濃度62%の硝酸マンガン溶液に浸漬して含浸したの
ち、乾燥後、さらに 500℃で焼成して触媒体を得、実施
例2と同様に電極を付けた。同様にして電極付触媒体を
五個作製し、それぞれについて体積抵抗率を求め、バラ
ツキを調べた。結果を図1に示す。
Comparative Example A titania-silica composite oxide was produced in the same manner as in Example 2 (1). This was molded and calcined in the same manner as in Example 2, then immersed in a 62% concentration manganese nitrate solution for impregnation, dried, and further calcined at 500 ° C. to obtain a catalyst body. An electrode was attached. In the same manner, five electrode-attached catalyst bodies were produced, the volume resistivity was determined for each, and the variation was examined. The results are shown in Figure 1.

【0021】実施例5 実施例3の共沈法、実施例4の混練法、及び比較例によ
る含浸法により得られたTi-Si-Mn系の触媒粉末を直径10
mm、厚さ2mmの円板状に成形後コンピュータを使った組
成の面分析(Computer Micro Analysis : CMA) を行い、
Ti, Si, Mn 各成分ごとに組成分布の偏りを調べた。組
成分布の偏りをCV(変動係数)に変換して評価した。CV
値は小さい程組成の偏りが少ないことを示す。結果を表
2に示す。混練法及び共沈法で作製した触媒はいずれの
元素でも含浸法で作製したものよりCV値が小さく、組成
の偏りが少ないことを示している。図1の結果と合わせ
て考えると、Mnの分布の偏りが体積抵抗率のバラツキに
深く関係しているようである。
Example 5 A Ti-Si-Mn-based catalyst powder obtained by the coprecipitation method of Example 3, the kneading method of Example 4, and the impregnation method according to the comparative example was used.
mm, 2 mm thick disk-shaped, and then surface analysis (Computer Micro Analysis: CMA) of the composition using a computer,
The bias of the composition distribution was investigated for each component of Ti, Si, and Mn. The bias of composition distribution was converted into CV (coefficient of variation) for evaluation. CV
The smaller the value is, the less the composition bias is. The results are shown in Table 2. The catalysts prepared by the kneading method and the coprecipitation method have smaller CV values than those prepared by the impregnation method for any of the elements, indicating that the composition is less biased. Considering together with the result of FIG. 1, it seems that the deviation of the distribution of Mn is deeply related to the variation of the volume resistivity.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】本発明の触媒体は体積抵抗率が充分に高
くかつバラツキが小さいため、殺菌、脱臭用に好適であ
る。
EFFECTS OF THE INVENTION The catalyst of the present invention has a sufficiently high volume resistivity and a small variation, and is therefore suitable for sterilization and deodorization.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例3、4及び比較例で得られた触媒体の体
積抵抗率及びそのバラツキを示す。
FIG. 1 shows the volume resistivity and its variation of the catalyst bodies obtained in Examples 3 and 4 and Comparative Example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 担体と、該担体中に分散された触媒活性
を有する金属成分とからなり、体積抵抗率が1×106 Ω
cm以上である触媒体。
1. A carrier and a catalytically active metal component dispersed in the carrier, and has a volume resistivity of 1 × 10 6 Ω.
A catalyst body that is at least cm.
【請求項2】 (A)触媒活性を有する金属の化合物及び
(B)担体を構成する金属の化合物を水性媒体中に溶解又
は分散してなる水溶液又は分散液に沈澱剤を添加して前
記 (A)及び (B)の金属成分を共沈させる工程と、 得られた共沈物を焼成して複合酸化物を生成する工程
と、 該複合酸化物を成型後焼成する工程と、を有する、請求
項1に記載の触媒体を製造する方法。
2. A metal compound having (A) catalytic activity, and
(B) a step of coprecipitating the metal components of (A) and (B) by adding a precipitant to an aqueous solution or dispersion obtained by dissolving or dispersing a metal compound constituting the carrier in an aqueous medium, The method for producing a catalyst body according to claim 1, comprising a step of calcining the obtained coprecipitate to produce a composite oxide, and a step of calcining the composite oxide after molding.
【請求項3】 (A)触媒活性を有する金属成分の化合物
及び (B)担体を構成する金属の化合物の一部(但し、少
なくとも二種の化合物)を水性媒体中に溶解又は分散し
てなる水溶液又は分散液に沈澱剤を添加して溶解又は分
散させた金属成分を共沈させる工程と、 得られた共沈物を焼成して複合酸化物を生成する工程
と、 該複合酸化物を、前記 (A)及び (B)の化合物のうち前記
の水溶液又は分散液に使用されなかった残りの金属の化
合物と混練し、得られた混練物を成型後焼成する工程
と、を有する、請求項1に記載の触媒体を製造する方
法。
3. A solution of (A) a compound of a metal component having catalytic activity and (B) a part of a metal compound constituting the carrier (however, at least two compounds) are dissolved or dispersed in an aqueous medium. A step of adding a precipitating agent to an aqueous solution or a dispersion to coprecipitate a metal component dissolved or dispersed therein; a step of firing the obtained coprecipitate to form a composite oxide; A step of kneading (A) and (B) compounds with the remaining metal compound that has not been used in the aqueous solution or dispersion, and firing the resulting kneaded product. A method for producing the catalyst body according to 1.
JP4047558A 1992-02-03 1992-02-03 Catalytic body and its production Withdrawn JPH05212294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4047558A JPH05212294A (en) 1992-02-03 1992-02-03 Catalytic body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4047558A JPH05212294A (en) 1992-02-03 1992-02-03 Catalytic body and its production

Publications (1)

Publication Number Publication Date
JPH05212294A true JPH05212294A (en) 1993-08-24

Family

ID=12778524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4047558A Withdrawn JPH05212294A (en) 1992-02-03 1992-02-03 Catalytic body and its production

Country Status (1)

Country Link
JP (1) JPH05212294A (en)

Similar Documents

Publication Publication Date Title
JP3643948B2 (en) Titania-zirconia powder and method for producing the same
JP4376966B2 (en) Restructured iron oxide
JPH0653227B2 (en) Preparation of catalyst for selective reduction of nitrogen oxides with ammonia
DE2905292A1 (en) CATALYST COMPOSITION
JPH0857317A (en) Platinum alloy catalyst and its manufacturing process
EP1792651A1 (en) Shell catalyst, its use for oxidizing methanol to formaldehyde and its process of preparation
JP4097749B2 (en) Catalytic oxidation catalyst
EP0762932B1 (en) Titania-based catalyst carriers
US5002918A (en) Molded articles based on pyrogenically produced mixed-oxide systems of silicon dioxide and aluminum oxide, a method for manufacturing them and their use
JPH0247264B2 (en)
KR20190113804A (en) Catalyst for methanation reaction, preparation method of catalyst for methanation reaction and preparation method of methane
US4725572A (en) Process for preparing a catalyst for removing nitrogen oxides
JP2932199B2 (en) Catalyst suitable for production of hydrocarbons from carbon monoxide and hydrogen, method for producing catalyst precursor and said catalyst
JP2004105951A (en) Catalyst for synthesizing acrylonitrile and production method for the same and production method for acrylonitrile
JPH05212294A (en) Catalytic body and its production
US5004719A (en) Molded articles based on pyrogenically produced zirconium dioxide method for their manufacture, and use thereof
JP5062988B2 (en) Novel titanium oxide and method for synthesizing novel titanium oxide
JPS62168544A (en) Zirconia carrier and its preparation
JPH0114810B2 (en)
JP3785310B2 (en) Organohalogen compound decomposition catalyst, production method thereof, and use
JP2000290018A (en) Iron oxide based powder and its production
JPS58151327A (en) Manufacture of solid acid composition
JPS6268541A (en) Preparation of catalyst for removing nitrogen oxide
JPS6242744A (en) Carrier of catalyst for removing nitrogen oxide and production of catalyst using said carrier
JP2016514618A (en) Bismuth-molybdenum-nickel-mixed oxide or composite material containing bismuth-molybdenum-cobalt-mixed oxide and SiO 2

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518