JPH052103B2 - - Google Patents
Info
- Publication number
- JPH052103B2 JPH052103B2 JP60006701A JP670185A JPH052103B2 JP H052103 B2 JPH052103 B2 JP H052103B2 JP 60006701 A JP60006701 A JP 60006701A JP 670185 A JP670185 A JP 670185A JP H052103 B2 JPH052103 B2 JP H052103B2
- Authority
- JP
- Japan
- Prior art keywords
- probe
- converter
- flaw detection
- signal
- frequency dividing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000523 sample Substances 0.000 claims description 21
- 238000001514 detection method Methods 0.000 claims description 19
- 230000007547 defect Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
- G01N29/265—Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/269—Various geometry objects
- G01N2291/2697—Wafer or (micro)electronic parts
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、被検体を自動走査して探傷する装置
に関し、特に、セラミツクス等の各種新素材、
ICまたはLSI等の電子部品、各種精密機械部品な
どにおける微細な内部欠陥を探傷するのに好適な
自動探傷走査装置に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a device that automatically scans and detects flaws on a specimen, and in particular, it relates to a device that automatically scans and detects flaws in a specimen, and in particular,
This invention relates to an automatic flaw detection scanning device suitable for detecting minute internal defects in electronic components such as ICs or LSIs, and various precision mechanical components.
被検体を自動走査して探傷する装置は、近年各
種のものが提供され、大量生産される部品や重要
部品などの各種被検体の良否判定に使用されてい
る。被検体の良否判定のための情報は、自動探傷
走査装置による超音波探傷結果の情報の観察によ
り行われるが、その判定に際し、1つ1つの欠陥
部について欠陥の位置・形状・大きさ・質などの
実態を知ることと共に、併せて被検体全体につい
て欠陥部が及ぼしている影響の度合い、つまり欠
陥の多少および分布の状態をも知ることが、適確
な判定に対する情報となる。しかして、現在の超
音波探傷結果の主たる表示法であるAスコープ、
Bスコープ、Cスコープの各図形表示およびその
記録は、探傷目的や被検体の形状などにより、そ
の特徴を生かして使い分けがなされている。すな
わち、Aスコープは1つ1つの欠陥についての、
いわゆる「点」についての情報、Bスコープは探
触子の走査線下の、いわゆる断面図的な情報が得
られ、Cスコープは被検体の平面的な欠陥分布情
報が得られる特徴を有する。
BACKGROUND ART In recent years, a variety of devices have been provided for automatically scanning and detecting flaws on a specimen, and are used to determine the quality of various specimens such as mass-produced parts and important parts. Information for determining the quality of the specimen is obtained by observing the information on the ultrasonic flaw detection results using an automatic flaw detection scanning device.In making this determination, the location, shape, size, and quality of each defect are determined. In addition to knowing the actual situation, knowing the degree of influence that the defective part has on the entire subject, that is, the number of defects and the state of distribution, provides information for accurate judgment. Therefore, the A scope, which is the current main method of displaying ultrasonic flaw detection results,
The graphic displays and records of the B scope and C scope are used differently depending on the purpose of flaw detection, the shape of the object, etc., taking advantage of their characteristics. In other words, A scope is for each defect.
Information about so-called "points" is obtained with the B scope, so-called cross-sectional information under the scanning line of the probe, and with the C scope, information on the planar defect distribution of the object can be obtained.
ところで、近年種々の新素材が開発・利用され
ている。それらのうち、例えばセラミツクスなど
の脆性材料では、数十μmから数μm程度の微細な
欠陥が材料の強度、信頼性に重大な影響を及ぼす
為、これらの微細な内部欠陥を探傷する事が要望
されており、これに超音波を応用する検査法が採
用される様になつた。また、近年のいわゆる電子
産業の発達にともないそこに使用されるIC、LSI
などは膨大な量に及んでいる。一方IC、LSIなど
が使用されている電子回路は、その装置あるいは
機構の制御の最も重要な部分を占めているのが通
常であり、その装置あるいは機構の良否が、IC、
LSIの良否によつて左右されるといえる。このた
めIC、LSIなどの良否判定は、可能な限り厳密に
行われる必要があり、電気的な試験、物理的な試
験のほか、近年超音波による探傷試験が行われる
ようになつた。 By the way, various new materials have been developed and used in recent years. Among these, in brittle materials such as ceramics, minute defects in the order of tens of micrometers to several micrometers have a significant impact on the strength and reliability of the material, so it is necessary to detect these minute internal defects. Inspection methods that apply ultrasound have come to be adopted for this purpose. In addition, with the development of the so-called electronic industry in recent years, the ICs and LSIs used there
There are a huge number of them. On the other hand, electronic circuits using ICs, LSIs, etc. usually occupy the most important part of controlling the device or mechanism, and the quality of the device or mechanism depends on the IC, LSI, etc.
It can be said that it depends on the quality of the LSI. For this reason, it is necessary to judge the quality of ICs, LSIs, etc. as strictly as possible, and in addition to electrical and physical tests, ultrasonic flaw detection tests have recently come to be used.
超音波による各種新素材、ICまたはLSI等の電
子部品、各種精密機械部品などの探傷試験は、特
定部の全面にわたる欠陥情報が必要なことなどか
ら、前記Cスコープによる自動探傷走査装置が適
しており、従来の装置の1例を第2図により説明
する。図において、1はX方向駆動装置で、探触
子4を保持してガイドバー上を矢印X−X′方向
に移動する。2はY方向駆動装置で、ベース20
上をX−X′方向と直角方向の符号Y,Y′方向に
移動可能である。3はZ方向の駆動装置で、X方
向駆動装置1のガイドバーを有しており、ベース
20上に直立して設けられた支柱21をガイドに
して、X−X′方向およびY,Y′方向と直角の矢
印Z−Z′方向に移動可能である。X,YおよびZ
の各駆動装置1,2および3の駆動には、それぞ
れステツピングモータが使用されており、また駆
動抵抗を減少するためボールネジが使用されてい
る。5は5′を貯えた水浸タンクで、探触子4を
水浸させ、またその底部に被検体6が置かれてい
る。Pは以上の構成からなる探触子保持装置(以
下ポジシヨナーという)である。8はパルサー
で、探触子4に対してパルスを発信する発信回
路、9はレシーバーで、探触子4が被検体6から
受信した音圧信号を受信する回路、10はピーク
デイテクターで、レシーバー9の受信信号のピー
ク値に比例したアナログ電圧をA/D変換器12
に送る装置である。7はオシロスコープで、レシ
ーバー9の出力信号が入力されて表示される。1
1はCPU13と接続され、CPU13より送られ
てくる制御信号を前記X,YおよびZの各駆動装
置1,2および3のステツピングモータに送信す
る制御装置である。CPU13はA/D変換器1
2の信号を受け、それを画像処理装置14へ送
り、画像処理装置14は画素メモリデータをモニ
タTV15へ送り、Cスコープ表示する。以上の
構成からなる自動探傷走査装置において、被検体
6に対する受信信号の取り込みは、CPU13に
おいて設定された一定時間間隔で行われており、
一方、走査は駆動装置によつて行われるが、たと
えばX方向駆動装置1のステツピングモータが始
動しててから一定の速度になるまでの時間や、減
速して停止までの時間は、必然的に速度変化が生
じる。従つて、受信信号の取り込み位置の間隔が
一定にならず等距離間隔での正確なデータが得ら
れない。このため速度変化のある距離範囲だけ走
査する距離を延長しなければならず、そのための
余分な走査時間を必要としていた。また各駆動装
置のステツピングモータに回転スピードのムラが
生じると、データの取り込み間隔が等距離になら
ないから、走査して得られた図形にひずみが生じ
るという欠点があつた。したがつて探傷結果の正
確な情報が得られないという問題があつた。 For flaw detection testing of various new materials, electronic components such as IC or LSI, and various precision mechanical parts using ultrasonic waves, it is necessary to obtain defect information over the entire surface of a specific part, so the automatic flaw detection scanning device using the C scope is suitable. An example of a conventional device will be explained with reference to FIG. In the figure, reference numeral 1 denotes an X-direction drive device that holds the probe 4 and moves it on a guide bar in the direction of arrow X-X'. 2 is a Y-direction drive device, and the base 20
It is movable on the top in directions Y and Y', which are perpendicular to the X-X' direction. Reference numeral 3 denotes a Z-direction driving device, which has a guide bar of the X-direction driving device 1, and uses a support 21 provided upright on a base 20 as a guide to drive in the X-X′ direction and Y, Y′ direction. It is movable in the direction of arrow Z-Z' perpendicular to the direction. X, Y and Z
A stepping motor is used to drive each of the drive devices 1, 2, and 3, and a ball screw is used to reduce drive resistance. Reference numeral 5 denotes a water immersion tank containing water 5', in which the probe 4 is immersed, and a subject 6 is placed at the bottom of the tank. P is a probe holding device (hereinafter referred to as a positioner) having the above configuration. 8 is a pulser, a transmission circuit that sends pulses to the probe 4; 9 is a receiver, a circuit that receives the sound pressure signal received by the probe 4 from the subject 6; 10 is a peak detector; An analog voltage proportional to the peak value of the received signal of the receiver 9 is converted to an A/D converter 12.
It is a device that sends 7 is an oscilloscope, into which the output signal of the receiver 9 is input and displayed. 1
A control device 1 is connected to the CPU 13 and sends control signals sent from the CPU 13 to the stepping motors of the X, Y, and Z drive devices 1, 2, and 3. CPU13 is A/D converter 1
2 and sends it to the image processing device 14, and the image processing device 14 sends the pixel memory data to the monitor TV 15 for C-scope display. In the automatic flaw detection scanning device having the above configuration, reception signals for the object 6 are captured at regular time intervals set by the CPU 13.
On the other hand, scanning is performed by a drive device, but the time it takes for the stepping motor of the X-direction drive device 1 to reach a constant speed after it starts, or the time it takes to decelerate and stop, is inevitably A speed change occurs. Therefore, the intervals between the reception signal acquisition positions are not constant, making it impossible to obtain accurate data at equidistant intervals. For this reason, the scanning distance must be extended by the distance range where the speed changes, which requires extra scanning time. Furthermore, if the rotational speed of the stepping motor of each drive device is uneven, data acquisition intervals will not be equidistant, resulting in distortion in the scanned figure. Therefore, there was a problem that accurate information on the flaw detection results could not be obtained.
本発明は、上記問題点を解消し、データの取り
込みを被検体の全面にわたつて等距離間隔で行う
ことを可能にし、正確な探傷結果の情報を短時間
に得られる自動探傷走査装置を提供するにある。
The present invention solves the above-mentioned problems and provides an automatic flaw detection scanning device that makes it possible to capture data at equal distance intervals over the entire surface of the object to be inspected, and that can obtain accurate flaw detection result information in a short time. There is something to do.
本発明は、探触子が被検体に対して各駆動装置
によりX,Y,Zの方向に走査可能に保持されて
いる探触子保持装置と、CPUに接続され、前記
ポジシヨナーの各駆動装置の走査位置を制御する
制御信号を送信する制御装置と、前記探触子に対
し、電圧パルス信号を送信し、かつ探触子が被検
体から受信した信号を受信する装置と、該装置か
らの出力信号をA/D変換器を介して前記CPU
に入力し、CPUを介して処理されたCスキヤン
の内容が自動的に記録表示される表示装置とから
なる自動探傷走査装置において、前記制御装置と
A/D変換器との間に、前記制御装置から探触子
保持装置の各駆動装置に送信される制御信号を分
周する分周回路を設け、該分周回路の出力信号を
前記A/D変換器のA/D開始信号となるように
構成し、Cスキヤンする被検体の全面にわたり、
正確な探傷結果情報を短時間に得られるようにし
たものである。
The present invention includes a probe holding device in which a probe is held so as to be scannable in the X, Y, and Z directions with respect to a subject by each drive device, and a probe holding device that is connected to a CPU and that drives each positioner. a control device that transmits a control signal to control the scanning position of the probe; a device that transmits a voltage pulse signal to the probe and receives the signal that the probe receives from the subject; The output signal is sent to the CPU via an A/D converter.
In an automatic flaw detection scanning device, the control device is connected between the control device and the A/D converter, and a display device automatically records and displays the contents of the C scan input to the computer and processed via the CPU. A frequency dividing circuit is provided to divide the control signal transmitted from the device to each driving device of the probe holding device, and the output signal of the frequency dividing circuit is set as the A/D start signal of the A/D converter. C-scan the entire surface of the object to be scanned.
This allows accurate flaw detection result information to be obtained in a short time.
本発明の1実施例例を第1図により説明する。
図において第2図と同じ符号のものは同じものを
示す。図は第2図の従来例に分周回路16を付し
たものである。分周回路16は、制御装置11と
A/D変換器12の間に設け、制御装置11から
ポジシヨナーPの各駆動装置1,2および3のス
テツピングモータに送信する制御信号を分周し、
分周回路16の出力信号をA/D変換器12の
A/D開始信号として入力させる。
An embodiment of the present invention will be explained with reference to FIG.
In the figure, the same reference numerals as in FIG. 2 indicate the same thing. The figure shows the conventional example shown in FIG. 2 with a frequency dividing circuit 16 added thereto. The frequency dividing circuit 16 is provided between the control device 11 and the A/D converter 12, and divides the frequency of the control signal sent from the control device 11 to the stepping motors of each drive device 1, 2, and 3 of the positioner P.
The output signal of the frequency dividing circuit 16 is input as an A/D start signal to the A/D converter 12.
前記各ステツピングモータは、制御装置11か
ら送信されるパルス数に応じて回転するから、各
駆動装置たとえばX方向駆動装置1は、そのパル
ス数に対応してX−X′方向に変位する。すなわ
ち、1パルス当りのステツピングモータの回転角
と、X方向駆動装置1のボールネジのピツチとか
ら、X方向駆動装置1の1パルス当りのX−
X′方向の変位量Δxが決定される。本発明におい
ては、制御装置11からX方向駆動装置1のステ
ツピングモータに送信されるパルスを分岐して分
周回路16にも入力するから、制御装置11から
送信されるパルスは分周されてA/D変換器12
に出力される。たとえば、分周回路16の分周数
をNとすれば、X方向駆動装置1の変位量Δxの
N倍ごとに分周回路16からパルスが出力される
ことになる。分周回路16からのパルスはA/D
変換器12にA/D開始信号として入力されるか
ら、A/D変換器12においては、X方向駆動装
置1の変位量Δxに対応してΔxのN倍ごとに受信
信号が取り込まれることになる。このため、分周
回路16の分周数Nを任意に変えることにより、
X方向駆動装置1の任意の変位量に対応して受信
信号を取り込むことが可能になる。以上の説明
は、Y,Zの各駆動装置についても同じである。
分周回路16を設けたことにより、従来のCPU
13から出力されていたA/D変換器12の受信
信号取り込み用の信号を出力する必要がなくな
り、そのためCPU13における計算時間が省略
され、それだけ走査速度は速くなる。 Since each of the stepping motors rotates in accordance with the number of pulses transmitted from the control device 11, each drive device, for example, the X-direction drive device 1, is displaced in the X-X' direction in accordance with the number of pulses. That is, from the rotation angle of the stepping motor per pulse and the pitch of the ball screw of the X-direction drive device 1, the
The amount of displacement Δx in the X′ direction is determined. In the present invention, the pulses sent from the control device 11 to the stepping motor of the X-direction drive device 1 are branched and input to the frequency dividing circuit 16, so the pulses sent from the control device 11 are frequency-divided. A/D converter 12
is output to. For example, if the frequency division number of the frequency dividing circuit 16 is N, a pulse will be outputted from the frequency dividing circuit 16 every N times the displacement amount Δx of the X-direction drive device 1. The pulse from the frequency dividing circuit 16 is an A/D
Since it is input to the converter 12 as an A/D start signal, the A/D converter 12 receives a received signal every N times Δx corresponding to the displacement Δx of the X-direction drive device 1. Become. Therefore, by arbitrarily changing the frequency division number N of the frequency dividing circuit 16,
It becomes possible to capture a received signal corresponding to an arbitrary amount of displacement of the X-direction drive device 1. The above description is the same for each of the Y and Z drive devices.
By providing the frequency dividing circuit 16, the conventional CPU
It is no longer necessary to output the signal for receiving the received signal of the A/D converter 12, which was output from the A/D converter 13, and therefore the calculation time in the CPU 13 is omitted, and the scanning speed becomes faster.
以上説明したように本発明は、被検体が、セラ
ミツクス等の各種新素材、ICまたはLSI等の電子
部品、各種精密機械部品などの微細な内部欠陥を
Cスキヤンにより探傷する自動探傷走査装置にお
いて、ポジシヨナーの各駆動装置に送信する制御
信号を分周する分周回路を設け、該分周回路の出
力信号をA/D変換器のA/D開始信号としたの
で、ポジシヨナーの各駆動装置の加減速時におい
ても正確な探傷結果情報が得られ、従来加減速時
における距離だけ余分に走査していたものが省略
できるので、走査時間を短縮することができる。
また各駆動装置のモータにたとえ回転スピードの
ムラが生じても影響を受けず、常に等距離間隔で
データの取り込みが可能になるので、得られた図
形にひずみを発生することがなくなり、一層正確
な探傷結果情報が得られる。
As explained above, the present invention is an automatic flaw detection scanning device that uses C scan to detect minute internal defects in various new materials such as ceramics, electronic components such as IC or LSI, and various precision mechanical components. A frequency divider circuit was provided to divide the control signal sent to each drive device of the positioner, and the output signal of the frequency divider circuit was used as the A/D start signal of the A/D converter. Accurate flaw detection result information can be obtained even during deceleration, and scanning time can be shortened because the conventional method of scanning an extra distance during acceleration and deceleration can be omitted.
In addition, even if the rotational speed of the motor of each drive device is uneven, it will not be affected and data can always be captured at equal distance intervals, so there will be no distortion in the obtained figure and it will be more accurate. You can obtain accurate flaw detection result information.
第1図は本発明の1実施例の説明図、第2図は
従来例の説明図である。
P…ポジシヨナー、1…X方向駆動装置、2…
Y方向駆動装置、3…Z方向駆動装置、4…探触
子、5…水浸タンク、6…被検体、11…制御装
置、12…A/D変換器、13…CPU、16…
分周回路。
FIG. 1 is an explanatory diagram of one embodiment of the present invention, and FIG. 2 is an explanatory diagram of a conventional example. P...Positioner, 1...X direction drive device, 2...
Y direction drive device, 3... Z direction drive device, 4... Probe, 5... Water immersion tank, 6... Subject, 11... Control device, 12... A/D converter, 13... CPU, 16...
Frequency divider circuit.
Claims (1)
X,Y,Zの方向に走査可能に保持されている探
触子保持装置と、CPUに接続され、前記探触子
保持装置の各駆動装置の走査位置を制御する制御
信号を送信する制御装置と、前記探触子に対し、
電圧パルス信号を送信し、かつ探触子が被検体か
ら受信した信号を受信する装置と、該装置からの
出力信号をA/D変換器を介して前記CPUに入
力し、CPUを介して処理されたCスキヤンの内
容を自動的に記録表示する表示装置とからなる自
動探傷走査装置において、前記制御装置とA/D
変換器との間に、前記制御装置から探触子保持装
置の各駆動装置に送信される制御信号を分周する
分周回路を設け、該分周回路の出力信号を前記
A/D変換器のA/D開始信号としたことを特徴
とする自動探傷走査装置。1 A probe holding device in which the probe is held so as to be scannable in the X, Y, and Z directions by each drive device relative to the subject, and a probe holding device connected to a CPU and each driving device of the probe holding device a control device for transmitting a control signal for controlling a scanning position of the device; and a control device for transmitting a control signal to the probe;
A device that transmits voltage pulse signals and receives signals received by the probe from the subject, and an output signal from the device is input to the CPU via an A/D converter and processed via the CPU. In the automatic flaw detection scanning device, the control device and the A/D
A frequency dividing circuit for frequency dividing the control signal transmitted from the control device to each driving device of the probe holding device is provided between the converter and the output signal of the frequency dividing circuit to the A/D converter. An automatic flaw detection scanning device characterized in that the A/D start signal is an A/D start signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60006701A JPS61167859A (en) | 1985-01-19 | 1985-01-19 | Automatic flaw detecting and scanning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60006701A JPS61167859A (en) | 1985-01-19 | 1985-01-19 | Automatic flaw detecting and scanning device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61167859A JPS61167859A (en) | 1986-07-29 |
JPH052103B2 true JPH052103B2 (en) | 1993-01-11 |
Family
ID=11645623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60006701A Granted JPS61167859A (en) | 1985-01-19 | 1985-01-19 | Automatic flaw detecting and scanning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61167859A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63133057A (en) * | 1986-11-26 | 1988-06-04 | Hitachi Constr Mach Co Ltd | Ultrasonic flaw detector |
JPS63133058A (en) * | 1986-11-26 | 1988-06-04 | Hitachi Constr Mach Co Ltd | Ultrasonic flaw detector |
JPH0833378B2 (en) * | 1987-01-12 | 1996-03-29 | 株式会社明電舎 | Ceramic semiconductor inspection equipment |
-
1985
- 1985-01-19 JP JP60006701A patent/JPS61167859A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61167859A (en) | 1986-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3981184A (en) | Ultrasonic diagnostic inspection systems | |
EP0102176A1 (en) | Method and apparatus for ultrasonic flaw detection | |
JPH052103B2 (en) | ||
JPH0242355A (en) | Ultrasonic inspecting device | |
CN110690137A (en) | Wafer detection equipment and wafer detection method | |
JPH03122563A (en) | Ultrasonic flaw detection apparatus | |
US4167121A (en) | Precision ultrasonic evaluation and recording system | |
JPS6214058A (en) | Automatic flaw detection scanner | |
KR910020434A (en) | Ultrasound Imaging Device | |
JPH1068716A (en) | Manual ultrasonic flaw detection skill training device | |
JPS60102553A (en) | Electron scanning type ultrasonic flaw detection apparatus | |
JP2582109B2 (en) | Composite display method of ultrasonic image and other images | |
JPH01158348A (en) | Ultrasonic flaw detection apparatus | |
Schick et al. | Inspection and process evaluation for flip chip bumping and CSP by scanning 3D confocal microscopy | |
JP2002267620A (en) | Apparatus for visually examining plate-shaped object | |
GB2169102A (en) | Non-destructive testing | |
JPH07119717B2 (en) | Semiconductor material evaluation equipment | |
JP3040051B2 (en) | Ultrasound imaging equipment | |
RU2200943C2 (en) | Method of estimation of crack-resistance of materials | |
JPH0333061Y2 (en) | ||
JPH0480604A (en) | Scanning tunneling microscope and through-hole plating inspection device including same | |
JP3267037B2 (en) | Data display control method for IC test equipment | |
JPH0495873A (en) | Focusing method of ultrasonic search image apparatus | |
Mikami et al. | Imaging of Small Defect and Fracture Process Zone by Using Scientific Visual Analysis in Ultrasonic Inspection | |
JP3008381B2 (en) | Ultrasonic measuring device |