JPH0521091A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH0521091A
JPH0521091A JP3169517A JP16951791A JPH0521091A JP H0521091 A JPH0521091 A JP H0521091A JP 3169517 A JP3169517 A JP 3169517A JP 16951791 A JP16951791 A JP 16951791A JP H0521091 A JPH0521091 A JP H0521091A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
battery
electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3169517A
Other languages
Japanese (ja)
Inventor
Hisashi Shioda
久 塩田
Hiroaki Urushibata
広明 漆畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3169517A priority Critical patent/JPH0521091A/en
Publication of JPH0521091A publication Critical patent/JPH0521091A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To achieve long life by forming a negative electrode into a porous electrode. CONSTITUTION:A porous electrode formed out of a metal that reacts with lithium and a metal that does not react with lithium, is used for a negative electrode. In this structure, change in the apparent thickness of the negative electrode is reduced thanks to the porous structure, while the performance and life of a battery are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二次電池特にリチウム
二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery, especially a lithium secondary battery.

【0002】[0002]

【従来の技術】リチウムを負極活物質とする二次電池い
わゆるリチウム二次電池は、その動作電圧が高いこと
や、理論的なエネルギー密度が高いことから注目されて
いる。従来知られているリチウム二次電池では、リチウ
ム金属を平坦な板状のまま負極活物質としている。また
特開平1−97373号公報では、リチウムとアルミニ
ウムの合金をやはり平坦な板状のまま貼合わせて負極活
物質としている。
2. Description of the Related Art Secondary batteries using lithium as a negative electrode active material, so-called lithium secondary batteries, have been attracting attention because of their high operating voltage and high theoretical energy density. In a conventionally known lithium secondary battery, lithium metal is used as a negative electrode active material in a flat plate shape. Further, in Japanese Patent Application Laid-Open No. 1-97373, an alloy of lithium and aluminum is stuck as a flat plate to form a negative electrode active material.

【0003】[0003]

【発明が解決しようとする課題】リチウム金属を負極と
する二次電池を放電する時、負極反応は、リチウムイオ
ンが電解液に負極から溶け出す。平坦な板状の電極では
その表面からリチウムイオンが溶け出してゆく。一方充
電の時は放電とは反対に、電解液からリチウムイオン
が、金属リチウムとして表面に析出する。この時、析出
するリチウムは必ずしも平板状になるわけではなく、多
くは粒状、ひも状といった形で析出するので、充放電を
繰り返すと、負極表面はしだいに粗面化してもろくな
る。このように従来の平坦な板状の負極では、充放電に
伴う電極表面の粗面化が避けられず、このため、負極の
みかけ厚みが増大し、電極がもろく崩れ易くなるなどの
電池性能、寿命を制限する機械強度特性の劣化現象が現
れてきた。
When a secondary battery using lithium metal as a negative electrode is discharged, the negative electrode reaction causes lithium ions to dissolve into the electrolytic solution from the negative electrode. In a flat plate-shaped electrode, lithium ions are dissolved from the surface. On the other hand, during charging, contrary to discharging, lithium ions are deposited on the surface from the electrolytic solution as metallic lithium. At this time, the deposited lithium does not necessarily have a flat plate shape, but most of the deposited lithium has a granular shape or a string shape. Therefore, when charge and discharge are repeated, the surface of the negative electrode gradually becomes rough and becomes brittle. Thus, in the conventional flat plate-shaped negative electrode, roughening of the electrode surface due to charge and discharge is unavoidable, and therefore, the apparent thickness of the negative electrode is increased, and the electrode performance is fragile and easily collapsed. The phenomenon of deterioration of mechanical strength characteristics that limits the life has emerged.

【0004】リチウムアルミ合金を負極とする時は、放
電に際しては、リチウムイオンが溶け出し、充電に際し
ては、析出した金属リチウムが負極に残ったアルミニウ
ムと再合金化すると考えられるが、多くの析出形態はや
はり粒状、ひも状であるのでやはり充放電を繰り返す
と、負極表面はしだいに粗面化してもろくなる。このよ
うに、リチウムアルミ合金を負極とする場合、純リチウ
ムの電極よりも充放電効率が高いという特徴があるもの
の、その機械的強度が弱いので薄くすることが難しく、
大容量型電池の代表である円筒型電池用の薄い平坦な板
状電極とすることが難しかった。
When a lithium-aluminum alloy is used as the negative electrode, it is considered that lithium ions are dissolved during discharge, and during charging, precipitated metal lithium is re-alloyed with aluminum remaining in the negative electrode. Since it is still granular and string-like, the surface of the negative electrode becomes fragile even if the surface of the negative electrode is gradually roughened after repeated charging and discharging. As described above, when the lithium aluminum alloy is used as the negative electrode, it has a characteristic that the charge and discharge efficiency is higher than that of the pure lithium electrode, but its mechanical strength is weak, so it is difficult to make it thin,
It was difficult to form a thin flat plate electrode for a cylindrical battery, which is a representative of large-capacity batteries.

【0005】本発明は、かかる課題を解決するためにな
されたもので、長寿命化したリチウム二次電池を得るこ
とを目的とするものである。
The present invention has been made to solve the above problems, and an object thereof is to obtain a lithium secondary battery having a long life.

【0006】本発明の別の発明は、さらに全域使用が可
能で、より機械強度特性の強化したリチウム二次電池を
得ることを目的とするものである。
Another object of the present invention is to obtain a lithium secondary battery which can be used over the entire area and has further enhanced mechanical strength characteristics.

【0007】[0007]

【課題を解決するための手段】本発明のリチウム二次電
池は、負極が多孔質電極である。
In the lithium secondary battery of the present invention, the negative electrode is a porous electrode.

【0008】本発明の別の発明のリチウム二次電池は、
負極がリチウムとの反応性を有する金属及びリチウムと
の反応性を持たない金属で形成された多孔質電極であ
る。
The lithium secondary battery of another invention of the present invention is
The negative electrode is a porous electrode formed of a metal having reactivity with lithium and a metal having no reactivity with lithium.

【0009】[0009]

【作用】本発明において、多孔質化したリチウムあるい
はリチウム合金を負極活物質とするリチウム二次電池の
負極は次のように作用する。即ち、放電反応において
は、取り出す電流の大きさに応じた量のリチウムが陽イ
オンとなって、電解液中にとけ込み、負極内に残された
電子は、外部回路を流れ正極へと向かう。この反応は、
電解液と負極との界面で起こるが、多孔質化された負極
では、負極内部に電解液が浸透しているので、負極全体
において反応が進行する。そのためリチウムの溶解にと
もなう負極の見かけ厚みの減少が平板電極より小さくな
る。
In the present invention, the negative electrode of the lithium secondary battery using the porous lithium or lithium alloy as the negative electrode active material acts as follows. That is, in the discharge reaction, an amount of lithium corresponding to the magnitude of the electric current taken out becomes cations and is dissolved in the electrolytic solution, and the electrons left in the negative electrode flow through the external circuit toward the positive electrode. This reaction is
Although it occurs at the interface between the electrolytic solution and the negative electrode, in the porous negative electrode, the electrolytic solution permeates into the negative electrode, so that the reaction proceeds in the entire negative electrode. Therefore, the decrease in the apparent thickness of the negative electrode due to the dissolution of lithium is smaller than that of the flat plate electrode.

【0010】また充電反応においては、充電電流値に応
じた量のリチウムが、電解液と負極の界面に析出する
が、平板な負極の場合と比べ、電解液と負極の界面の面
積は本発明の負極の方が大きいので、同じ充電電流の
時、単位面積あたりの電流値いわゆる電流密度が小さく
なり、単位面積あたりの充電量も小さくなる。充電量が
小さいと析出するリチウムの大きさは小さくなるので、
析出にともなう負極の見かけ厚みの増大が小さくなる。
In the charging reaction, an amount of lithium corresponding to the charging current value is deposited on the interface between the electrolytic solution and the negative electrode, but the area of the interface between the electrolytic solution and the negative electrode is larger than that in the case of a flat negative electrode. Since the negative electrode is larger, the current value per unit area, so-called current density, becomes smaller and the amount of charge per unit area becomes smaller at the same charging current. If the charge amount is small, the size of the deposited lithium will be small, so
The increase in the apparent thickness of the negative electrode due to precipitation is reduced.

【0011】このように、充放電にともなう負極のみか
け厚みの変化が本発明により小さくすることができるの
で、電極がもろく崩れ易くなるなどの電池性能、寿命を
制限する負極の機械強度特性の劣化現象を低減解消する
ことができ、電池の性能寿命の向上を実現できた。
As described above, since the change in the apparent thickness of the negative electrode due to charging and discharging can be reduced by the present invention, the deterioration of the mechanical strength characteristics of the negative electrode that limits the battery performance such as the electrode being brittle and easy to collapse and the service life. The phenomenon could be reduced and eliminated, and the performance life of the battery could be improved.

【0012】[0012]

【実施例】【Example】

実施例1.厚さ20ミクロンのアルミホイルを幅100
ミクロンに千切りにしたものを絡めて綿状にし、これを
プレスして厚さ100ミクロンのアルミ多孔体を形成し
た。この多孔体を陰極とし、陽極にリチウムを用い、1
リットルあたり1モルの過塩素酸リチウムを含むプロピ
レンカーボネート(以下PCと略記)とジメトキシエタ
ン(以下DMEと略記)の1:1混合溶媒を電解液とし
て、みかけ単位面積あたりのリチウム量が電気量換算で
20mAh分になるようにリチウムを電析させたものを
負極とした。リチウム化処理をした二酸化マンガンを活
物質とする正極をポリプロピレン製多孔質膜のセパレー
タを介して上記負極と対向させ、これを2025サイズ
のコイン電池に組み込んだ。図1は本発明と従来例を比
較する充放電サイクル数による放電容量の変化(初期放
電量を1とた比率)を示す特性図であり、図中1は上記
本発明の一実施例の電池を、電流密度3mA、放電下限
電圧2V、充電上限電圧3.8Vで充放電させた時の、
サイクルごとの放電容量の変化を示す。
Example 1. Aluminum foil with a thickness of 20 microns is 100 in width
A shredded product having a micron size was entangled into a cotton shape, which was pressed to form a 100-micron-thick aluminum porous body. Using this porous body as a cathode and lithium as an anode, 1
Using a 1: 1 mixed solvent of propylene carbonate (hereinafter abbreviated as PC) containing 1 mol of lithium perchlorate per liter and dimethoxyethane (hereinafter abbreviated as DME) as an electrolytic solution, the amount of lithium per apparent unit area is converted into the amount of electricity. A negative electrode was obtained by electrodeposition of lithium so as to obtain 20 mAh. A positive electrode using lithiated manganese dioxide as an active material was opposed to the negative electrode via a polypropylene porous membrane separator, and this was incorporated into a 2025 size coin battery. FIG. 1 is a characteristic diagram showing a change in discharge capacity (ratio where the initial discharge amount is 1) according to the number of charge / discharge cycles comparing the present invention with a conventional example, in which 1 is a battery of one embodiment of the present invention. At a current density of 3 mA, a discharge lower limit voltage of 2 V, and a charge upper limit voltage of 3.8 V,
The change of discharge capacity for every cycle is shown.

【0013】実施例2.アルミとリチウムの原子比が
1:1であるリチウムアルミ合金の粉末とポリエチレン
オキサイド(以下PEOと略記)を重量比で9:1に混
合後ホットプレスして厚さ100ミクロンに仕上げたも
のに1リットルあたり1モルの過塩素酸リチウムを含む
PCとDMEの1:1混合溶媒を含浸させて、負極とし
た。これを実施例1と同様に、リチウム化処理をした二
酸化マンガンを活物質とする正極をポリプロピレン製多
孔質膜のセパレータを介して上記負極と対向させ、これ
を巻き上げて2/3Aサイズの円筒型電池に組み込ん
だ。図1中、2は上記本発明の他の実施例の電池を、電
流密度400mA、放電下限電圧2V、充電上限電圧
3.8Vで充放電させた時の、サイクルごとの放電容量
の変化を示す。
Example 2. Lithium-aluminum alloy powder in which the atomic ratio of aluminum and lithium is 1: 1 and polyethylene oxide (hereinafter abbreviated as PEO) are mixed at a weight ratio of 9: 1, and then hot pressed to a thickness of 100 μm. A negative electrode was prepared by impregnating a 1: 1 mixed solvent of PC and DME containing 1 mol of lithium perchlorate per liter. In the same manner as in Example 1, a positive electrode using lithiated manganese dioxide as an active material was made to face the negative electrode through a polypropylene porous membrane separator, which was rolled up to form a 2/3 A size cylindrical type. Built into the battery. In FIG. 1, 2 indicates the change in the discharge capacity for each cycle when the battery of the other example of the present invention was charged and discharged at a current density of 400 mA, a discharge lower limit voltage of 2 V, and a charge upper limit voltage of 3.8 V. .

【0014】実施例3.厚さ20ミクロンのアルミホイ
ルを幅100ミクロンに千切りにしたものと同じく厚さ
20ミクロンのチタンホイルを幅100ミクロンに千切
りにしたものを重量比で3:1の割合で混合し、絡めて
綿状にし、これをプレスして厚さ100ミクロンのアル
ミ−チタン多孔体を形成した。この多孔体を陰極とし、
陽極にリチウムを用い、1リットルあたり1モルの過塩
素酸リチウムを含むプロピレンカーボネート(以下PC
と略記)とジメトキシエタン(以下DMEと略記)の
1:1混合溶媒を電解液として、みかけ単位面積あたり
のリチウム量が電気量換算で20mAh分になるように
リチウムを電析させたものを負極とした。リチウム化処
理をした二酸化マンガンを活物質とする正極をポリプロ
ピレン製多孔質膜のセパレータを介して上記負極と対向
させ、これを2025サイズのコイン電池に組み込ん
だ。図1中、3は上記本発明の別の発明の一実施例の電
池をこの電池を、電流密度3mA、放電下限電圧2V、
充電上限電圧3.8Vで充放電させた時の、サイクルご
との放電容量の変化を示す。
Example 3. A 20-micron-thick aluminum foil cut into 100-micron-width pieces, and a 20-micron-thick titanium foil cut into 100-micron-width pieces were mixed in a weight ratio of 3: 1 and entangled in cotton. Then, this was pressed to form an aluminum-titanium porous body having a thickness of 100 μm. This porous body is used as a cathode,
Propylene carbonate containing 1 mol of lithium perchlorate per liter (hereinafter PC)
Abbreviated) and dimethoxyethane (hereinafter abbreviated as DME) as a 1: 1 mixed solvent as an electrolytic solution, and lithium is electrodeposited so that the amount of lithium per apparent unit area is 20 mAh in terms of electricity. And A positive electrode using lithiated manganese dioxide as an active material was opposed to the negative electrode via a polypropylene porous membrane separator, and this was incorporated into a 2025 size coin battery. In FIG. 1, 3 is a battery of another embodiment of the present invention, which has a current density of 3 mA, a discharge lower limit voltage of 2 V,
The change in discharge capacity for each cycle when charging / discharging at a charge upper limit voltage of 3.8 V is shown.

【0015】比較例1.厚さ100ミクロンのリチウム
板を負極として、リチウム化処理をした二酸化マンガン
を活物質とする正極をポリプロピレン製多孔質膜のセパ
レータを介して上記負極と対向させ、これを2025サ
イズのコイン電池に組み込んだ。図1中、Aはこの電池
を、電流密度3mA、放電下限電圧2V、充電上限電圧
3.8Vで充放電させた時の、サイクルごとの放電容量
の変化を示す。
Comparative Example 1. A 100-micron-thick lithium plate was used as a negative electrode, and a positive electrode using lithiated manganese dioxide as an active material was made to face the negative electrode through a polypropylene porous membrane separator, and this was incorporated into a 2025 size coin battery. It is. In FIG. 1, A indicates the change in discharge capacity for each cycle when this battery was charged and discharged at a current density of 3 mA, a discharge lower limit voltage of 2 V, and a charge upper limit voltage of 3.8 V.

【0016】比較例2.厚さ100ミクロンのリチウム
板を負極として、リチウム化処理をした二酸化マンガン
を活物質とする正極をポリプロピレン製多孔質膜のセパ
レータを介して上記負極と対向させ、これを巻き上げて
2/3Aサイズの円筒型電池に組み込んだ。図1中、B
はこの電池を、電流密度400mA、放電下限電圧2
V、充電上限電圧3.8Vで充放電させた時の、サイク
ルごとの放電容量の変化を示す。
Comparative Example 2. Using a 100-micron-thick lithium plate as a negative electrode, a positive electrode using lithiated manganese dioxide as an active material is opposed to the negative electrode via a polypropylene porous membrane separator, and rolled up to form a 2/3 A size sheet. It was incorporated into a cylindrical battery. In FIG. 1, B
This battery, current density 400mA, discharge lower limit voltage 2
V shows the change in discharge capacity for each cycle when charged and discharged at a charging upper limit voltage of 3.8 V.

【0017】図1に示すように、本発明の実施例の負極
を用いた電池は、コイン型、円筒型いずれにおいても、
従来の例と比較して、サイクルごとの容量低下が少なく
長寿命であった。
As shown in FIG. 1, the battery using the negative electrode of the embodiment of the present invention is of coin type or cylindrical type.
Compared to the conventional example, the capacity was reduced less every cycle and the life was long.

【0018】なお本実施例では、正極にリチウム化処理
をした二酸化マンガンを用いたが、当然ながら、二次電
池としての可逆性をもつ他の正極活物質の使用を拒むも
のではない。同様に使用される電解液は、実施例で用い
た電解液のみに限定されるものでなく、リチウムイオン
電導性をもつ電解液であればよい。
In this example, lithiated manganese dioxide was used for the positive electrode, but it goes without saying that the use of other reversible positive electrode active material as a secondary battery is not prohibited. The electrolytic solution used in the same manner is not limited to the electrolytic solution used in the examples, and may be any electrolytic solution having lithium ion conductivity.

【0019】またリチウムイオン電導性の固体電解質を
用いる場合でも、本発明に係わる多孔質負極の空孔内に
該固体電解質が存在すれば同様の効果を生じる。あるい
は、本発明に係わる多孔質負極の空孔内に実施例で用い
たような液状の電解質をいれ、これとリチウムイオン電
導性の固体電解質を接触させても実施例と同様の効果を
生じる。
Even when a solid electrolyte having a lithium ion conductivity is used, the same effect can be obtained if the solid electrolyte is present in the pores of the porous negative electrode according to the present invention. Alternatively, the same effect as that of the embodiment can be obtained by putting the liquid electrolyte as used in the embodiment in the pores of the porous negative electrode according to the present invention and bringing it into contact with the lithium ion conductive solid electrolyte.

【0020】本発明に係わる多孔質電極は、繊維状の金
属や粉状の金属を絡み合わせたり、バインダーで結合し
たり、圧着したり、溶接したり、焼結したりして成型し
た多孔体を用いて上記実施例の様にして得ることができ
る。また上記金属としては、例えばアルミニウム及びア
ルミニウム合金並びにリチウムとの反応性を持たない金
属も併せて用いることができる。
The porous electrode according to the present invention is a porous body formed by intertwining fibrous metal or powdery metal, binding with a binder, pressure bonding, welding, or sintering. Can be obtained in the same manner as in the above embodiment. Further, as the above-mentioned metal, for example, aluminum, aluminum alloys, and metals having no reactivity with lithium can be used together.

【0021】[0021]

【発明の効果】以上説明した通り、本発明は、負極が多
孔質電極であるものを用いることにより、長寿命化した
リチウム二次電池を得ることができ、又本発明の別の発
明は、負極が、リチウムとの反応性を有する金属及びリ
チウムとの反応性を持たない金属で形成された多孔質電
極であるものを用いることにより、上記効果に加えてさ
らに全域使用が可能で、より機械強度特性の強化したリ
チウム二次電池を得ることができる。
As described above, according to the present invention, a lithium secondary battery having a long life can be obtained by using a negative electrode having a porous electrode, and another invention of the present invention is: By using a negative electrode that is a porous electrode formed of a metal that has reactivity with lithium and a metal that does not have reactivity with lithium, it is possible to use the whole area in addition to the above effects, and to improve mechanical properties. A lithium secondary battery with enhanced strength characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明と従来例を比較する充放電サイクル数に
よる放電容量の変化を示す特性図である。
FIG. 1 is a characteristic diagram showing a change in discharge capacity according to the number of charge / discharge cycles comparing the present invention with a conventional example.

【符号の説明】[Explanation of symbols]

1 実施例1の特性 2 実施例2の特性 3 実施例3の特性 1 Characteristics of Example 1 2 Characteristics of Example 2 3 Characteristics of Example 3

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年9月27日[Submission date] September 27, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】[0012]

【実施例】 実施例1.厚さ20ミクロンのアルミホイルを幅100
ミクロンに千切りにしたものを絡めて綿状にし、これを
プレスして厚さ100ミクロンのアルミ多孔体を形成し
た。この多孔体を陰極とし、陽極にリチウムを用い、1
リットルあたり1モルの過塩素酸リチウムを含むプロピ
レンカーボネート(以下PCと略記)とジメトキシエタ
ン(以下DMEと略記)の1:1混合溶媒を電解液とし
て、みかけ単位面積あたりのリチウム量が電気量換算で
20mAh分になるようにリチウムを電析させたものを
負極とした。リチウム化処理をした二酸化マンガンを活
物質とする正極をポリプロピレン製多孔質膜のセパレー
タを介して該負極と対向させ、これを2025サイズの
コイン電池に組み込んだ。図1は本発明と従来例を比較
する充放電サイクル数による放電容量の変化(初期放電
量を1とた比率)を示す特性図であり、図中1は上記本
発明の一実施例の電池を、電流3mA、放電下限電圧2
V、充電上限電圧3.8Vで充放電させた時の、サイク
ルごとの放電容量の変化を示す。
EXAMPLES Example 1. Aluminum foil with a thickness of 20 microns has a width of 100
A shredded product having a micron size was entangled into a cotton shape, which was pressed to form a 100-micron-thick aluminum porous body. Using this porous body as a cathode and lithium as an anode, 1
Using a 1: 1 mixed solvent of propylene carbonate (hereinafter abbreviated as PC) containing 1 mol of lithium perchlorate per liter and dimethoxyethane (hereinafter abbreviated as DME) as an electrolytic solution, the amount of lithium per apparent unit area is converted into the amount of electricity. A negative electrode was obtained by electrodeposition of lithium so as to obtain 20 mAh. A positive electrode using lithiated manganese dioxide as an active material was opposed to the negative electrode via a polypropylene porous membrane separator, and this was incorporated into a 2025 size coin battery. FIG. 1 is a characteristic diagram showing a change in discharge capacity (ratio of initial discharge amount to 1) according to the number of charge / discharge cycles comparing the present invention with a conventional example. Current 3mA, discharge lower limit voltage 2
V shows the change in discharge capacity for each cycle when charged and discharged at a charging upper limit voltage of 3.8 V.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】実施例2.アルミとリチウムの原子比が
1:1であるリチウムアルミ合金の粉末とポリエチレン
オキサイド(以下PEOと略記)を重量比で9:1に混
合後ホットプレスして厚さ100ミクロンに仕上げたも
のに1リットルあたり1モルの過塩素酸リチウムを含む
PCとDMEの1:1混合溶媒を含浸させて、負極とし
た。これを実施例1と同様に、リチウム化処理をした二
酸化マンガンを活物質とする正極をポリプロピレン製多
孔質膜のセパレータを介して上記負極と対向させ、これ
を巻き上げて2/3Aサイズの円筒型電池に組み込ん
だ。図1中、2は上記本発明の他の実施例の電池を、
400mA、放電下限電圧2V、充電上限電圧3.8
Vで充放電させた時の、サイクルごとの放電容量の変化
を示す。
Example 2. Lithium-aluminum alloy powder in which the atomic ratio of aluminum and lithium is 1: 1 and polyethylene oxide (hereinafter abbreviated as PEO) are mixed at a weight ratio of 9: 1, and then hot pressed to a thickness of 100 μm. A negative electrode was prepared by impregnating a 1: 1 mixed solvent of PC and DME containing 1 mol of lithium perchlorate per liter. In the same manner as in Example 1, a positive electrode using lithiated manganese dioxide as an active material was made to face the negative electrode through a polypropylene porous membrane separator, which was rolled up to form a 2/3 A size cylindrical type. Built into the battery. In Figure 1, 2 a battery of another embodiment of the present invention, electrostatic
Current 400 mA, discharge lower limit voltage 2 V, charge upper limit voltage 3.8
The change in discharge capacity for each cycle when charged and discharged with V is shown.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】実施例3.厚さ20ミクロンのアルミホイ
ルを幅100ミクロンに千切りにしたものと同じく厚さ
20ミクロンのチタンホイルを幅100ミクロンに千切
りにしたものを重量比で3:1の割合で混合し、絡めて
綿状にし、これをプレスして厚さ100ミクロンのアル
ミ−チタン多孔体を形成した。この多孔体を陰極とし、
陽極にリチウムを用い、1リットルあたり1モルの過塩
素酸リチウムを含むプロピレンカーボネート(以下PC
と略記)とジメトキシエタン(以下DMEと略記)の
1:1混合溶媒を電解液として、みかけ単位面積あたり
のリチウム量が電気量換算で20mAh分になるように
リチウムを電析させたものを負極とした。リチウム化処
理をした二酸化マンガンを活物質とする正極をポリプロ
ピレン製多孔質膜のセパレータを介して上記負極と対向
させ、これを2025サイズのコイン電池に組み込ん
だ。図1中、3は上記本発明の別の発明の一実施例の電
池をこの電池を、電流3mA、放電下限電圧2V、充電
上限電圧3.8Vで充放電させた時の、サイクルごとの
放電容量の変化を示す。
Example 3. A 20-micron-thick aluminum foil cut into 100-micron-width pieces, and a 20-micron-thick titanium foil cut into 100-micron-width pieces were mixed in a weight ratio of 3: 1 and entangled in cotton. Then, this was pressed to form an aluminum-titanium porous body having a thickness of 100 μm. This porous body is used as a cathode,
Propylene carbonate containing 1 mol of lithium perchlorate per liter (hereinafter PC)
Abbreviated) and dimethoxyethane (hereinafter abbreviated as DME) as a 1: 1 mixed solvent as an electrolytic solution, and lithium is electrodeposited so that the amount of lithium per apparent unit area is 20 mAh in terms of electricity. And A positive electrode using lithiated manganese dioxide as an active material was opposed to the negative electrode via a polypropylene porous membrane separator, and this was incorporated into a 2025 size coin battery. In FIG. 1, 3 is a battery according to another embodiment of the present invention, which is discharged at each cycle when the battery is charged and discharged at a current of 3 mA, a discharge lower limit voltage of 2 V, and a charge upper limit voltage of 3.8 V. The change in capacity is shown.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】比較例1.厚さ100ミクロンのリチウム
板を負極として、リチウム化処理をした二酸化マンガン
を活物質とする正極をポリプロピレン製多孔質膜のセパ
レータを介して上記負極と対向させ、これを2025サ
イズのコイン電池に組み込んだ。図1中、Aはこの電池
を、電流3mA、放電下限電圧2V、充電上限電圧3.
8Vで充放電させた時の、サイクルごとの放電容量の変
化を示す。
Comparative Example 1. A 100-micron-thick lithium plate was used as a negative electrode, and a positive electrode using lithiated manganese dioxide as an active material was made to face the negative electrode through a polypropylene porous membrane separator, and this was incorporated into a 2025 size coin battery. It is. In FIG. 1, A indicates that this battery has a current of 3 mA, a discharge lower limit voltage of 2 V, a charge upper limit voltage of 3.
The change in discharge capacity for each cycle when charged and discharged at 8 V is shown.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】比較例2.厚さ100ミクロンのリチウム
板を負極として、リチウム化処理をした二酸化マンガン
を活物質とする正極をポリプロピレン製多孔質膜のセパ
レータを介して上記負極と対向させ、これを巻き上げて
2/3Aサイズの円筒型電池に組み込んだ。図1中、B
はこの電池を、電流400mA、放電下限電圧2V、充
電上限電圧3.8Vで充放電させた時の、サイクルごと
の放電容量の変化を示す。
Comparative Example 2. Using a 100-micron-thick lithium plate as a negative electrode, a positive electrode using lithiated manganese dioxide as an active material is opposed to the negative electrode via a polypropylene porous membrane separator, and rolled up to form a 2/3 A size sheet. It was incorporated into a cylindrical battery. In FIG. 1, B
Shows the change in discharge capacity for each cycle when this battery was charged and discharged at a current of 400 mA, a discharge lower limit voltage of 2 V, and a charge upper limit voltage of 3.8 V.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 負極が多孔質電極であるリチウム二次電
池。
1. A lithium secondary battery in which the negative electrode is a porous electrode.
【請求項2】 負極は、リチウムとの反応性を有する金
属及びリチウムとの反応性を持たない金属で形成された
多孔質電極であるリチウム二次電池。
2. A lithium secondary battery in which the negative electrode is a porous electrode formed of a metal having reactivity with lithium and a metal having no reactivity with lithium.
JP3169517A 1991-07-10 1991-07-10 Lithium secondary battery Pending JPH0521091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3169517A JPH0521091A (en) 1991-07-10 1991-07-10 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3169517A JPH0521091A (en) 1991-07-10 1991-07-10 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH0521091A true JPH0521091A (en) 1993-01-29

Family

ID=15887978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3169517A Pending JPH0521091A (en) 1991-07-10 1991-07-10 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0521091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079784A1 (en) * 2019-10-25 2021-04-29 パナソニックIpマネジメント株式会社 Aluminum foil, lithium secondary battery negative electrode, lithium secondary battery separator, and lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079784A1 (en) * 2019-10-25 2021-04-29 パナソニックIpマネジメント株式会社 Aluminum foil, lithium secondary battery negative electrode, lithium secondary battery separator, and lithium secondary battery
CN114616693A (en) * 2019-10-25 2022-06-10 松下知识产权经营株式会社 Aluminum foil, negative electrode for lithium secondary battery, separator for lithium secondary battery, and lithium secondary battery

Similar Documents

Publication Publication Date Title
US5541017A (en) Method for making high capacity rechargeable hydride batteries
US5576119A (en) Rechargeable electrochemical alkali-metal cells
JP3669646B2 (en) Nonaqueous electrolyte secondary battery
JP2003017041A (en) Electrode film manufacturing method and battery element including electrode film
JPH1186854A (en) Lithium secondary battery
JP2001102056A (en) Lithium cell
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JPH0574463A (en) Secondary battery
US5939224A (en) Nonaqueous electrolyte secondary battery
JPH06310126A (en) Nonaquous electrolytic secondary battery
JPH06260168A (en) Lithium secondary battery
JP3152307B2 (en) Lithium secondary battery
JP2002117834A (en) Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
JPH0521091A (en) Lithium secondary battery
JPH07226206A (en) Nonaqueous electrolyte secondary battery
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JP3311550B2 (en) Lithium secondary battery
JP3108142B2 (en) Non-aqueous electrolyte battery
JPH0212761A (en) Secondary battery
JPH01304659A (en) Nonaqueous electrolyte secondary battery
JPH10255854A (en) Charging-discharging method of nonaqueous electrolyte secondary battery
JPH1040960A (en) Nonaqueous electrolyte secondary battery
JPH09259868A (en) Nonaqueous electrolyte secondary battery
JPS62123651A (en) Lithium secondary battery
JPH10255845A (en) Nonaqueous electrolyte battery and manufacture thereof