JPH0521130B2 - - Google Patents

Info

Publication number
JPH0521130B2
JPH0521130B2 JP59173158A JP17315884A JPH0521130B2 JP H0521130 B2 JPH0521130 B2 JP H0521130B2 JP 59173158 A JP59173158 A JP 59173158A JP 17315884 A JP17315884 A JP 17315884A JP H0521130 B2 JPH0521130 B2 JP H0521130B2
Authority
JP
Japan
Prior art keywords
weight
water
parts
pyrrolidone
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59173158A
Other languages
Japanese (ja)
Other versions
JPS6153315A (en
Inventor
Toshio Suzuki
Yoshihiko Ogawa
Hideo Senke
Toshio Hiramatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Spinning Co Ltd filed Critical Nisshin Spinning Co Ltd
Priority to JP59173158A priority Critical patent/JPS6153315A/en
Publication of JPS6153315A publication Critical patent/JPS6153315A/en
Publication of JPH0521130B2 publication Critical patent/JPH0521130B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水中での硬化物の製造方法に関するも
のである。 [イ]産業上の利用分野 建設、海洋、河川、サルベージ、等に利用され
る。 [ロ]従来の技術 有機ポリイソシアネート化合物が水と反応して
炭酸ガスを放出して尿素結合を形成することは公
知である。 有機ポリイソシアネートとポリヒドロキシル化
合物から、末端イソシアネートプレポリマーを作
り、これを水または水蒸気と反応させて硬化させ
る方法は、例えば湿分硬化型ウレタン系塗料や、
湿分硬化型ウレタン系接着剤として公知である。 また、有機ポリイソシアネートと親水性ポリヒ
ドロキシル化合物とより、親水性の末端イソシア
ネートプレポリマーを作り、これを過剰な水と接
触させて発泡硬化させる方法も、例えばウレタン
系グラウト剤として公知である。 [ハ]本発明が解決しようとする問題点 これらの公知の方法はいずれも比較的残留イソ
シアネート濃度の低いプレポリマーを用いるのが
普通である。ここでいう残留イソシアネート濃度
は、JIS K 1556「トリレンジイソシアネート試
験方法」の純度試験に準じて算出される、全重量
中のイソシアネート基の重量パーセントのことで
ある。 例えば湿分硬化型ウレタン塗料は残留イソシア
ネート濃度が10%以下程度であり、グラウト剤の
場合も5%以下程度である。 これらの湿分硬化型ウレタンプレポリマーに
は、反応速度が遅いという問題点が存在する。 この理由はプレポリマー中の残存イソシアネー
ト量が少ないことによる。 更に、湿分硬化型ウレタンプレポリマーには水
または水蒸気との接触によりその表面に被膜を形
成してしまうという問題点も存在する。 その結果イソシアネートと反応すべき水の浸透
が阻害されて水の拡散が制限されてしまうことに
なる。 触媒、例えば第3級アミンを用いて反応を促進
することも可能であるが、この場合にも被膜形成
による水の拡散低下は避けられない。 通常、ウレタン系グラウト剤として使用する場
合には急速な硬化が要求されるため、親水性ポリ
ヒドロキシル化合物と末端イソシアネートプレポ
リマーを用いるが、その結果得られるポリウレタ
ンは親水性を示すため水の拡散が比較的容易とな
り止水性能上好ましくない。又、得られるポリウ
レタンは過剰な水を含んだまま硬化するので、周
囲に水がなくなつて乾燥すると収縮が起り長期的
な止水性能上も問題がある。 一方、有機ポリイソシアネート、例えばポリメ
チレンポリフエニルポリイソシアネートは疎水性
であつて水と急速に反応することはない。 例えば大過剰の水に混合して激しく撹拌して
も、静置すればただちに2層に分離してしまい、
少なくとも数分、ないし数十分間は炭酸ガスの発
生はほとんどない。 勿論この場合も数時間を経過すれば徐々に反応
し、ついには発泡硬化するがそのときに形成され
る被膜は極めて脆いものである。 一方親水性の溶剤の存在はこの反応を円滑にす
ることが知られている。 例えばポリメチレンポリフエニルポリイソシア
ネート100部に対し、ジメチルフオルムアミドを
20部以上加え、大気中に放置するか水中に投ずる
と、徐々に反応して表層に強靭な被膜を形成す
る。 しかしこの場合も反応は極めて緩慢であり、か
つ表層が硬化しても内部の硬化は遅れる傾向にあ
る。 第3級アミン等の触媒を用いると反応が促進さ
れるがやはり表層の硬化によつて内部の反応が遅
れる現象が避けられない。 [ニ]本発明の目的 本発明はこのような従来の問題点を改善するた
めになされたもので、大量の水が存在する水中で
水と極めて円滑に反応し、しかも強度の充分な独
立気泡を有する発泡硬化物の製造方法を提供する
ことを目的とする。 [ホ]問題点を解決するための手段 本発明は2−ピロリドンの存在下に残留イソシ
アネート濃度が10%以上の、有機ポリイソシアネ
ート、および/または有機ポリイソシアネートと
ポリヒドロキシル化合物とのプレポリマーが大量
の水と極めて円滑に反応して発泡硬化する事実を
発見したことによつてなされたものである。 このように2−ピロリドンを親水性の溶媒とし
て用いることによつて上記の問題点を克服できる
だけでなく、更に2−ピロリドンそれ自体が有機
イソシアネートと大量の水との反応に強力な触媒
効果を有することも判明した。 従来知られている、イソシアネートと水との反
応の触媒はすべてアミン系、特に第3級アミン系
または有機金属化合物であつた。 ところが本発明で使用する2−ピロリドンは、
〓−アミノ酸の分子内脱水物であり、常識的には
触媒効果は考えられない。 しかしながら実際に2−ピロリドンを使用して
実験を行つたところ次のような効果を得ることが
できた。 すなわちポリメチレンポリフエニルポリイソシ
アネート100重量部に対し、2−ピロリドン2〜
5重量部を加えた場合に、水中における水との反
応が著しく促進される結果が得られた。 すなわちこの混合物は水中において水に接触す
るとただちに発泡し、数分内に固化することが判
明した。 2−ピロリドンの量が5重量部前後の場合に
は、発泡固形物は数時間程度はなお脆性を示して
いたがその後は強靭な発泡体となつた。 2−ピロリドンの量が5〜80重量部であるとき
には、発泡固化の後ただちに充分な靭性を示し
た。 2−ピロリドンの量が80重量部を越えると発泡
はするが、強度が不足するので実用には耐えられ
ない。 ここで注意すべきことは、この系では従来知ら
れているいかなるウレタン化触媒も用いていない
ことである。 この様な効果は、その他の親水性溶剤、例えば
ジメチルフオルムアミド、2−ピロリドンと構造
上の類似性があるN−メチルピロリドン、〓−カ
プロラクタム等では見ることができない。 尚、本発明において有機ポリイソシアネートの
残留イソシアネート濃度は10%以上である。濃度
が10%より低いと、硬化時間が遅くなること、及
び発泡倍率も低くなるので、本発明の目的には好
しくない。 [ヘ]実施例 (実施例 1) クルードMDI(残留イソシアネート濃度30%、
三井東圧製) 100重量部 シリコーン界面活性剤(ジメチルポリシロキサ
ン、トーレ・ダウコーニング製) 1重量部 2−ピロリドン 10重量部 これらを混合し、原液を調合した。この原液を
室温で原液の10倍量の水中へ投入して発泡硬化さ
せた。 試験の結果を表1に示す。 この試験は、以下の事項が測定、評価されてい
る。 (1) 原液を水中に投入してから原液が発泡し、膨
潤が始まるまでの時間であるクリームタイム (2) 原液を水中に投入してから原液が発泡、膨潤
が完了するまでの時間であるライズタイム (3) 得れた発泡体の発泡倍率 (4) JIS K 7220「硬質発泡プラスチツクの圧縮
試験方法」の圧縮強度試験に準じた強度試験と
目視とによる発泡状態の総合評価 (実施例 2) クルードMDI(残留イソシアネート濃度30%、
三井東圧製) 100重量部 シリコーン界面活性剤(ジメチルポリシロキサ
ン、トーレ・ダウコーニング製) 1重量部 2−ピロリドン 20重量部 これらを混合し、実施例1と同様に操作して発
泡体を得た。 発泡体のクリームタイム、ライズタイム、発泡
倍率、発泡状態の結果を表1に示す。 (実施例 3) クルードMDI(残留イソシアネート濃度30%、
三井東圧製) 100重量部 ポリアルキレングリコール(MW3000,三洋
化成製) 6重量部 これらを反応釜中で摂氏80度に加熱し3時間反
応させ、室温に冷却して末端イソシアネートプレ
ポリマー(残留イソシアネート濃度28%)を得
た。 上記末端イソシアネートプレポリマー(残留イ
ソシアネート濃度28%) 100重量部 シリコーン界面活性剤(ジメチルポリシロキサ
ン、トーレ・ダウコーニング製) 1重量部 2−ピロリドン 20重量部 これらを混合し、実施例1と同様に操作して発
泡体を得た。 発泡体のクリームタイム、ライズタイム、発泡
倍率、発泡状態の結果を表1に示す。 (実施例 4) クルードMDI(残留イソシアネート濃度30%、
三井東圧製)
100重量部ポリアルキレングリコール
(MW3000,三洋化成製) 140重量部 これらを実施例3と同様荷操作して末端イソシ
アネートプレポリマー(残留イソシアネート濃度
10%)を得た。 上記末端イソシアネートプレポリマー(残留イ
ソシアネート濃度10%) 100重量部 シリコーン界面活性剤(ジメチルポリシロキサ
ン、トーレ・ダウコーニング製) 1重量部 2−ピロリドン 20重量部 これらを混合し、実施例1と同様に操作して発
泡体を得た。 発泡体のクリームタイム、ライズタイム、発泡
倍率、発泡状態の結果を表1に示す。 (比較例 1) クルードMDI(残留イソシアネート濃度30%、
三井東圧製) 100重量部 シリコーン界面活性剤(ジメチルポリシロキサ
ン、トーレ・ダウコーニング製) 1重量部 2−ピロリドン 1重量部 これらを混合し、実施例1と同様に操作して発
泡体を得た。 発泡体のクリームタイム、ライズタイム、発泡
倍率、発泡状態の結果を表2に示す。 (比較例 2) クルードMDI(残留イソシアネート濃度30%、
三井東圧製) 100重量部 シリコーン界面活性剤(ジメチルポリシロキサ
ン、トレ・ダウコーニング製) 1重量部 2−ピロリドン 100重量部 これらを混合し、実施例1と同様に操作して発
泡体を得た。 発泡体のクリームタイム、ライズタイム、発泡
倍率、発泡状態の結果を表2に示す。
The present invention relates to a method for producing a cured product in water. [B] Industrial fields of use Used in construction, marine, river, salvage, etc. [B] Prior Art It is known that organic polyisocyanate compounds react with water to release carbon dioxide gas and form urea bonds. A method of making a terminal isocyanate prepolymer from an organic polyisocyanate and a polyhydroxyl compound and curing it by reacting with water or water vapor can be used, for example, with moisture-curable urethane paints,
It is known as a moisture-curable urethane adhesive. Furthermore, a method of preparing a hydrophilic terminal isocyanate prepolymer from an organic polyisocyanate and a hydrophilic polyhydroxyl compound, and foaming and curing this by contacting it with excess water is also known, for example, as a urethane grouting agent. [C] Problems to be Solved by the Present Invention In all of these known methods, prepolymers having a relatively low residual isocyanate concentration are usually used. The residual isocyanate concentration here refers to the weight percent of isocyanate groups in the total weight, calculated according to the purity test of JIS K 1556 "Tolylene diisocyanate test method". For example, the residual isocyanate concentration of moisture-curable urethane paints is about 10% or less, and in the case of grouting agents, it is about 5% or less. These moisture-curable urethane prepolymers have the problem of slow reaction rates. The reason for this is that the amount of residual isocyanate in the prepolymer is small. Furthermore, moisture-curable urethane prepolymers have the problem of forming a film on their surfaces upon contact with water or steam. As a result, the penetration of water that should react with isocyanate is inhibited, and the diffusion of water is restricted. It is also possible to accelerate the reaction using a catalyst, for example a tertiary amine, but in this case as well, reduction in water diffusion due to film formation is unavoidable. Usually, when used as a urethane-based grouting agent, a hydrophilic polyhydroxyl compound and a terminal isocyanate prepolymer are used because rapid curing is required, but the resulting polyurethane exhibits hydrophilic properties and therefore does not allow water to diffuse. This is relatively easy, which is unfavorable in terms of water-stopping performance. In addition, since the obtained polyurethane hardens while containing excess water, shrinkage occurs when the surrounding water is removed and the polyurethane dries, which poses a problem in terms of long-term water-stopping performance. On the other hand, organic polyisocyanates, such as polymethylene polyphenyl polyisocyanate, are hydrophobic and do not react rapidly with water. For example, even if you mix it with a large excess of water and stir it vigorously, if you leave it still, it will immediately separate into two layers.
Almost no carbon dioxide gas is generated for at least several minutes or several tens of minutes. Of course, in this case as well, the reaction will occur gradually over several hours and will eventually foam and harden, but the film formed at that time will be extremely brittle. On the other hand, it is known that the presence of a hydrophilic solvent facilitates this reaction. For example, dimethyl formamide is added to 100 parts of polymethylene polyphenyl polyisocyanate.
If you add 20 parts or more and leave it in the air or drop it into water, it will gradually react and form a tough film on the surface. However, in this case as well, the reaction is extremely slow, and even if the surface layer is hardened, the internal hardening tends to be delayed. Although the reaction is accelerated when a catalyst such as a tertiary amine is used, it is inevitable that the internal reaction will be delayed due to hardening of the surface layer. [d] Purpose of the present invention The present invention has been made to improve the problems of the conventional art. An object of the present invention is to provide a method for producing a foamed cured product having the following properties. [E] Means for Solving the Problems The present invention uses a large amount of organic polyisocyanate and/or a prepolymer of an organic polyisocyanate and a polyhydroxyl compound with a residual isocyanate concentration of 10% or more in the presence of 2-pyrrolidone. This was achieved by discovering the fact that it reacts extremely smoothly with water and foams and hardens. By using 2-pyrrolidone as a hydrophilic solvent, not only can the above problems be overcome, but also 2-pyrrolidone itself has a strong catalytic effect on the reaction between organic isocyanate and a large amount of water. It also became clear that All hitherto known catalysts for the reaction of isocyanates with water have been amine-based, especially tertiary amine-based or organometallic compounds. However, the 2-pyrrolidone used in the present invention is
〓-It is an intramolecular dehydrate of an amino acid, and in common sense, it cannot be considered to have a catalytic effect. However, when experiments were actually conducted using 2-pyrrolidone, the following effects were obtained. That is, 2 to 2-pyrrolidone is added to 100 parts by weight of polymethylene polyphenyl polyisocyanate.
When 5 parts by weight was added, the reaction with water in water was significantly accelerated. It has been found that this mixture foams immediately upon contact with water in water and solidifies within a few minutes. When the amount of 2-pyrrolidone was around 5 parts by weight, the foamed solid material still showed brittleness for about a few hours, but after that it became a tough foamed product. When the amount of 2-pyrrolidone was 5 to 80 parts by weight, sufficient toughness was exhibited immediately after foaming and solidification. If the amount of 2-pyrrolidone exceeds 80 parts by weight, foaming will occur, but the strength will be insufficient and it will not be practical. What should be noted here is that this system does not use any conventionally known urethanization catalysts. Such an effect cannot be seen with other hydrophilic solvents such as dimethylformamide, N-methylpyrrolidone, which has structural similarity to 2-pyrrolidone, and ⓓ-caprolactam. In the present invention, the residual isocyanate concentration of the organic polyisocyanate is 10% or more. If the concentration is lower than 10%, the curing time will be slow and the expansion ratio will also be low, which is not preferable for the purposes of the present invention. [F] Example (Example 1) Crude MDI (residual isocyanate concentration 30%,
(manufactured by Mitsui Toatsu) 100 parts by weight Silicone surfactant (dimethylpolysiloxane, manufactured by Toray Dow Corning) 1 part by weight 2-pyrrolidone 10 parts by weight These were mixed to prepare a stock solution. This stock solution was poured into 10 times the volume of water at room temperature to foam and harden. The test results are shown in Table 1. In this test, the following items are measured and evaluated. (1) Cream time is the time from when the stock solution is put into water until the stock solution foams and begins to swell. (2) Cream time is the time from when the stock solution is put into water until the stock solution completes foaming and swelling. Rise time (3) Expansion ratio of the obtained foam (4) Comprehensive evaluation of the foam state by strength test and visual observation according to the compressive strength test of JIS K 7220 "Compression test method for rigid foam plastics" (Example 2) ) Crude MDI (residual isocyanate concentration 30%,
(manufactured by Mitsui Toatsu) 100 parts by weight Silicone surfactant (dimethylpolysiloxane, manufactured by Toray Dow Corning) 1 part by weight 2-pyrrolidone 20 parts by weight These were mixed and operated in the same manner as in Example 1 to obtain a foam. Ta. Table 1 shows the results of the cream time, rise time, foaming ratio, and foaming state of the foam. (Example 3) Crude MDI (residual isocyanate concentration 30%,
(manufactured by Mitsui Toatsu) 100 parts by weight Polyalkylene glycol (MW3000, manufactured by Sanyo Kasei) 6 parts by weight These were heated to 80 degrees Celsius in a reaction vessel, reacted for 3 hours, cooled to room temperature, and converted into terminal isocyanate prepolymer (residual isocyanate). concentration of 28%). The above terminal isocyanate prepolymer (residual isocyanate concentration 28%) 100 parts by weight Silicone surfactant (dimethylpolysiloxane, manufactured by Toray Dow Corning) 1 part by weight 2-pyrrolidone 20 parts by weight These were mixed and the same procedure as in Example 1 was carried out. A foam was obtained by operation. Table 1 shows the results of the cream time, rise time, foaming ratio, and foaming state of the foam. (Example 4) Crude MDI (residual isocyanate concentration 30%,
Made by Mitsui Toatsu)
100 parts by weight of polyalkylene glycol (MW3000, manufactured by Sanyo Chemical Co., Ltd.) 140 parts by weight These were loaded and operated in the same manner as in Example 3 to convert the terminal isocyanate prepolymer (residual isocyanate concentration
10%). The above terminal isocyanate prepolymer (residual isocyanate concentration 10%) 100 parts by weight Silicone surfactant (dimethylpolysiloxane, manufactured by Toray Dow Corning) 1 part by weight 2-pyrrolidone 20 parts by weight These were mixed and the same procedure as in Example 1 was carried out. A foam was obtained by operation. Table 1 shows the results of the cream time, rise time, foaming ratio, and foaming state of the foam. (Comparative example 1) Crude MDI (residual isocyanate concentration 30%,
(manufactured by Mitsui Toatsu) 100 parts by weight Silicone surfactant (dimethylpolysiloxane, manufactured by Toray Dow Corning) 1 part by weight 2-pyrrolidone 1 part by weight These were mixed and operated in the same manner as in Example 1 to obtain a foam. Ta. Table 2 shows the results of cream time, rise time, foaming ratio, and foaming state of the foam. (Comparative example 2) Crude MDI (residual isocyanate concentration 30%,
(manufactured by Mitsui Toatsu) 100 parts by weight Silicone surfactant (dimethylpolysiloxane, manufactured by Torre Dow Corning) 1 part by weight 2-pyrrolidone 100 parts by weight These were mixed and operated in the same manner as in Example 1 to obtain a foam. Ta. Table 2 shows the results of cream time, rise time, foaming ratio, and foaming state of the foam.

【表】【table】

【表】【table】

【表】 [ト]本発明の効果 本発明は上記したようになるから下記のような
効果を期待することができる。 (1) 2−ピロリドンの添加量により水中における
反応速度を自由に調節できるから、その用途に
応じて最適の条件で使い分けることができる。 (2) 得られる発泡硬化物は過剰の水を含まない
で、独立気泡を形成して硬化するので実用性に
十分耐え得る強度が得られる。 (3) 特許請求の範囲に記載した製造方法によれ
ば、脆さのない材料が得られ、通常の硬質ポリ
ウレタンフオームとほぼ同程度の靭性をもつ発
泡硬化物を得ることができる。
[Table] [G] Effects of the present invention Since the present invention is as described above, the following effects can be expected. (1) Since the reaction rate in water can be freely adjusted by changing the amount of 2-pyrrolidone added, it can be used under optimal conditions depending on the application. (2) The resulting foamed cured product does not contain excess water and cures while forming closed cells, so it has sufficient strength for practical use. (3) According to the manufacturing method described in the claims, a material without brittleness can be obtained, and a cured foamed product can be obtained that has approximately the same toughness as ordinary rigid polyurethane foam.

Claims (1)

【特許請求の範囲】 1 発泡硬化物の製造方法において、 残留イソシアネート濃度が10%以上の、有機ポ
リイソシアネートおよび/または有機ポリイソシ
アネートとポリヒドロキシル化合物より得られる
末端イソシアネートプレポリマー100重量部に対
して、 2−ピロリドンを2乃至80重量部を混合し、水
中に注入することを特徴とする発泡硬化物の製造
方法。
[Claims] 1. In a method for producing a foamed cured product, based on 100 parts by weight of a terminal isocyanate prepolymer obtained from an organic polyisocyanate and/or an organic polyisocyanate and a polyhydroxyl compound, the residual isocyanate concentration is 10% or more. A method for producing a cured foam product, which comprises mixing 2 to 80 parts by weight of 2-pyrrolidone and injecting the mixture into water.
JP59173158A 1984-08-22 1984-08-22 Composition foamable and curable with water Granted JPS6153315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59173158A JPS6153315A (en) 1984-08-22 1984-08-22 Composition foamable and curable with water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59173158A JPS6153315A (en) 1984-08-22 1984-08-22 Composition foamable and curable with water

Publications (2)

Publication Number Publication Date
JPS6153315A JPS6153315A (en) 1986-03-17
JPH0521130B2 true JPH0521130B2 (en) 1993-03-23

Family

ID=15955169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59173158A Granted JPS6153315A (en) 1984-08-22 1984-08-22 Composition foamable and curable with water

Country Status (1)

Country Link
JP (1) JPS6153315A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080354A (en) * 1973-11-20 1975-06-30
JPS53118498A (en) * 1977-03-25 1978-10-16 Mitsui Toatsu Chem Inc One-can polyurethane composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080354A (en) * 1973-11-20 1975-06-30
JPS53118498A (en) * 1977-03-25 1978-10-16 Mitsui Toatsu Chem Inc One-can polyurethane composition

Also Published As

Publication number Publication date
JPS6153315A (en) 1986-03-17

Similar Documents

Publication Publication Date Title
DE2359606C3 (en) Process for the production of an inorganic-organic polymer-polysilicic acid gel composite material in the form of a colloidal xerosol
US3681125A (en) Process for the production of microporous sheet structures
KR101414938B1 (en) Formulations for cellular, foamed-polymer products based on polyvinyl chloride, improved cellular, foamed-polymer products based on polyvinyl chloride and a process for producing said improved cellular foamed-polymer products
SE416056B (en) VIEW TO PREPARE AN INORGANIC-ORGANIC POLYMER-POLYCLEIC ACID COMBINATION MATERIAL BY MIXING A WATER-SILICATED SOLUTION AND / OR A WATER-SILICON SOLO WITH AN ORGANIC POLYISOCYL
RU2441034C2 (en) Composition prepared from diisocyanate and monoamine, and preparation method thereof
EP3377568B1 (en) (super)hydrophobic isocyanate based porous materials
US5380768A (en) Foam, Foam-resin composite and method of making a foam-resin composite
TW200407345A (en) Prepolymer, polyol composition and process for making a flexible foam
EP1511794B1 (en) Foamed supramolecular polymers
US4827005A (en) Organomineral products, a process for their manufacture and their use
CN104610528A (en) Rigid polyurethane foam and preparation method thereof
JPH0521130B2 (en)
US2879233A (en) Process for the preparation of foamed polyurethanes
JPS5867713A (en) Foamed material
EP3288996A1 (en) Functionalized isocyanate based porous materials
JPH0138130B2 (en)
CN117736484B (en) Durable heat-insulating foaming material and preparation method thereof
JPS6030689B2 (en) Method for producing heat-reactive water-soluble urethane resin
JP5382979B2 (en) Blocked polyisocyanate and thermosetting foamed resin composition containing the blocked polyisocyanate
JP3402764B2 (en) Method for producing water-absorbing polyurethane foam
TW201122010A (en) Biomass material having multi isocyanate groups and method for manufacturing the same
JPH10273549A (en) Production of low-density rigid polyurethane foam and use of rigid polyurethane foam produced thereby
JPS63117045A (en) Production of open-cell rigid urethane foam
JPH044200B2 (en)
JPH06336534A (en) Composite foam

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term