JPH05209922A - Abnormality diagnosing method for transformation equipment - Google Patents

Abnormality diagnosing method for transformation equipment

Info

Publication number
JPH05209922A
JPH05209922A JP4015181A JP1518192A JPH05209922A JP H05209922 A JPH05209922 A JP H05209922A JP 4015181 A JP4015181 A JP 4015181A JP 1518192 A JP1518192 A JP 1518192A JP H05209922 A JPH05209922 A JP H05209922A
Authority
JP
Japan
Prior art keywords
detector
detection
abnormality
state
diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4015181A
Other languages
Japanese (ja)
Inventor
Tokio Yamagiwa
時生 山極
Tsugutaka Tagawa
承位 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4015181A priority Critical patent/JPH05209922A/en
Publication of JPH05209922A publication Critical patent/JPH05209922A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an abnormality diagnosing method for transformation equipment which can make diagnosis with fewer detectors and high accuracy. CONSTITUTION:At transformation equipment 1, a detector for abnormality detection, for example, a partial discharge detector 2 is provided to obtain a detected value Cx, a detector for voltage detection 3 for detecting voltage charged on the transformation equipment 1, a detector for humidity detection 4 for detecting humidity in the ambient atmosphere which is the ambient environmental state, and a detection time detector are provided as detectors for state detection for detecting a quantity of state of the state of the transformation equipment 1 or the ambient environmental state. At a diagnosis part 8, an effective ratios Q (vx), Q (hx) and Q (tx) are obtained using membership functions Q (v), Q (h) and Q (t) in the fuzzy theory from the quantity of state of these detectors for state detection, the detected value Cx by the detector for abnormality detection 2 is corrected by these effective ratios so as to calculate a corrected value Cx', and this corrected value Cx' is compared with a predetermined set value for diagnosis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は変電機器の異常診断方法
に係り、特に通電異常や絶縁異常を検出するのに好適な
変電機器の異常診断方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for diagnosing abnormalities in substation equipment and, more particularly, to a method for diagnosing abnormalities in substation equipment suitable for detecting anomalies in power distribution and insulation.

【0002】[0002]

【従来の技術】従来の変電機器の異常診断方法として、
絶縁異常および通電異常等を監視するために各種検出器
を設け、これら検出器の検出値がある設定値を超えたと
き、異常発生と判定していた。しかしながら、このよう
な異常診断方法では、例えば変電機器の絶縁異常として
の内部部分放電を検出する場合、特に降雨時においては
変電機器の外部、例えば気中架線での気中部分放電を部
分放電検出用検出器が検出してしまい、変電機器の内部
で生じる内部部分放電と区別できず誤診断となることが
ある。これに対して特開平1−287475号公報に記
載された異常診断方法では、外部環境の変化に起因する
誤診断を防止するために、異常の発生と同時に、雷、日
射、雨、風、塵埃等の状態を検出し、異常発生の前後に
おける状態の変化を計算し、その変化量が異常診断に関
与するか否かを判定するようにして外部ノイズを除去し
ようとしている。
2. Description of the Related Art As a conventional abnormality diagnosis method for substation equipment,
Various detectors are provided to monitor insulation abnormality, conduction abnormality, etc., and when a detection value of these detectors exceeds a certain set value, it is determined that an abnormality has occurred. However, in such an abnormality diagnosing method, for example, when detecting an internal partial discharge as an insulation abnormality of a substation device, particularly when it is raining, the partial discharge is detected outside the substation device, for example, an aerial partial discharge on an aerial overhead line. It may not be distinguished from the internal partial discharge that occurs inside the substation, resulting in a false diagnosis. On the other hand, in the abnormality diagnosis method described in JP-A-1-287475, in order to prevent erroneous diagnosis due to changes in the external environment, at the same time as the occurrence of abnormality, lightning, solar radiation, rain, wind, dust It is attempting to remove external noise by detecting the states such as the above, calculating the change in the state before and after the occurrence of the abnormality, and determining whether or not the amount of change is involved in the abnormality diagnosis.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上述した
従来の異常診断方法では、内部異常診断に対して誤動作
となり得る外部環境の変化を想定し、これらを検出する
種々の検出器が必要となるため、検出器の数が多くな
り、その処理も複雑になってしまう。
However, in the above-mentioned conventional abnormality diagnosis method, it is necessary to provide various detectors for detecting changes in the external environment that may cause malfunctions with respect to the internal abnormality diagnosis. The number of detectors increases, and the processing becomes complicated.

【0004】本発明の目的とするところは、少ない検出
器で精度良く診断することのできる変電機器の異常診断
方法を提供するにある。
An object of the present invention is to provide a method for diagnosing abnormalities in substation equipment which enables accurate diagnosis with a small number of detectors.

【0005】[0005]

【課題を解決するための手段】本発明は上述の目的を達
成するために、変電機器の内部異常を検出する異常検出
用検出器と、上記変電機器の状態および周囲環境の状態
の状態量を検出する少なくとも一つの状態検出用検出器
とを備え、上記状態量からファジー理論におけるメンバ
ーシップ関数に基づいて有効性を判断し、上記異常検出
用検出器による検出値に上記有効性を加味して異常診断
することを特徴とする。
In order to achieve the above-mentioned object, the present invention provides an abnormality detection detector for detecting an internal abnormality of a substation equipment and a state quantity of the state of the substation equipment and the state of the surrounding environment. With at least one detector for detecting the state, to judge the effectiveness based on the membership function in the fuzzy theory from the state quantity, taking into account the above-mentioned effectiveness to the detection value by the anomaly detection detector. Characterized by abnormal diagnosis.

【0006】[0006]

【作用】本発明による変電機器の異常診断方法は上述し
たように、ファジー理論におけるメンバーシップ関数を
用い、これによって異常検出用検出器による検出値を補
正して異常診断するようにしたため、外部ノイズが侵入
する条件を加味してメンバーシップ関数を予め設定する
ことにより、異常検出用検出器に外部ノイズが侵入した
としてもメンバーシップ関数による補正値によってこれ
を除去することができ、従来のように外部ノイズそのも
のを検出値から除去するために個々の情報を取込む必要
はなく、従って検出器の数を少なくして精度良い検出を
行うことができる。
As described above, the abnormality diagnosing method for the substation equipment according to the present invention uses the membership function in the fuzzy theory to correct the detected value by the abnormality detecting detector, thereby diagnosing the abnormality. By setting the membership function in advance in consideration of the condition of intrusion, even if external noise invades the anomaly detection detector, it can be removed by the correction value by the membership function. It is not necessary to capture individual information in order to remove the external noise itself from the detected value, and therefore the number of detectors can be reduced and accurate detection can be performed.

【0007】[0007]

【実施例】以下、本発明の実施例を図面によって説明す
る。図1は本発明の一実施例による変電機器の異常診断
方法を採用した異常診断装置を示すブロック図であり、
変電機器の異常として電気的絶縁異常を内部部分放電か
ら検出しようとするものである。変電機器1における密
閉容器1aの外部には部分放電を検出する部分放電検出
用検出器2が異常検出用検出器として設けられている。
また変電機器1の状態あるいは周囲環境状態の状態量を
検出する状態検出用検出器として、変電機器1に課電さ
れている電圧を検出する電圧検出用検出器3と、周囲環
境状態である周囲雰囲気中の湿度を測定する湿度検出用
検出器4が設けられている。これら各検出器2,3およ
び4からの信号は、これらを電気信号に変換する各変換
部5,6および7を介して診断部8に入力される。この
診断部8は主にコンピュータで成り、詳細を後述するよ
うに変換部6,7からの信号をファジー理論におけるメ
ンバーシップ関数に基づいて処理し、これに合わせて部
分放電検出用検出器2の検出値を補正した補正値を導出
し、予め定めた設定値とこの補正値とを比較して診断を
行う。この診断部8には、マン・マシン装置9が接続さ
れており、このマン・マシン装置9で診断結果を表示し
たり、設定値の入力等を行うことができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an abnormality diagnosing device adopting an abnormality diagnosing method for substation equipment according to an embodiment of the present invention.
It is intended to detect electrical insulation abnormality from internal partial discharge as abnormality of substation equipment. A partial discharge detection detector 2 for detecting partial discharge is provided as an abnormality detection detector outside the closed container 1a of the substation device 1.
Further, as a state detection detector for detecting the state quantity of the substation device 1 or the state quantity of the surrounding environment state, a voltage detection detector 3 for detecting a voltage applied to the substation device 1 and a surrounding environment state A humidity detecting detector 4 for measuring the humidity in the atmosphere is provided. The signals from the detectors 2, 3 and 4 are input to the diagnosis unit 8 via the conversion units 5, 6 and 7 that convert them into electric signals. The diagnostic unit 8 is mainly composed of a computer, and processes the signals from the conversion units 6 and 7 based on a membership function in the fuzzy theory as will be described later in detail. A correction value obtained by correcting the detection value is derived, and a diagnosis is performed by comparing the correction value with a preset setting value. A man-machine device 9 is connected to the diagnosis section 8, and the man-machine device 9 can display a diagnosis result and input a set value.

【0008】図2は上述した診断部8の処理作業を示す
フローチャートである。ステップS1で部分放電検出用
検出器2による検出値Cxを取り込み、これと共にステ
ップS2で電圧検出用検出器3の検出値に基づいて後述
するメンバーシップ関数Q(v)から有効率Q(vx)
を算出し、またステップS3で湿度検出用検出器4の検
出値に基づいて後述するメンバーシップ関数Q(h)か
ら有効率Q(hx)を算出し、更に、ステップS4で診
断部8内の検出時刻検出器に基づいて後述するメンバー
シップ関数Q(t)から有効率Q(tx)を算出する。
その後、ステップS5で上述した各有効率Q(vx),
Q(hz),Q(tx)と検出値Cxとの積から補正値
Cx′を求め、これをステップS6で予め定められた設
定値Coと比較し、補正値Cx′の方が大きい場合は警
報等を発し、一方、補正値Cx′が設定値Co以下の場
合は上述の演算処理を繰返して継続監視する。
FIG. 2 is a flow chart showing the processing operation of the above-mentioned diagnosis unit 8. In step S1, the detection value Cx by the partial discharge detection detector 2 is fetched, and at the same time, based on the detection value of the voltage detection detector 3 in step S2, the effective rate Q (vx) is calculated from the membership function Q (v) described later.
And in step S3, an effective rate Q (hx) is calculated from a membership function Q (h), which will be described later, based on the detected value of the humidity detecting detector 4, and in step S4, the effective rate Q (hx) The effective rate Q (tx) is calculated from the membership function Q (t) described later based on the detection time detector.
Then, in step S5, each of the above-mentioned effective rates Q (vx),
A correction value Cx 'is obtained from the product of Q (hz), Q (tx) and the detected value Cx, and this is compared with the preset value Co in step S6. If the correction value Cx' is larger, When an alarm or the like is issued and the correction value Cx 'is less than or equal to the set value Co, the above-described arithmetic processing is repeated to continuously monitor.

【0009】次に、図3を用いて上述したメンバーシッ
プ関数Q(v),Q(h)およびQ(t)について説明
する。図3の(a)はメンバーシップ関数Q(v)を示
し、横軸に電圧vを、また縦軸に有効率Q(vx)をと
っている。同図から分かるように電圧vが高くなるとそ
れに比例して内部部分放電が発生する確立は高くなるの
で有効率Q(vx)を大きくし、その後一定になるよう
にしている。すなわち一線地絡等が発生して結果的に相
間電圧が高くなった健全相で、内部部分放電が検出され
た場合、実際に内部部分放電が生じている可能性は、通
常の検出の場合よりも大きい。図3の(b)はメンバー
シップ関数Q(h)を示し、横軸に湿度hを、また縦軸
に有効率Q(hx)をとっている。同図から分かるよう
に湿度が高くなって行くと、特に降雨時には気中架線等
からの部分放電の発生確立が高くなり、これを部分放電
検出用検出器2で検出する可能性が大きくなる。そこ
で、湿度がある割合以上になると有効率Q(hx)が徐
々に低下し、湿度が100%のときには有効率Q(h
x)が零となるようにしている。図3の(c)はメンバ
ーシップ関数Q(t)を示し、横軸に時刻tを、また縦
軸に有効率Q(ht)をとっており、同図から分かるよ
うに日中に有効率Q(ht)は最低となり、その前後で
徐々に高くなっている。これは検出する内部部分放電の
周波数帯域によって放送波や通信波等の影響を受け、こ
れを部分放電検出用検出器2が誤って検出する可能性が
大きくなるので、これを補正したためである。これら電
波による影響は、地域によっても異なるが時間と共に変
化し、例えば日中に多くなるので、昼間の有効率Q(h
t)を夜間よりも小さくしている。
Next, the membership functions Q (v), Q (h) and Q (t) described above will be described with reference to FIG. FIG. 3A shows the membership function Q (v), where the horizontal axis represents the voltage v and the vertical axis represents the effective rate Q (vx). As can be seen from the figure, as the voltage v increases, the probability that internal partial discharge will occur increases in proportion thereto, so the effective rate Q (vx) is increased and then made constant. In other words, if an internal partial discharge is detected in a sound phase in which a one-line ground fault or the like has resulted in a high interphase voltage, the possibility that an internal partial discharge may actually occur is greater than in normal detection. Is also big. FIG. 3B shows the membership function Q (h), in which the horizontal axis indicates the humidity h and the vertical axis indicates the effective rate Q (hx). As can be seen from the figure, as the humidity increases, the probability of occurrence of partial discharge from the aerial overhead line or the like increases, especially during rainfall, and the possibility of detecting this with the partial discharge detection detector 2 increases. Therefore, the effective rate Q (hx) gradually decreases when the humidity exceeds a certain rate, and the effective rate Q (hx) decreases when the humidity is 100%.
x) is set to zero. FIG. 3C shows the membership function Q (t), in which the horizontal axis represents time t and the vertical axis represents the effective rate Q (ht). As can be seen from the figure, the effective rate during the daytime is shown. Q (ht) is the lowest and gradually increases before and after that. This is because the frequency band of the internal partial discharge to be detected influences a broadcast wave, a communication wave, or the like, and there is a high possibility that the partial discharge detection detector 2 will erroneously detect this, and this is corrected. The influence of these radio waves varies depending on the region, but changes with time, and increases during the daytime, for example, so the effective rate Q (h
t) is smaller than that at night.

【0010】上述したように図2に示すフローチャート
は、これらのメンバーシップ関数Q(v),Q(h)お
よびQ(t)のすくなくとも一つに基づいて、ステップ
S5で上述した各有効率Q(vx),Q(hx),Q
(tx)と検出値Cxとの積から補正値Cx′を求める
ようにしたため、内部部分放電を検出する場合、部分放
電検出用検出器2にとってノイズとなるあらゆる要素を
想定し、これを他の検出器で検出し検出値Cxから差し
引く必要はなく、少ない数の検出器で精度の高い診断を
行うことができる。
As described above, the flow chart shown in FIG. 2 is based on at least one of these membership functions Q (v), Q (h) and Q (t), and each effective rate Q described above in step S5. (Vx), Q (hx), Q
Since the correction value Cx 'is obtained from the product of (tx) and the detected value Cx, when detecting the internal partial discharge, all elements that cause noise for the partial discharge detection detector 2 are assumed, and this is used as the other value. It is not necessary to detect with a detector and subtract from the detected value Cx, and highly accurate diagnosis can be performed with a small number of detectors.

【0011】図4は上述の診断部8において、変電機器
の異常としての通電異常を診断する場合の処理作業を示
すフローチャートを示している。この実施例では、通電
異常を接触抵抗の増大による温度上昇から検出するため
に通電異常検出用検出器として温度検出用検出器を設
け、この温度検出用検出器による検出値を補正するメン
バーシップ関数としては、通電電流、気温、日射および
検出時刻の状態量を用い、これらの状態量を得るために
それぞれ検出器を設けている。ステップS7では、通電
異常を接触抵抗の増大による温度上昇から検出するため
に設けた通電異常検出用検出器により検出値Axを取り
込み、これと共にステップS8で電流検出用検出器の検
出値に基づいて後述するメンバーシップ関数Q(i)か
ら有効率Q(ix)を算出し、またステップS9で気温
検出用検出器の検出値に基づいて後述するメンバーシッ
プ関数Q(θ)から有効率Q(θx)を算出し、またス
テップS10で日射量検出器の検出値に基づいて後述す
るメンバーシップ関数Q(s)から有効率Q(sx)を
算出し、更にステップS11で図1に示す診断部8内の
検出時刻検出器に基づいて前述したメンバーシップ関数
Q(t)から有効率Q(tx)を算出する。その後、ス
テップS12で各有効率Q(ix),Q(θx),Q
(sx)およびQ(tx)と検出値Axとの積から補正
値Ax′を求め、これをステップS13において予め定
められた設定値Aoと比較し、補正値Ax′の方が大き
い場合は警報等を発し、一方、補正値Ax′が設定値A
o以下の場合は上述の演算処理を繰返して継続監視す
る。
FIG. 4 is a flow chart showing a processing operation in the case of diagnosing an energization abnormality as an abnormality of the substation equipment in the diagnosis unit 8 described above. In this embodiment, a temperature detection detector is provided as a conduction abnormality detection detector in order to detect a conduction abnormality from a temperature rise due to an increase in contact resistance, and a membership function for correcting the detection value by this temperature detection detector. As the above, the state quantities of the energizing current, the temperature, the solar radiation and the detection time are used, and the detectors are respectively provided to obtain these state quantities. In step S7, a detection value Ax is taken in by a detector for detecting a conduction abnormality provided to detect an abnormality in conduction from a temperature rise due to an increase in contact resistance, and at the same time, based on the detection value of the detector for current detection in step S8. The effective rate Q (ix) is calculated from the membership function Q (i) described later, and the effective rate Q (θx) is calculated from the membership function Q (θ) described later based on the detection value of the temperature detecting detector in step S9. ) Is calculated, and the effective rate Q (sx) is calculated from the membership function Q (s) described later based on the detection value of the solar radiation amount detector in step S10, and further in step S11, the diagnosis unit 8 shown in FIG. The effective rate Q (tx) is calculated from the above-mentioned membership function Q (t) based on the detection time detector in. Then, in step S12, each effective rate Q (ix), Q (θx), Q
A correction value Ax ′ is obtained from the product of (sx) and Q (tx) and the detected value Ax, and this is compared with a preset value Ao in step S13. If the correction value Ax ′ is larger, an alarm is issued. Etc., while the correction value Ax ′ is the set value A
In the case of o or less, the above arithmetic processing is repeated to continuously monitor.

【0012】次に、図5を用いて上述のメンバーシップ
関数Q(i),Q(θ),Q(s)およびQ(t)につ
いて説明する。図5の(a)はメンバーシップ関数Q
(i)を示し、横軸に通電電流iを、また縦軸に有効率
Q(ix)をとっている。同図から分かるように通電電
流iが大きくなると、それに伴って通電異常が発生する
確立は高くなるので有効率Q(ix)が大きくなるよう
にしている。同図(b)はメンバーシップ関数Q(θ)
を示し、横軸に気温θを、また縦軸に有効率Q(θx)
をとっている。同図から分かるように気温が高くなって
行くと、これを通電異常検出用検出器としての温度検出
用検出器で検出する可能性が大きくなるので、気温の上
昇と共に有効率Q(hx)が徐々に低下するようにして
いる。同図(c)はメンバーシップ関数Q(s)を示
し、横軸に日射量sを、また縦軸に有効率Q(ht)を
とっており、同図から分かるように日射量sの増減に比
例して有効率Q(ht)も増減するようにしている。ま
た同図(d)は図3(c)で説明したメンバーシップ関
数Q(t)と同じである。
Next, the membership functions Q (i), Q (θ), Q (s) and Q (t) described above will be described with reference to FIG. The membership function Q is shown in FIG.
(I), the horizontal axis represents the conduction current i, and the vertical axis represents the effective rate Q (ix). As can be seen from the figure, when the energizing current i increases, the probability of occurrence of energization abnormality increases accordingly, so the effective rate Q (ix) is increased. The membership function Q (θ) is shown in FIG.
The temperature is shown on the horizontal axis and the effective rate Q (θx) is shown on the vertical axis.
Is taking. As can be seen from the figure, as the temperature rises, there is a greater possibility that this will be detected by the temperature detection detector serving as the current flow abnormality detection detector, so the effective rate Q (hx) will increase as the temperature rises. I am trying to decrease gradually. The figure (c) shows the membership function Q (s), where the horizontal axis shows the amount of solar radiation s and the vertical axis shows the effective rate Q (ht). As can be seen from FIG. The effective rate Q (ht) is also increased / decreased in proportion to. Also, FIG. 3D is the same as the membership function Q (t) described in FIG.

【0013】上述したように図4に示すフローチャート
は、ステップS12でこれらのメンバーシップ関数Q
(i),Q(θ),Q(s)およびQ(t)の少なくと
も一つに基づいて得た各有効率Q(ix),Q(θ
x),Q(sx)およびQ(tx)と検出値Axとの積
から補正値Ax′を求めるようにしたため、通電異常を
検出する場合、通電異常検出用検出器にとってノイズと
なるあらゆる要素を想定し、これを他の検出器で検出し
検出値Axから差し引く必要はなく、少ない数の検出器
で精度の高い診断を行うことができる。このようにして
通電異常検出用検出器による検出値Axの有効率は、通
電電流が大きく、気温が低く、日射量がない夜間の場合
が最も高くなり、このとき高感度で高精度の診断が可能
となる。
As described above, in the flow chart shown in FIG. 4, these membership functions Q are calculated in step S12.
Effective rates Q (ix), Q (θ) obtained based on at least one of (i), Q (θ), Q (s) and Q (t)
x), Q (sx) and Q (tx), and the correction value Ax 'is obtained from the product of the detected value Ax. Therefore, when detecting the energization abnormality, all elements that cause noise for the energization abnormality detection detector are detected. Assuming that this does not need to be detected by another detector and subtracted from the detection value Ax, a highly accurate diagnosis can be performed with a small number of detectors. In this way, the effective rate of the detection value Ax by the detector for detecting energization abnormality is highest at night when the energization current is large, the temperature is low, and there is no insolation. At this time, a highly sensitive and highly accurate diagnosis can be made. It will be possible.

【0014】図6は、図1に示した診断部8の他の処理
作業、すなわち各検出器による検出間隔を制御するフロ
ーチャートを示しており、以下、通電異常を診断する場
合を例にして説明する。前述したように通電異常のため
に各種検出器からの状態量を取り込み、図1に示す診断
部8で処理しているが、この処理間隔は図6に示すステ
ップS14において例えばAに決められている。更に、
この間隔はステップS15で状態量の変化の有無を調べ
ることによって調整可能にしている。つまり、状態量に
変化がある場合、ステップS15でこれが検出されてス
テップS16で検出間隔の変更が行われ、ステップS1
7で図6に示した各メンバーシップ関数からの有効率の
取り込みと診断が行われる。これは、変電機器の通電電
流が小さい場合、多少接触抵抗が増大しても異常診断は
困難であるから検出間隔を粗くして監視した方が有効で
あり、また変電機器の通電電流が大きい場合、接触抵抗
の増大を容易に検出することができると共に、時々刻々
と変化することが予想されるので検出間隔を密にして監
視した方が有効であるためである。
FIG. 6 is a flowchart showing another processing operation of the diagnosis unit 8 shown in FIG. 1, that is, a control interval of detection by each detector. To do. As described above, the state quantities from various detectors are fetched due to the abnormality in the energization and are processed by the diagnosis unit 8 shown in FIG. 1. The processing interval is set to, for example, A in step S14 shown in FIG. There is. Furthermore,
This interval can be adjusted by checking whether or not the state quantity has changed in step S15. That is, when there is a change in the state quantity, this is detected in step S15, the detection interval is changed in step S16, and step S1 is changed.
At 7, the acquisition and diagnosis of the effective rate from each membership function shown in FIG. 6 is performed. This is because if the energizing current of the substation equipment is small, it is more effective to monitor it by making the detection interval coarse, even if the contact resistance increases a little. This is because it is possible to easily detect an increase in contact resistance and it is expected that the contact resistance will change from moment to moment, so it is more effective to closely monitor the detection intervals for monitoring.

【0015】図7および図8は検出間隔の変更に伴う検
出タイミングおよび検出間隔補正特性を示している。図
8に示すように横軸の通電電流iはそれぞれ設定値i
B,iC,iDに関連して検出間隔A,B,C,Dを定
めている。図7に示すように、通常の検出間隔Aに対し
て通電電流iが変化すると、それに対応する検出間隔と
なるよう変更指令がされ、検出タイミングは図示のよう
になる。従って、上述したそれぞれの状況に合わせた検
出間隔で有効な診断が成される。尚、このような検出間
隔の変更は、通電異常検出の場合に限らず、内部部分放
電検出の場合にも同様に適用できる。
7 and 8 show the detection timing and the detection interval correction characteristic associated with the change of the detection interval. As shown in FIG. 8, the energization current i on the horizontal axis is the set value i.
Detection intervals A, B, C and D are defined in relation to B, iC and iD. As shown in FIG. 7, when the energizing current i changes with respect to the normal detection interval A, a change command is issued so that the detection interval corresponds to it, and the detection timing becomes as shown in the figure. Therefore, effective diagnosis is made at the detection intervals according to the above-mentioned situations. It should be noted that such a change in the detection interval is not limited to the case of the abnormality detection of energization, but can be similarly applied to the case of the internal partial discharge detection.

【0016】[0016]

【発明の効果】以上説明したように本発明は、ファジー
理論におけるメンバーシップ関数を用いて異常検出器の
検出値に補正を加えるようにしたため、外部ノイズを除
去するために外部ノイズとして考えられるものを全て検
出する検出器を設ける必要がなく、少ない数の検出器で
精度良い診断を行うことができる。
As described above, according to the present invention, since the correction value is added to the detection value of the abnormality detector using the membership function in the fuzzy theory, it is considered as external noise to remove external noise. It is not necessary to provide a detector for detecting all of the above, and accurate diagnosis can be performed with a small number of detectors.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による変電機器の異常診断方
法を採用した異常診断装置のブロック図である。
FIG. 1 is a block diagram of an abnormality diagnosing apparatus adopting an abnormality diagnosing method for substation equipment according to an embodiment of the present invention.

【図2】図1に示す異常診断装置の一つの処理作業を示
すフローチャートである。
FIG. 2 is a flowchart showing one processing operation of the abnormality diagnosis device shown in FIG.

【図3】図2に示す各メンバーシップ関数の特性図であ
る。
FIG. 3 is a characteristic diagram of each membership function shown in FIG.

【図4】図1に示す異常診断装置の他の処理作業を示す
フローチャートである。
4 is a flowchart showing another processing operation of the abnormality diagnosis device shown in FIG.

【図5】図4に示す各メンバーシップ関数の特性図であ
る。
5 is a characteristic diagram of each membership function shown in FIG.

【図6】図1に示す異常診断装置の更に他の処理作業を
示すフローチャートである。
6 is a flowchart showing still another processing operation of the abnormality diagnosis device shown in FIG.

【図7】図6の方法による検出タイミングの一例を示す
説明図である。
FIG. 7 is an explanatory diagram showing an example of detection timing by the method of FIG.

【図8】図6の方法による検出間隔の一例を示す特性図
である。
FIG. 8 is a characteristic diagram showing an example of detection intervals by the method of FIG.

【符号の説明】[Explanation of symbols]

1 変電機器 2 部分放電検出器 3 電圧検出用検出器 4 湿度検出用検出器 5〜7 変換部 8 診断部 Q(v),Q(h),Q(t) メンバーシップ関数 Q(vx),Q(vx),Q(vx) 有効率 Cx 検出値 Cx′ 補正値 1 Substation equipment 2 Partial discharge detector 3 Voltage detection detector 4 Humidity detection detector 5-7 Conversion unit 8 Diagnostic unit Q (v), Q (h), Q (t) Membership function Q (vx), Q (vx), Q (vx) Effective rate Cx Detection value Cx 'Correction value

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 変電機器に少なくとも一つの異常検出用
検出器を設け、この異常検出用検出器による検出値を所
定の設定値と比較して診断する変電機器の異常診断方法
において、上記変電機器の状態および周囲環境の状態の
状態量を検出する少なくとも一つの状態検出用検出器を
設け、上記状態量からファジー理論におけるメンバーシ
ップ関数に基づいて有効性を判断し、上記検出値に上記
有効性を加味して異常診断することを特徴とする変電機
器の異常診断方法。
1. A method for diagnosing an abnormality in a substation device, comprising: providing at least one detector for abnormality detection in the substation device; and comparing the detected value by the detector for abnormality detection with a predetermined set value for diagnosis. Is provided and at least one detector for detecting the state quantity of the state of the surrounding environment is provided, and the effectiveness is judged from the state quantity based on the membership function in the fuzzy theory, and the above-mentioned effectiveness is added to the detected value. A method for diagnosing abnormalities in substation equipment, which is characterized by diagnosing abnormalities in consideration of the above.
【請求項2】 請求項1記載のものにおいて、上記異常
検出用検出器は部分放電検出器であり、上記状態検出用
検出器は、課電電圧、湿度および検出時刻の少なくとも
一つを検出するようにしたことを特徴とする変電機器の
異常診断方法。
2. The detector according to claim 1, wherein the abnormality detection detector is a partial discharge detector, and the state detection detector detects at least one of an applied voltage, humidity and detection time. A method for diagnosing abnormalities in substation equipment characterized by the above.
【請求項3】 請求項1記載のものにおいて、上記異常
検出用検出器は通電異常検出用検出器であり、上記状態
検出用検出器は、通電電流、気温、日射量および検出時
刻の少なくとも一つを検出するようにしたことを特徴と
する変電機器の異常診断方法。
3. The detector according to claim 1, wherein the abnormality detection detector is a conduction abnormality detection detector, and the state detection detector is at least one of conduction current, temperature, insolation and detection time. A method for diagnosing abnormalities in substation equipment, which is characterized by detecting one of them.
【請求項4】 請求項1記載のものにおいて、上記異常
検出用検出器による検出間隔は、上記状態量の少なくと
も一つによって調整可能としたことを特徴とする変電機
器の異常診断方法。
4. The abnormality diagnosis method for substation equipment according to claim 1, wherein a detection interval by the abnormality detection detector is adjustable by at least one of the state quantities.
JP4015181A 1992-01-30 1992-01-30 Abnormality diagnosing method for transformation equipment Pending JPH05209922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4015181A JPH05209922A (en) 1992-01-30 1992-01-30 Abnormality diagnosing method for transformation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4015181A JPH05209922A (en) 1992-01-30 1992-01-30 Abnormality diagnosing method for transformation equipment

Publications (1)

Publication Number Publication Date
JPH05209922A true JPH05209922A (en) 1993-08-20

Family

ID=11881658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4015181A Pending JPH05209922A (en) 1992-01-30 1992-01-30 Abnormality diagnosing method for transformation equipment

Country Status (1)

Country Link
JP (1) JPH05209922A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100623702B1 (en) * 2004-10-26 2006-09-19 삼성에스디아이 주식회사 Hand-Held Device for controlling Operation of Power Source according to humidity
JP2008051737A (en) * 2006-08-28 2008-03-06 A-Tec Co Ltd Abnormal deterioration diagnosis system for electrical facility
US10571504B2 (en) 2016-06-14 2020-02-25 Lsis Co., Ltd. Diagnostic system for electric power equipment
CN117406158A (en) * 2023-12-15 2024-01-16 深圳市普裕时代新能源科技有限公司 Calibration method and device for lithium ion battery short circuit tester

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100623702B1 (en) * 2004-10-26 2006-09-19 삼성에스디아이 주식회사 Hand-Held Device for controlling Operation of Power Source according to humidity
JP2008051737A (en) * 2006-08-28 2008-03-06 A-Tec Co Ltd Abnormal deterioration diagnosis system for electrical facility
US10571504B2 (en) 2016-06-14 2020-02-25 Lsis Co., Ltd. Diagnostic system for electric power equipment
CN117406158A (en) * 2023-12-15 2024-01-16 深圳市普裕时代新能源科技有限公司 Calibration method and device for lithium ion battery short circuit tester
CN117406158B (en) * 2023-12-15 2024-04-12 深圳市普裕时代新能源科技有限公司 Calibration method and device for lithium ion battery short circuit tester

Similar Documents

Publication Publication Date Title
US4831361A (en) Environmental abnormality alarm apparatus
US20160155318A1 (en) System and Method for Adjusting Notifications for Solar Monitoring Systems
JP4353989B2 (en) Intrusion detection system
KR101643701B1 (en) System for managing electric power equipment
US10958060B2 (en) Method and device for detecting an electric arc in a photovoltaic installation
JPH05209922A (en) Abnormality diagnosing method for transformation equipment
CN111400114A (en) Deep recursion network-based big data computer system fault detection method and system
CN109596226A (en) Black matrix method for detecting abnormality, device, equipment and system for infrared thermal imaging temp measuring system
US7782187B2 (en) Monitoring apparatus
JP3152534B2 (en) Environmental sensor
CN111998963B (en) Alarm threshold value adjusting method and device applied to temperature detection equipment
JPH0634449A (en) Infrared ray monitoring system
JP2000056038A (en) Abnormality monitoring device for weather sensor
JPH0520558A (en) Noise removing method in monitor using infrared ray image by infrared ray camera
JP2836768B2 (en) Gas leak monitoring device for gas insulated electrical equipment
JP2982496B2 (en) Method of detecting abnormal overheating of gas insulated switchgear
JP4510341B2 (en) Anomaly detection device
JP2566834Y2 (en) Abnormal overheat detector for gas insulated switchgear
JPH0862082A (en) Inspection device for pressure sensor
JP3448483B2 (en) Error detection method of sensor in vehicle air conditioner
KR101274667B1 (en) Apparatus for diagnosing Remote Radical Generator and method for the same
JPS62160011A (en) Controller of gas insulated switchgear
CN108801467B (en) Infrared panoramic imaging inspection control method and device
JPH0560617A (en) Monitoring device of abnormality of electric apparatus
CN115808247A (en) Infrared temperature measuring device carried by unmanned aerial vehicle